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1. Introduction. Complex systems theory is a quickly growing interdisciplinary
area with a very broad spectrum of motivations and applications. Having in mind
biological applications, S. Levin (see [26]) characterized complex adaptive systems by
such properties as diversity and individuality of components, localized interactions
among components, and the outcomes of interactions used for replication or enhance-
ment of components. In the study of these systems, proper language and techniques
are delivered by the interacting particle models which form a rich and powerful di-
rection in modern stochastic and infinite dimensional analysis. Interacting particle
systems have a wide use as models in condensed matter physics, chemical kinetics,
population biology, ecology (individual based models), sociology and economics (agent
based models).

In this paper we consider an individual based model (IBM) in spatial ecology
introduced by Bolker and Pacala [4, 5], Dieckmann and Law [6] (BDLP model). A
population in this model is represented by a configuration of motionless organisms
(plants) located in an infinite habitat (an Euclidean space in our considerations).
The habit is considered to be a continuous space as opposed to discrete spatial lattices
used in the most of mathematical models of interacting particle systems. We need
the infinite habit to avoid boundary effects in the population evolution and the latter
moment is quite similar to the necessity to work in the thermodynamic limit for models
of statistical physics. Let us also mention a recent paper [2] in which a modification
of the BDLP model for the case of moving organisms (e.g., branching diffusion of the
plankton) was considered.

A general IBM in the plant ecology is a stochastic Markov process in the configu-
ration space with events comprising birth and death of the configuration points, i.e.,
we are dealing with a birth-and-death process in the continuum. In the particular case
of the BDLP model, each plant produces seeds independently of others and then these
seeds are distributed in the space accordingly to a dispersion kernel a+. This part of
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the process may be considered as a kind of the spatial branching. In the same time,
the model includes also a mortality mechanism. The mortality intensity consists of
two parts. The first one corresponds to a constant intrinsic mortality value m > 0 s.t.
any plant dies independently of others after a random time (exponentially distributed
with parameter m). The second part in the mortality rate is density dependent. The
latter is expressed in terms of a competition kernel a− which describes an additional
mortality rate for any given point of the configuration coming from the rest of the
population, see Section 3 for the precise description of the model, in particular, (3.6).
The latter formula gives the heuristic form of the Markov generator in the BDLP
model.

Assuming the existence of the corresponding Markov process, we derive in Section
5 an evolution equation for correlation functions k(n)

t , n ≥ 1, of the considered model.
In [4, 5], [6] this system was called the system of spatial moment equations for plant
competition and, actually, this system itself was taking as a definition of the dynamics
in the BDLP model. The mathematical structure of the correlation functions evolution
equation is close to other well-known hierarchical systems in mathematical physics,
e.g., BBGKY hierarchy for the Hamiltonian dynamics (see, e.g. [3]) or the diffusion
hierarchy for the gradient stochastic dynamic in the continuum (see e.g. [21]). As in
all hierarchical chains of equations, we can not expect the explicit form of the solution,
and even more, the existence problem for these equations is a highly delicate question.

There is an approximative approach to produce an information about the behav-
ior of the solutions to the hierarchical chains. This approach is called the closure
procedure and consists of the following steps. The first step is to cut all correlation
functions of the higher orders and the second one is to subscribe the rest correla-
tion functions by the properly factorized correlation functions of the lower orders.
As result, one obtains a finite system of non-linear equations instead of the original
linear but infinite system of a hierarchical type. This closure procedure is essentially
non-unique, see [7].

The aim of this paper is to study the moment equations for the BDLP model
by methods of functional analysis and analysis on the configuration spaces developed
in [13], [14], [15] and already applied to the non-equilibrium birth-and-death type
continuous space stochastic dynamics in [16], [18]. We obtain some rigorous results
concerning the existence and properties of the solution for different classes of initial
conditions. One of the main question we clarify in the paper concerns the role of
the competition mechanism in the regulation of the spatial structure of an evolving
population. More precisely, considering the model without competition, i.e., the case
a− ≡ 0, we arrive in the situation of the so-called continuous contact model [9],
[17], [22]. In the ecological framework, this model describes free growth of a plant
population with the given constant mortality. We note that (independently on the
value of the mortality m > 0) the considered contact model exhibits very strong
clustering that is reflected in the bound (3.5) on the correlation functions at any
moment of time t > 0. Note that this effect on the level of the computer simulation
was discovered already in [2] and now it has the rigorous mathematical formulation and
clarification. A direct consequence of the competition in the model is the suppression
of such clustering. Namely, assuming the strong enough competition and the big
intrinsic mortality m, we prove the sub-Poissonian bound for the solution to the
moment equations provided such bound was true for the initial state. Moreover,
we clarify specific influences of the constant and the density dependent mortality
intensities separately. More precisely, the big enough intrinsic mortality m gives a
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uniform in time bound for each correlation function and the strong competition results
ensure the regular spatial distribution of the typical configuration for any moment of
time that is reflected in the sub-Poissonian bound. Joint influence of the intrinsic
mortality and the competition leads to the existence of the unique invariant measure
for our model which is just Dirac measure concentrated on the empty configuration.
The latter means that the corresponding stochastic evolution of the population is
asymptotically exhausting.

We would like to mention also the work [10] in which the BDLP model was studied
in the case of the bounded habit in the stochastic analysis framework. The latter case
differs essentially from the model we consider in the present paper as well as main
problems studied in [10], which are related to the scaling limits for the considered
processes.

2. General facts and notations. Let B(Rd) be the family of all Borel sets in
Rd. Bb(Rd) denotes the system of all bounded sets in B(Rd).

The space of n-point configuration is

Γ(n)
0 = Γ(n)

0,Rd :=
{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0 := N ∪ {0},

where |A| denotes the cardinality of the set A. The space Γ(n)
Λ := Γ(n)

0,Λ for Λ ∈
Bb(Rd) is defined analogously to the space Γ(n)

0 . As a set, Γ(n)
0 is equivalent to the

symmetrization of

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣∣ xk 6= xl if k 6= l

}
,

i.e. (̃Rd)n/Sn, where Sn is the permutation group over {1, . . . , n}. Hence one can in-
troduce the corresponding topology and Borel σ- algebra, which we denote by O(Γ(n)

0 )
and B(Γ(n)

0 ), respectively. Also one can define a measure m(n) as an image of the prod-
uct of Lebesgue measures dm(x) = dx on

(
Rd,B(Rd)

)
.

The space of finite configurations

Γ0 :=
⊔
n∈N0

Γ(n)
0

is equipped with the topology which has structure of disjoint union. Therefore, one
can define the corresponding Borel σ-algebra B(Γ0).

A set B ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N such
that B ⊂

⊔N
n=0 Γ(n)

Λ . The Lebesgue—Poisson measure λz on Γ0 is defined as

λz :=
∞∑
n=0

zn

n!
m(n).

Here z > 0 is the so called activity parameter. The restriction of λz to ΓΛ will be also
denoted by λz.

The configuration space

Γ :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}

is equipped with the vague topology. It is a Polish space (see e.g. [15]). The cor-
responding Borel σ-algebra B(Γ) is defined as the smallest σ-algebra for which all
mappings NΛ : Γ→ N0, NΛ(γ) := |γ ∩ Λ| are measurable, i.e.,

B(Γ) = σ
(
NΛ

∣∣Λ ∈ Bb(Rd)) .
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One can also show that Γ is the projective limit of the spaces {ΓΛ}Λ∈Bb(Rd) w.r.t. the
projections pΛ : Γ→ ΓΛ, pΛ(γ) := γΛ, Λ ∈ Bb(Rd).

The Poisson measure πz on (Γ,B(Γ)) is given as the projective limit of the family
of measures {πΛ

z }Λ∈Bb(Rd), where πΛ
z is the measure on ΓΛ defined by πΛ

z := e−zm(Λ)λz.
We will use the following classes of functions: L0

ls(Γ0) is the set of all measurable
functions on Γ0 which have a local support, i.e. G ∈ L0

ls(Γ0) if there exists Λ ∈ Bb(Rd)
such that G �Γ0\ΓΛ= 0; Bbs(Γ0) is the set of bounded measurable functions with
bounded support, i.e. G �Γ0\B= 0 for some bounded B ∈ B(Γ0).

On Γ we consider the set of cylinder functions FL0(Γ), i.e. the set of all mea-
surable functions G on

(
Γ,B(Γ))

)
which are measurable w.r.t. BΛ(Γ) for some

Λ ∈ Bb(Rd). These functions are characterized by the following relation: F (γ) =
F �ΓΛ (γΛ).

The following mapping between functions on Γ0, e.g. L0
ls(Γ0), and functions on

Γ, e.g. FL0(Γ), plays the key role in our further considerations:

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.1)

where G ∈ L0
ls(Γ0), see e.g. [13, 24, 25]. The summation in the latter expression is

taken over all finite subconfigurations of γ, which is denoted by the symbol η b γ.
The mapping K is linear, positivity preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.2)

LetM1
fm(Γ) be the set of all probability measures µ on

(
Γ,B(Γ)

)
which have finite

local moments of all orders, i.e.
∫

Γ
|γΛ|nµ(dγ) < +∞ for all Λ ∈ Bb(Rd) and n ∈ N0.

A measure ρ on
(
Γ0,B(Γ0)

)
is called locally finite iff ρ(A) < ∞ for all bounded sets

A from B(Γ0). The set of such measures is denoted by Mlf(Γ0).
One can define a transform K∗ : M1

fm(Γ) → Mlf(Γ0), which is dual to the K-
transform, i.e., for every µ ∈M1

fm(Γ), G ∈ Bbs(Γ0) we have∫
Γ

KG(γ)µ(dγ) =
∫

Γ0

G(η) (K∗µ)(dη).

The measure ρµ := K∗µ is called the correlation measure of µ.
As shown in [13] for µ ∈M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series (2.1) is µ-a.s.
absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and∫

Γ0

G(η) ρµ(dη) =
∫

Γ

(KG)(γ)µ(dγ). (2.3)

A measure µ ∈M1
fm(Γ) is called locally absolutely continuous w.r.t. πz iff µΛ :=

µ ◦ p−1
Λ is absolutely continuous with respect to πΛ

z for all Λ ∈ BΛ(Rd). In this case
ρµ := K∗µ is absolutely continuous w.r.t λz. We denote

kµ(η) :=
dρµ
dλz

(η), η ∈ Γ0.

The functions

k(n)
µ : (Rd)n −→ R+ (2.4)
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k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n
0, otherwise

are the correlation functions well known in statistical physics, see e.g [28], [29].
We recall now the so-called Minlos lemma which plays very important role in our

calculations (cf., [20]).
Lemma 2.1. Let n ∈ N, n ≥ 2, and z > 0 be given. Then∫

Γ0

. . .

∫
Γ0

G(η1 ∪ . . . ∪ ηn)H(η1, . . . , ηn)dλz(η1) . . . dλz(ηn)

=
∫

Γ0

G(η)
∑

(η1,...,ηn)∈Pn(η)

H(η1, . . . , ηn)dλz(η)

for all measurable functions G : Γ0 7→ R and H : Γ0 × . . . × Γ0 7→ R with respect to
which both sides of the equality make sense. Here Pn(η) denotes the set of all ordered
partitions of η in n parts, which may be empty.

3. Description of the model. In the present paper we study the special case
of the general birth-and-death processes in continuum. The spatial birth-and-death
processes describe evolution of configurations in Rd, in which points of configurations
(particles, individuals, elements) randomly appear (born) and disappear (die) in the
space. Among all birth-and-death processes we will distinguish those in which new
particles appear only from existing ones. These processes correspond to the models
of the spatial ecology.

The simplest example of such processes is the so-called “free growth” dynamics.
During this stochastic evolution the points of configuration independently create new
ones distributed in the space according to a dispersion probability kernel 0 ≤ a+ ∈
L1(Rd) which is an even function. Any existing point has an infinite life time, i. e.
they do not die. Heuristically, the Markov pre-generator of this birth process has the
following form:

(L+F )(γ) = κ+
∑
y∈γ

∫
Rd

a+(x− y)D+
x F (γ)dx,

where

D+
x F (γ) = F (γ ∪ x)− F (γ),

and κ+ > 0 is some positive constant.
The existence of the process associated with L+ can be shown using the same

technique as in [9], [22]. Let µt be the corresponding evolution of measures in time
on M1

fm(Γ). By k(n)
t , n ≥ 0 we denote the dynamics of the corresponding n-th order

correlation functions (provided they exist). Note, that each of such functions describes
the density of the system at the moment t.

Then, using (2.3), for any continuous ϕ on Rd with bounded support, we obtain

d

dt

∫
Rd

ϕ(x)k(1)
t (x)dx =

d

dt

∫
Γ

〈ϕ, γ〉dµt(γ) =
∫

Γ

L+〈ϕ, γ〉dµt(γ)

= κ+

∫
Γ

〈a+ ∗ ϕ, γ〉dµt(γ) = κ+

∫
Rd

(a+ ∗ ϕ)(x)k(1)
t (x)dx

= κ+

∫
Rd

ϕ(x)(a+ ∗ k(1)
t )(x)dx,
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where ∗ denotes the classical convolution on Rd. Hence, k(1)
t grows exponentially in

t. In particular, for the translation invariant case one has k(1)
0 (x) ≡ k(1)

0 > 0 and as a
result

k
(1)
t = eκ+tk

(1)
0 . (3.1)

One of the possibilities to prevent the density growth of the system is to include
the death mechanism. The simplest one is described by the independent death rate
(mortality) m > 0. This means that any element of a population has an independent
exponentially distributed with parameter m random life time. The independent death
together with the independent creation of new particles by already existing ones de-
scribe the so-called contact model in the continuum, see e.g. [22]. The pre-generator
of such model is given by the following expression:

(LCMF )(γ) = m
∑
x∈γ

D−x F (γ) + (L+F )(γ)

= m
∑
x∈γ

D−x F (γ) + κ+
∑
y∈γ

∫
Rd

a+(x− y)D+
x F (γ)dx,

where

D−x F (γ) = F (γ \ x)− F (γ).

The Markov process associated with the generator LCM was constructed in [22].
This construction was generalized in [9] for more general classes of functions a+. Let
us note, that the contact model in the continuum may be used in the epidemiology to
model the infection spreading process. The values of this process represent the states
of the infected population. This is analog of the contact process on a lattice. Of
course, such interpretation is not in the spatial ecology concept. On the other hand,
contact process is a spatial branching process with a given mortality rate.

The dynamics of correlation functions in the contact model was considered in [17].
Namely, taking m = 1 for correctness, we have for any n ≥ 1, t > 0 the correlation
function of n-th order has the following form

k
(n)
t (x1, . . . , xn) = en(κ+−1)t

[
n⊗
i=1

etL
i
a+

]
k

(n)
0 (x1, . . . , xn) (3.2)

+ κ+

∫ t

0

en(κ+−1)(t−s)

[
n⊗
i=1

e(t−s)Li
a+

]

×
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a+(xi − xj)ds,

where

Lia+k(n)(x1, . . . , xn)

=κ+

∫
Rd

a+(xi − y)
[
k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)− k(n)(x1, . . . , xn)

]
dy

and the symbol x̌i means that the i-th coordinate is omitted. Note that Lia+ is a
Markov generator and the corresponding semigroup (in L∞ space) preserves positivity.
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It was also shown in [17], that if there exists a constant C > 0 (independent of n)
such that for any n ≥ 0 and (x1, . . . , xn) ∈ (Rd)n

k
(n)
0 (x1, . . . , xn) ≤ n!Cn,

then for any t ≥ 0 and almost all (a.a.) (x1, . . . , xn) ∈ (Rd)n (w.r.t. Lebesgue
measure) the following estimate holds for all n ≥ 0

k
(n)
t (x1, . . . , xn) ≤ κ+(t)n(1 + a0)nen(κ+−1)t(C + t)nn! (3.3)

Here

a0 = ‖a‖L∞(Rd), κ+(t) := max
[
1, κ+, κ+e−(κ+−1)t

]
.

For the translation invariant case the value κ+ = 1 is critical. Namely, from (3.2)
we deduce that

k
(1)
t = e(κ+−1)tk

(1)
0 . (3.4)

Therefore, for κ+ < 1 the density will exponentially decrease to 0 (as t → ∞), for
κ+ > 1 the density will exponentially increase to ∞, and for κ+ = 1 the density will
be a constant. One can easily see from the estimate (3.3) that, in the case κ+ < 1,
the correlation functions of all orders decrease to 0 as t → ∞. On the other hand,
for fixed t, the estimate (3.3) implies factorial bound in n for k(n)

t . As result, we may
expect the clustering of our system. To show clustering we start from the Poisson
distribution of particles and obtain an estimate from below for the time evolutions of
correlations between particles in a small region.

Hence, let κ+ < 1, k(n)
0 = Cn. Let B is some bounded domain of Rd such that

α := inf
x,y∈B

a+(x− y) > 0.

Let β = min{ακ+, C}. For any {x1, x2} ⊂ B, formula (3.2) implies

k
(2)
t (x1, x2) ≥ 2Cκ+α

∫ t

0

e2(κ+−1)(t−s)ds ≥ 2β2te2(κ+−1)t.

We consider t ≥ 1. One can prove by induction that for any {x1, . . . , xn} ⊂ B, n ≥ 2

k
(n)
t (x1, . . . , xn) ≥ βnen(κ+−1)tn! (3.5)

Indeed, for n = 2 this statement has been proved. Suppose that (3.5) holds for n− 1.
Then, by (3.2), one has

k
(n)
t (x1, . . . , xn) ≥ κ+

∫ t

0

en(κ+−1)(t−s)nβ(n−1)e(n−1)(κ+−1)s(n− 1)!(n− 1)αds

≥ βnn!en(κ+−1)t

∫ t

0

e−(κ+−1)sds ≥ βnen(κ+−1)tn! .

As it was mentioned before, the later bound shows the clustering in the contact model.
All previous consideration may be extended for the case m 6= 1: we should only replace
1 by m in the previous calculations.
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As a conclusion we have: the presence of mortality (m > κ+) in the free growth
model prevents the growth of density, i. e. the correlation functions of all orders
decay in time. But it doesn’t influence on the clustering in the system. One of the
possibilities to prevent such clustering is to consider the so-called density dependent
death rate. Namely, let us consider the following pre-generator:

(LF )(γ) =
∑
x∈γ

m+ κ−
∑
y∈γ\x

a−(x− y)

D−x F (γ) (3.6)

+ κ+

∫
Rd

∑
y∈γ

a+(x− y)D+
x F (γ)dx.

Here 0 ≤ a− ∈ L1(Rd) is an arbitrary, even function such that∫
Rd

a−(x)dx = 1

(in other words, a− is a probability density) and κ− > 0 is some positive constant.
It is easy to see that the operator L is well-defined, for example, on FL0(Γ).

The generator (3.6) describes the Bolker—Dieckmann—Law—Pacala (BDLP)
model, which was introduced in [4, 5, 6]. During the corresponding stochastic evo-
lution the birth of individuals occurs independently and the death is ruled not only
by the global regulation (mortality) but also by the local regulation with the ker-
nel κ−a−. This regulation may be described as a competition (e.g., for resources)
between individuals in the population.

The main result of this article is presented in Section 5, Theorem 5.1. It may be
informally stated in the following way:

If the mortality m and the competition kernel κ−a− are large enough, then the
dynamics of correlation functions associated with the pre-generator (3.6) preserves
(sub-)Poissonian bound for correlation functions for all times.
In particular, it prevents clustering in the model.

In the next sections we explain how to prove this fact. In the last section of the
present paper we discuss the necessity to consider ”large enough” death.

4. Semigroup for the symbol of the generator. The problem of the con-
struction of the corresponding process in Γ concerns the possibility to construct the
semigroup associated with L. This semigroup determines the solution to the Kol-
mogorov equation, which formally (only in the sense of action of operator) has the
following form:

dFt
dt

= LFt, Ft
∣∣
t=0

= F0. (4.1)

To show that L is a generator of a semigroup in some reasonable functional spaces
on Γ seems to be a difficult problem. This difficulty is hidden in the complex structure
of the non-linear infinite dimensional space Γ.

In various applications the evolution of the corresponding correlation functions
(or measures) helps already to understand the behavior of the process and gives
candidates for invariant states. The evolution of correlation functions of the process
is related heuristically to the evolution of states of our IPS. The latter evolution



IBM MODEL WITH COMPETITION IN SPATIAL ECOLOGY 9

is formally given as a solution to the dual Kolmogorov equation (Fokker—Planck
equation):

dµt
dt

= L∗µt, µt
∣∣
t=0

= µ0, (4.2)

where L∗ is the adjoint operator to L on M1
fm(Γ), provided, of course, that it exists.

In the recent paper [16], the authors proposed the analytic approach for the con-
struction of a non-equilibrium process on Γ, which uses deeply the harmonic analysis
technique. In the present paper we follow the scheme proposed in [16] in order to con-
struct the evolution of correlation functions. The existence problem for the evolution
of states inM1

fm(Γ) and, as a result, of the corresponding process on Γ is not realized
in this paper. It seems to be a very technical question and remains open.

Following the general scheme, first we should construct the evolution of functions
which corresponds to the symbol (K-image) L̂ = K−1LK of the operator L in L1-
space on Γ0 w.r.t. the weighted Lebesgue—Poisson measure. This weight is crucial
for the corresponding evolution of correlation functions. It determines the growth of
correlation functions in time and space. Below we start the detailed realization of the
discussed scheme.

Let us set for η ∈ Γ0

Ea
#

(η) :=
∑
x∈η

∑
y∈η\x

a#(x− y),

where a# denotes either a− or a+.
Proposition 4.1. The image of L under the K-transform (or symbol of the

operator L) on functions G ∈ Bbs(Γ0) has the following form

(L̂G)(η) := (K−1LKG)(η)

= −
(
m|η|+ κ−Ea

−
(η)
)
G(η)− κ−

∑
x∈η

∑
y∈η\x

a−(x− y)G(η \ y)

+ κ+

∫
Rd

∑
y∈η

a+(x− y)G((η \ y) ∪ x)dx

+ κ+

∫
Rd

∑
y∈η

a+(x− y)G(η ∪ x)dx.

For the proof see [8].
With the help of Proposition 4.1, we derive the evolution equation for quasi-

observables (functions on Γ0) corresponding to the Kolmogorov equation (4.1). It has
the following form

dGt
dt

= L̂Gt, Gt
∣∣
t=0

= G0. (4.3)

Then in the way analogous to those in which the corresponding Fokker-Planck equa-
tion (4.2) was determined for (4.1) we get the evolution equation for the correlation
functions corresponding to the equation (4.3):

dkt
dt

= L̂∗kt, kt
∣∣
t=0

= k0. (4.4)
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The precise form of the adjoint operator L̂∗ will be given in Section 5. It is very
important to emphasize that in the papers [4, 5] the equation (4.4) was obtained from
quit heuristic arguments and, moreover, it was considered as the definition for the
evolution of the BDLP model.

Let λ be the Lebesgue-Poisson measure on Γ0 with activity parameter equal to 1.
For arbitrary and fixed C > 0 we consider the operator L̂ as a pre-generator of a

semigroup in the functional space

LC := L1(Γ0, C
|η|λ(dη)). (4.5)

In this section, symbol ‖·‖C stands for the norm of the space (4.5).
For any ω > 0 we introduce the set H(ω, 0) of all densely defined closed operators

T on LC , the resolvent set ρ(T ) of which contains the sector

Sect
(π

2
+ ω

)
:=
{
ζ ∈ C

∣∣∣ | arg ζ| < π

2
+ ω

}
, ω > 0

and for any ε > 0

||(T − ζ11)−1|| ≤ Mε

|ζ|
, | arg ζ| ≤ π

2
+ ω − ε,

where Mε does not depend on ζ.
Let H(ω, θ), θ ∈ R denotes the set of all operators of the form T = T0 + θ with

T0 ∈ H(ω, 0).
Remark 4.1. It is well-known (see e.g., [12]), that any T ∈ H(ω, θ) is a generator

of a semigroup U(t) which is holomorphic in the sector | arg t| < ω. The function U(t)
is not necessarily uniformly bounded, but it is quasi-bounded, i.e.

||U(t)|| ≤ const |eθt|

in any sector of the form | arg t| ≤ ω − ε.
Proposition 4.2. For any C > 0, m > 0, and κ− > 0 the operator

(L0G)(η) := −
(
m|η|+ κ−Ea

−
(η)
)
G(η),

D(L0) =
{
G ∈ LC

∣∣∣ (m|η|+ κ−Ea
−

(η)
)
G(η) ∈ LC

}
is a generator of a contraction semigroup on LC . Moreover, L0 ∈ H(ω, 0) for all
ω ∈ (0, π2 ).

Proof. It is not difficult to show that L0 is a densely defined and closed operator
in LC .

Let 0 < ω < π
2 be arbitrary and fixed. Clear, that for all ζ ∈ Sect

(
π
2 + ω

)
∣∣m|η|+ κ−Ea

−
(η) + ζ

∣∣ > 0, η ∈ Γ0.

Therefore, for any ζ ∈ Sect
(
π
2 + ω

)
the inverse operator (L0 − ζ11)−1, the action of

which is given by

[(L0 − ζ11)−1G](η) = − 1
m|η|+ κ−Ea−(η) + ζ

G(η), (4.6)
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is well defined on the whole space LC . Moreover, it is a bounded operator in this
space and

||(L0 − ζ11)−1|| ≤


1
|ζ| , if Re ζ ≥ 0,

M
|ζ| , if Re ζ < 0,

(4.7)

where the constant M does not depend on ζ.
The case Re ζ ≥ 0 is a direct consequence of (4.6) and inequality

m|η|+ κ−Ea
−

(η) + Re ζ ≥ Re ζ ≥ 0.

We prove now the bound (4.7) in the case Re ζ < 0. Using (4.6), we have

||(L0 − ζ11)−1G||C =

∥∥∥∥∥ 1∣∣m| · |+ κ−Ea−(·) + ζ
∣∣ G(·)

∥∥∥∥∥
C

=

=
1
|ζ|

∥∥∥∥∥ |ζ|∣∣m| · |+ κ−Ea−(·) + ζ
∣∣G(·)

∥∥∥∥∥
C

.

Since ζ ∈ Sect
(
π
2 + ω

)
,

|Im ζ| ≥ |ζ|
∣∣∣sin(π

2
+ ω

)∣∣∣ = |ζ| cosω.

Hence,

|ζ|∣∣m|η|+ κ−Ea−(η) + ζ
∣∣ ≤ |ζ|
|Im ζ|

≤ 1
cosω

=: M

and (4.7) is fulfilled.
The rest of the statement of the lemma follows directly from the theorem of

Hille—Yosida (see e.g., [12]).
We define now

(L1G)(η) := κ−
∑
x∈η

∑
y∈η\x

a−(x− y)G(η \ y), G ∈ D(L1) := D(L0).

The lemma below implies that the operator L1 is well-defined.
Lemma 4.3. For any δ > 0 there exists C0 := C0(δ) > 0 such that for all C < C0

the following estimate holds

||L1G||C ≤ a||L0G||C , G ∈ D(L1), (4.8)

with a = a(C) < δ.
Proof. By modulus property

||L1G||C =
∫

Γ0

|L1G(η)|C |η|λ(dη) (4.9)

can be estimated by

κ−
∫

Γ0

∑
x∈η

∑
y∈η\x

a−(x− y)|G(η \ y)|C |η|λ(dη). (4.10)
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By Minlos lemma, (4.10) is equal to

κ−
∫

Γ0

∫
Rd

∑
x∈η

a−(x− y)|G(η)|C |η|+1dyλ(dη) =

= κ−
∫

Γ0

C|η||G(η)|C |η|λ(dη) ≤ κ−

m
C||L0G||C .

Therefore, (4.8) holds with

a =
κ−C
m

.

Clear, that taking

C0 =
δm

κ−

we obtain that a < δ for C < C0.
We set now

(L2G)(η) := (L2,κ+G)(η) = κ+

∫
Rd

∑
y∈η

a+(x− y)G((η \ y) ∪ x)dx,

G ∈ D(L2) := D(L0).

The operator
(
L2, D(L2)

)
is well defined due to the lemma below:

Lemma 4.4. For any δ > 0 there exists κ+
0 := κ+

0 (δ) > 0 such that for all
κ+ < κ+

0 the following estimate holds

||L2G||C ≤ a||L0G||C , G ∈ D(L2), (4.11)

with a = a(κ+) < δ.
Proof. Analogously to the previous lemma we estimate

||L2G||C =
∫

Γ0

|L2G(η)|C |η|λ(dη) (4.12)

by

κ+

∫
Γ0

∫
Rd

∑
y∈η

a+(x− y)|G((η \ y) ∪ x)|C |η|dxλ(dη). (4.13)

By Minlos lemma, (4.13) is equal to

κ+

∫
Γ0

∑
x∈η

∫
Rd

a+(x− y)|G(η)|C |η|dyλ(dη) ≤ κ+

m
||L0G||C .

Taking κ+
0 = δm we prove the lemma.

The operator defined as:

(NG)(η) = |η|G(η), G ∈ D(L0) (4.14)

is called the number operator.
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Remark 4.2. We proved, in particular, that for G ∈ D(L0) = D(L1) = D(L2)

||L1G||C ≤ κ−C||NG||C ,
||L2G||C ≤ κ+||NG||C .

Finally, we consider the last part of the operator L̂:

(L3G)(η) := κ+

∫
Rd

∑
y∈η

a+(x− y)G(η ∪ x)dx, D(L3) := D(L0).

Lemma 4.5. For any δ > 0 and any κ+ > 0, C > 0 such that

κ+Ea
+

(η) < δC
(
κ−Ea

−
(η) +m|η|

)
(4.15)

the following estimate holds

||L3G||C ≤ a||L0G||C , G ∈ D(L3), (4.16)

with a = a(κ+, C) < δ.
Proof. Using the same tricks as in the two previous lemmas we have

||L3G||C =
∫

Γ0

|L3G(η)|C |η|λ(dη)

≤ κ+

∫
Γ0

∫
Rd

∑
y∈η

a+(x− y)|G(η ∪ x)|C |η|dxλ(dη). (4.17)

By Minlos lemma, (4.17) is equal to

κ+

C

∫
Γ0

Ea
+

(η)|G(η)|C |η|λ(dη).

The assertion of the lemma is now trivial.
Theorem 4.6. Assume that the functions a−, a+ and the constants κ−, κ+ > 0,

m > 0 and C > 0 satisfy

Cκ−a− ≥ 4κ+a+, (4.18)

m > 4
(
κ−C + κ+

)
.

Then, the operator L̂ is a generator of a holomorphic semigroup Ût, t ≥ 0 in LC .
Proof. The statement of the theorem follows directly from Remark 4.2, Lemma 4.5

and the theorem about the perturbation of holomorphic semigroup (see, e.g. [12]).
For the reader’s convenience, below we give its formulation:

For any T ∈ H(ω, θ) and for any ε > 0 there exists positive constants α, δ such
that if the operator A satisfies

||Au|| ≤ a||Tu||+ b||u||, u ∈ D(T ) ⊂ D(A),

with a < δ, b < δ, then T +A ∈ H(ω − ε, α).
In particular, if θ = 0 and b = 0, then T +A ∈ H(ω − ε, 0)
Following the proof of this theorem (see, e.g. [12]) and taking into account the

fact that L0 ∈ H(ω, 0) for any ω ∈ (0, π2 ), one can conclude in our case that δ can be
chosen equal to 1

2 . This is exactly the reason of appearing multiplicand 4 at the l.h.s.
of (4.18).
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5. Evolution of correlation functions. Let us consider the space

KC :=
{
k : Γ0 → R | k · C−|η| ∈ L∞(Γ0, λ)

}
which can be identified with the dual space to the Banach space LC . The duality is
given by the following expression

〈〈G, k〉〉 :=
∫

Γ0

G · k dλ, G ∈ LC . (5.1)

It is clear that KC with the norm

||k|| := ||C−|·|k(·)||L∞(Γ0,λ)

is the Banach space. Note also, that k · C−|·| ∈ L∞(Γ0, λ) means that the function k
satisfies the bound

|k(η)| ≤ constC |η| for λ-a.a. η ∈ Γ0.

The operator L̂∗ is a dual operator to the operator L̂ w.r.t. duality (5.1). Using
the general scheme, proposed in [8], we find the precise form of L̂∗:

L̂∗k(η) = −
(
m|η|+ κ−Ea

−
(η)
)
k(η) + κ+

∑
x∈η

∑
y∈η\x

a+(x− y)k(η \ x)

+ κ+

∫
Rd

∑
y∈η

a+(x− y)k((η \ y) ∪ x)dx

− κ−
∫

Rd

∑
y∈η

a−(x− y)k(η ∪ x)dx.

We consider the evolution equation in KC which corresponds to the operator L̂∗

dkt
dt

= L̂∗kt, kt
∣∣
t=0

= k0. (5.2)

Here we understand
dkt
dt

as an element of KC such that for any G ∈ LC〈〈
G,

dkt
dt

〉〉
=
〈〈
d

dt
ÛtG, k0

〉〉
.

The main questions which we would like to study now are the existence and
properties of the solution to the hierarchical system of equations (5.2). The answers
to these questions are given in the following theorem

Theorem 5.1. Suppose that all assumptions of Theorem 4.6 are fulfilled. Then
for any initial function k0 from the class KC the corresponding solution kt to (5.2)
exists and will be again the function from KC for any moment of time t ≥ 0.

Proof. The evolution on KC , which corresponds to Ût, t≥0 constructed in Theo-
rem 4.6, may be determined in the following way:

〈〈G, kt〉〉 :=
〈〈
ÛtG, k0

〉〉
.
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Using the same arguments as in [16], it becomes clear that kt =: Û∗t k0 is the solution
to (5.2). �

It is important to emphasize that in the case of a− ≡ 0 and κ+ < m

k
(n)
t → 0, t→ 0, for any n ≥ 1,

see e. g. [17]. Therefore, we may expect that the correlation functions of our model
satisfy this property as well.

6. Stationary equation for the system of correlation functions. Let us
consider for any α ∈ R the following Banach subspace of KC :

KαC :=
{
k ∈ KC

∣∣ k(0)(∅) = α
}
.

In this section we study the existence problem for the solutions to the stationary
equation

L̂∗k = 0 (6.1)

in K1
C . The main result is formulated in the following way:
Theorem 6.1. Suppose that

Cκ−

m
+

κ+

m
+

1
C
< 1 (6.2)

and

κ−a− ≥ κ+a+

then the solution k = (k(n))n≥0 to (6.1) is unique in K1
C and such that

k(n) = 0, n ≥ 1.

Proof. Let (
L̂∗k

)
(η) = 0.

The latter means that(
m |η|+ κ−Ea

−
(η)
)
k (η) = −κ−

∑
x∈η

∫
Rd

k (y ∪ η) a− (x− y) dy +

+κ+
∑
x∈η

∑
y∈η\x

a+(x− y)k(η \ x) + κ+

∫
Rd

∑
y∈η

a+(x− y)k((η \ y) ∪ x)dx.

The last relation holds for any k ∈ K1
C at the point η = ∅. Hence, one can consider it

on K0
C .

Let us denote for η 6= ∅

(Sk) (η) = − κ−

m |η|+ κ−Ea− (η)

∑
x∈η

∫
Rd

k (y ∪ η) a− (x− y) dy +

+
κ+

m |η|+ κ−Ea− (η)

∑
x∈η

∑
y∈η\x

a+(x− y)k(η \ x) +

+
κ+

m |η|+ κ−Ea− (η)

∫
Rd

∑
y∈η

a+(x− y)k((η \ y) ∪ x)dx
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and

(Sk) (∅) = 0.

Let

‖k‖C = ess sup
η∈Γ0

|k (η)|
C |η|

,

then

‖Sk‖C

≤ ‖k‖C ess sup
η∈Γ0\{∅}

κ−C
m |η|+ κ−Ea− (η)

∑
x∈η

∫
Rd

a− (x− y) dy

+
‖k‖C
C

ess sup
η∈Γ0\{∅}

κ+

m |η|+ κ−Ea− (η)

∑
x∈η

∑
y∈η\x

a+(x− y)

+‖k‖C ess sup
η∈Γ0\{∅}

κ+

m |η|+ κ−Ea− (η)

∫
Rd

∑
y∈η

a+(x− y)dx

≤ ‖k‖C
Cκ−

m
+ ‖k‖C

κ+

m
+ ‖k‖C

1
C

= ‖k‖C

(
Cκ−

m
+

κ+

m
+

1
C

)
,

if

κ+Ea
+

(η) ≤ κ−Ea
−

(η) +m |η| .

As result,

‖S‖ ≤ 1
m
Cκ− +

1
m

κ+ +
1
C
< 1.

The assertion of the theorem is now obvious.
Remark 6.1. For any C > 1 one may chose κ− > 0 and m > 0 such that

(6.2) is satisfied. The latter means, that, asymptotically, our system exhausted to the
system with the stationary state δ∅(dγ) (the Dirac measure concentrated on the empty
configuration ∅). In other words, the population evolving due to the BDLP dynamics
is asymptotically degenerated.

7. Further developments. In Theorem 5.1 we have shown that functions kt
is bounded by Cn for all t > 0, provided that k0 satisfies initially the bound of the
same type. Using approximation arguments (see e.g. [16], [18]) one may prove that
the corresponding time evolution of the correlation function will be also correlation
function for some probability measure on Γ. We suppose to discuss this problem
as well as other probabilistic aspects of the BDLP model in a forthcoming paper.
The main aim of the present paper is to analyze evolution of correlation functions.
Namely, we have shown that dynamics of correlation functions stays in the space KC .
This property seems to be very strong. To show that system of correlation functions
evolving in time stays in the same space is already difficult even for the contact model.
Namely, (3.3) implies that the evolution of correlation functions at some moment of
time t may leave the space{

k : Γ0 → R | k · C−|η| · |η|! ∈ L∞(Γ0, λ)
}
.
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The reason is that C may depend on t, which is true at least for the case κ+ ≥ 1
(m = 1 at the moment). Hence, we may expect that the dynamics of correlation
functions for the contact process lives in some bigger space. Of course, this is possible
only for κ+ ≤ 1 since for κ+ > 1 density tends to infinity. Hence, let us consider the
case κ+ = 1. One candidate for such bigger space is

RC :=
{
k : Γ0 → R | k · C−|η| · (|η|!)2 ∈ L∞(Γ0, λ)

}
.

Note, that the invariant measure of the contact process belongs to this space (see [17,
Theorem 4.2]), provided that d ≥ 3, a+ has finite second moment w.r.t. the Lebesgue
measure and the Fourier transform of a+ is integrable on Rd. Below we show that the
evolution of correlation functions at any moment of time t is a function from RC .

Indeed, let κ+ = 1 and suppose that there exists C > 0 such that for any n ≥ 1
and for any x1, . . . , xn ∈ Rd

k
(n)
0 (x1, . . . , xn) ≤ 1

2
Cn(n!)2.

Then, it is clear that k0 ∈ RC . Now, suppose that k(n−1)
t ≤ Cn−1((n − 1)!)2. We

prove the corresponding inequality for k(n)
t using the mathematical induction. By

(3.3) we have for any x1, . . . , xn ∈ Rd

k
(n)
t (x1, . . . , xn) (7.1)

≤ 1
2
Cn(n!)2

+
∫ t

0

[
n⊗
i=1

e(t−s)Li
a+

]
n∑
i=1

Cn−1((n− 1)!)2
∑
j: j 6=i

a+(xi − xj)ds

=
1
2
Cn(n!)2 + Cn−1((n− 1)!)2

n∑
i=1

∑
j: j 6=i

∫ t

0

(
e2(t−s)La+a+

)
(xi − xj)ds,

where for f ∈ L1(Rd)

La+f(x) =
∫

Rd

a(x− y)[f(y)− f(x)]dx, x ∈ Rd.

For the bound above we have used the fact, that for any 1 ≤ i 6= j ≤ n

Lia+a+(xi − xj) = Lja+a
+(xi − xj) = (La+a+)(xi − xj), xi, xj ∈ Rd.

This relation can be easily checked by simple computations.
Note, that La+ is a generator of the Markov semigroup which preserves positivity

in L1(Rd). Hence,

gt(x) :=
∫ t

0

(
e2(t−s)La+a+

)
(x)ds ≥ 0, x ∈ Rd, t ≥ 0,

and gt ∈ L1(Rd). Then we have

gt(x) = |gt(x)| = 1
(2π)d

∣∣∣∣∫
Rd

eipxĝt(p)dp
∣∣∣∣ ≤ 1

(2π)d

∫
Rd

∫ t

0

e2(t−s)(â+(p)−1)|â+(p)|dsdp,
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where symbol f̂ denotes the Fourier transform of the function f ∈ L1(Rd). Therefore,

gt(x) ≤ 1
(2π)d

∫
Rd

1− e2t(â+(p)−1)

2(1− â+(p))
|â+(p)|dp ≤ 1

2(2π)d

∫
Rd

|â+(p)|
1− â+(p)

dp.

It was shown in [17] that under the conditions posed on function a+ for the case of
invariant measure

D :=
∫

Rd

|â+(p)|
1− â+(p)

dp <∞.

Finally, if additionally

C ≥ D

(2π)d
,

then we obtain from (7.1)

k
(n)
t (x1, . . . , xn) ≤ 1

2
Cn(n!)2 +

1
2
Cn−1((n− 1)!)2n(n− 1)

D

(2π)d
≤ Cn(n!)2.

As result, kt ∈ RC for all t ≥ 0.
Therefore, the dynamics of correlation functions for the contact model stays in

RC , hence, this dynamics is really very clustering for κ+ = m = 1. As before, we
may extend our consideration on the case m 6= 1.

Summarizing previous results in this section we claim that the presence of the big
mortality and the big competition kernel prevents clustering in the system making
it sub-Poissonian distributed. But, is it really necessary to add “big” mortality and
competition kernel? Below we discuss this problem.

If we want to study the quasibounded semigroup with the generator L̂ on LC for
some C > 0 then, naturally, this generator should be an accretive operator in LC .
Hence, for some b ≥ 0 the following bound should be true∫

Γ0

sgn (G (η)) ·
((
L̂− b11

)
G
)

(η) dλC (η) ≤ 0, ∀ G ∈ D(L̂),

since

C |η|dλ(η) = dλC(η).

Let us define the “diagonal” part of the operator L̂:(
L̂diagG

)
(η) := −m|η|G(η)−κ−Ea

−
(η)G(η) + κ+

∫
Rd

∑
y∈η

a+(x− y)G((η \ y)∪ x)dx

and consider for some n ≥ 1

G =
(

0, 0, G(n), 0, 0
)
, G(n) ∈ L1((Rd)n).

Then

(L̂G)(η) =



κ+
∫

Rd

∑
y∈η

a+(x− y)G(n)(η ∪ x)dx, |η| = n− 1

−κ−
∑
x∈η

∑
y∈η\x

a−(x− y)G(n)(η \ y), |η| = n+ 1(
L̂diagG

(n)
)

(η) , |η| = n

0, otherwise

.
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Note that sgn (G (η)) ≡ 0 if |η| 6= n.
Therefore, for arbitrary n ≥ 1

0 ≥ In :=
∫

Γ0

sgn (G (η)) ·
((
L̂− b11

)
G
)

(η) dλC (η)

=
∫

Γ
(n)
0

sgn (G (η)) ·
((
L̂diag − b11

)
G(n)

)
(η) dλC (η)

=
Cn

n!

∫
(Rd)n

sgn
(
G(n)

(
x(n)

))((
L̂diag − b11

)
G(n)

)(
x(n)

)
dx(n).

Let us fix some t > 0 and Λ ∈ Bb(Rd). Set for n ≥ 1

G(n)
(
x(n)

)
= tn

n∏
k=1

χΛ (xk) = tn11
Γ

(n)
Λ

(
{x(n)}

)
∈ L1((Rd)n).

Then, the equality

sgn
(
G(n)

(
x(n)

))
=

n∏
k=1

χΛ (xk)

implies

0 ≥ n!
tnCn

In

=
∫

Λn

(
−mn

n∏
k=1

χΛ (xk)− κ−Ea
−(
x(n)

) n∏
k=1

χΛ (xk)

+ κ+

∫
Rd

n∑
j=1

a+(x− xj)
∏
k 6=j

χΛ (xk)χΛ (x) dx

 dx(n) − b
∫

Λn

n∏
k=1

χΛ (xk) dx(n)

= −κ−
∫

Λn

Ea
−(
x(n)

)
dx(n) + κ+

n∑
j=1

∏
k 6=j

∫
Λn−1

dxk

∫
Λ

∫
Λ

a+(x− xj)dxdxj

− (b+mn) |Λ|n

= −κ−
∫

Λn

Ea
−(
x(n)

)
dx(n) + κ+n |Λ|n−1

∫
Λ

∫
Λ

a+(x− y)dxdy − (b+mn) |Λ|n .

We suppose, in fact, that for any n ≥ 1

In ≤ 0.

Since Ea
−

(η) = 0 for |η| ≤ 1 we get

0 ≥
∞∑
n=1

In = −m
∞∑
n=1

n
tnCn

n!
|Λ|n − κ−

∞∑
n=1

tnCn

n!

∫
Λn

Ea
−(
x(n)

)
dx(n)

+ κ+
∞∑
n=1

tnCn

n!
n |Λ|n−1

∫
Λ

∫
Λ

a+(x− y)dxdy − b
∞∑
n=1

tnCn

n!
|Λ|n

= −mtC |Λ| eCt|Λ| − κ−
∫

ΓΛ

Ea
−

(η) dλCt (η) + κ+CteCt|Λ|
∫

Λ

∫
Λ

a+(x− y)dxdy
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− b
(
eCt|Λ| − 1

)
= −mtC |Λ| eCt|Λ| − κ−C2t2

∫
ΓΛ

∫
Λ

∫
Λ

a− (x− y) dxdydλCt (η)

+ κ+CteCt|Λ|
∫

Λ

∫
Λ

a+(x− y)dxdy − b
(
eCt|Λ| − 1

)
= eCt|Λ|

[
Ct

(
κ+

∫
Λ

∫
Λ

a+(x− y)dxdy − κ−Ct
∫

Λ

∫
Λ

a− (x− y) dxdy −m |Λ|
)

−b
(

1− e−Ct|Λ|
)]

.

Therefore, for any t > 0 and any Λ ∈ Bb(Rd)

0 ≥ κ+

∫
Λ

∫
Λ

a+(x− y)dxdy − κ−Ct
∫

Λ

∫
Λ

a− (x− y) dxdy −m |Λ|

− b
(
1− e−Ct|Λ|

)
Ct

=: B.

Suppose that there exists z > 0 such that

a+ (x) ≥ za− (x) , x ∈ Rd,

then taking for some ε > 0

t = ε
zκ+

κ−C
> 0

we obtain

B ≥ (1− ε)κ+z

∫
Λ

∫
Λ

a−(x− y)dxdy −m |Λ|

− bκ−

εzκ+

(
1− exp

(
−zκ

+

2κ−
|Λ|
))
∼
(

(1− ε)κ+z −m
)
|Λ|, Λ ↑ Rd,

which contradicts to B ≤ 0. As result, m can not be arbitrary small.
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