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Abstract. A construction of measures on configuration spaces defined by relative
energies is presented. Integral equations for corresponding correlation functionals
are studied. Conditions for the existence and uniqueness of measures in terms of the
relative energies are found.

Introduction

The configuration space ΓX over some manifold X is the space of locally finite subsets
(configurations) from X.

The specific role of configuration spaces in the general structure of infinite dimensional
analysis is related with several aspects. First of all, these spaces present a class of infinite
dimensional manifolds, which may be equipped with a natural differentiable structure,
but are neither Banach nor Fréchet manifolds, see [25], [26].

Another source of interests for configuration spaces analysis is the theory of point pro-
cesses. From the analytical point of view this theory deals with measures on configuration
spaces and related structures, see e.g. [6]–[11], [16]–[19].

And the big influence configuration spaces analysis comes from the side of mathemat-
ical physics. For a mathematical description of gases or fluids (as systems with indistin-
guishable particles) we need to use the notion of configuration spaces and corresponding
analysis.

Let us describe the content of the work in more detail.
Main objects and preliminary constructions are presented in Section 1. A construction

of Gibbs measures via relative energies is discussed in Section 2. There we show the
characterization properties of such measures. Main properties of correlation functionals
corresponding to these measures are considered in Section 3. In Section 4 we discuss
stability and superstability conditions in terms of the relative energy density. A proof
of the Kirkwood—Salsburg identity is the main result of Section 5. Sections 6 and 7 are
devoted to the existence and uniqueness problem for Gibbs measures.

1. Preliminaries

Our underlying space is the Euclidean space Rd with the Borel σ-algebra B (
Rd

)
and

a non-atomic Radon measure σ on
(
Rd,B (

Rd
))

such that σ
(
Rd

)
= ∞. We define the
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configuration space Γ = ΓRd as the space of all locally finite subsets (configurations) of
Rd:

Γ =
{
γ ⊂ Rd

∣∣|γΛ| < +∞ for any compact Λ ⊂ Rd
}

,

where |·| means the cardinality of a set and γΛ = γ ∩ Λ.
Consider a σ-algebra B (Γ) as the minimal σ-algebra such that all mappings Γ 3

γ 7−→ |γΛ| are B (Γ)-measurable for any Λ ∈ Bc

(
Rd

)
(the family of all Borel subsets

of Rd with compact closure). For A ∈ B (
Rd

)
we define also a σ-algebra BA (Γ) as

the minimal σ-algebra such that all mappings γ 7→ |γΛ| are BA (Γ)-measurable for all
Λ ∈ Bc

(
Rd

)
,Λ ⊂ A.

Any configuration γ ∈ Γ can be identified with the Radon measure
∑

x∈γ εx on Rd,
where εx is the Dirac measure at the point x. In this sense the configuration space
can be naturally embedded into the space M (

Rd
)

of all Radon measures on Rd. Then
the configuration space can be endowed with topology generating by the weak topology
on M (

Rd
)
. Moreover, the σ-algebra B (Γ) is in fact the Borel σ-algebra with respect to

this topology.
Let us denote by M1 (Γ) the class of all probability measures on (Γ,B (Γ)). We

consider a subclass M1
fm (Γ) of all probability measures on (Γ,B (Γ)) with finite locale

moments: it means that µ ∈M1
fm (Γ) iff

(1.1)
∫

Γ

|γΛ|n dµ (γ) < +∞

for any n ∈ N and for any Λ ∈ Oc

(
Rd

)
(the family of all open subsets of Rd with compact

closures).
For a measure µ ∈ M1 (Γ) we can consider a (reduced) Campbell measure C!

µ on
the space Γ × Rd with the σ-algebra B (Γ) × B (

Rd
)

as the measure such that for any
non-negative measurable function h : Γ× Rd → R+ holds

(1.2)
∫

Γ

∑
x∈γ

h (γ − εx, x) dµ (γ) =
∫

Γ

∫

Rd

h (γ, x) d C!
µ (γ, x) .

This relation which uniquely defines C!
µ is called Campbell identity, see e. g. [11], [9],

[19], [16], [10], [24].
We will consider a special case of the Campbell measure such that

(1.3) d C!
µ (γ, x) = r (γ, x) dσ (x) dµ (γ) ,

where r is a non-negative measurable function. Of course, the first question is about
examples of such µ.

First of all, Mecke [17] proved that there exists only one measure µ such that

d C!
µ (γ, x) = dσ (x) dµ (γ)

for given Radon measure σ on Rd. This measure is called the Poisson measure with
intensity σ and is denoted by πσ. There exists a direct construction of the Poisson
measure. For explore it we start from the space ΓΛ of all finite configurations in Λ ∈
Bc

(
Rd

)
:

ΓΛ = {γ ∈ Γ |γ ∩ Λc = ∅} ,

where Λc := Rd \ Λ. Clearly,

ΓΛ :=
⊔

n∈N0

Γ(n)
Λ ,

where Γ(n)
Λ is the set of all n-particle configurations (subsets) of Λ, N0 = N∪ {0} . There

is a bijection Λ̃n/Sn → Γ(n)
Λ , where Λ̃n := {(x1, . . . , xn) ∈ Λn |xk 6= xj , k 6= j } and Sn
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is the permutation group over {1, . . . , n}. Therefore, we can consider the image σ(n) on
Γ(n)

Λ of the product measure
σn = σ × · · · × σ

under this bijection. Consider also a σ-algebra B (ΓΛ) as the minimal σ-algebra such that
all mappings ΓΛ 3 γ 7−→ |γΛ′ | are B (ΓΛ)-measurable for any Λ′ ∈ Bc (Λ). Projection
mappings pΛ from Γ into ΓΛ for any Λ can be define as Γ 3 γ 7→ pΛγ = γΛ ∈ ΓΛ. Then
the Poisson measure πΛ

σ on (ΓΛ,B (ΓΛ)) is defined as

πΛ
σ := e−σ(Λ)

∞∑
n=0

1
n!

σ(n).

It can be shown that the measurable space (Γ,B (Γ)) is the projective limit of the mea-
surable spaces (ΓΛ,B (ΓΛ)) and that the family of measures {πΛ

σ }Λ∈Bc(X) is consistent.
Therefore, one has define the Poisson measure πσ on (Γ,B(Γ)) as the projective limit of
this family due to Kolmogorov theorem.

Consider also the space Γ0 of all finite configurations (subsets) in Rd. Clearly,

Γ0 :=
⊔

n∈N0

Γ(n)
0 ,

where Γ(n)
0 is the set of all n-particle configurations of Rd. We can define a σ-algebra

B (Γ0) as the minimal σ-algebra such that all mappings Γ0 3 γ 7−→ |γΛ| are B (Γ0)-
measurable for any Λ ∈ Bc

(
Rd

)
. The Lebesgue-Poisson measure λσ on (Γ0,B (Γ0)) is

defined as

λσ :=
∞∑

n=0

1
n!

σ(n).

Note that we have a big class of examples of the measures µ satisfying (1.3) coming
from applications in statistical physics. Actually, it was shown by X.Nguen and H.Zessin
[18] that the wide class of tempered Gibbs measures satisfies Campbell identity, where
d C!

µ (γ, x) = r (γ, x) dσ (x) dµ (γ) with some r. Moreover, they prove that this properties
is characteristic for this class of measures if we will use the function r (γ, x) of a special
type.

In the present work we realize this approach for construction of a useful and wide class
of measures on Γ and study sufficient conditions for existence and uniqueness of these
measures.

Let us recall previously a classical approach to the construction of grand canonical
Gibbs measures. Let Φ be a potential, i.e., a measurable function Φ : Γ0 → R∪{+∞} such
that Φ (∅) = 0. Define for any Λ ∈ Oc

(
Rd

)
the conditional energy EΦ

Λ : Γ → R ∪ {+∞}
such that

EΦ
Λ (γ) =





∑

ηbγ,|η∩Λ|>0

Φ(η) if
∑

ηbγ,|η∩Λ|>0

|Φ(η)| < ∞

+∞ otherwise

(the notation η b γ means that η is a finite subset of γ). Then for fixed β > 0 we define
for γ ∈ Γ, ∆ ∈ B (Γ) a specification

Πσ,β,Φ
Λ (γ, ∆) =

1{Zσ,β,Φ
Λ (γ)<+∞}
Zσ,β,Φ

Λ (γ)

∫

Γ

1∆ (γΛc ∪ γ′Λ) e−βEΦ
Λ(γΛc∪γ′Λ)dπσ (γ′) ,

where

Zσ,β,Φ
Λ (γ) =

∫

Γ

e−βEΦ
Λ(γΛc∪γ′Λ)dπσ (γ′) .
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A measure µ ∈ M1 (Γ) is called the grand canonical Gibbs measure with interaction
potential Φ iff for all Λ ∈ Oc

(
Rd

)
and for all ∆ ∈ B (Γ)

µ (∆) =
∫

Γ

Πσ,β,Φ
Λ (γ, ∆) dµ (γ) .

The set of all such measures µ will be denoted by Ggc (σ, βΦ).
Actually we want to reconstruct a probability measure by the family of its conditional

probabilities. The sufficient conditions for this were discovered by R.L.Dobrushin [3].
This approach was realized for pair potentials Φ in detail and some sufficient conditions
on non-pair potentials Φ were formulated too (see [2], [4], [20], [1], [13]).

Another approach was developed by D.Ruelle [23]. This approach uses integral equa-
tions for the correlation functions generating by µ. In some sense existence and unique-
ness of the solutions of these equations are equivalent to existence and uniqueness of µ.
But all considerations were developed only for pair potentials Φ.

In the present work we generalize this approach to the case of a general measure µ
satisfying Campbell identity (1.2) under condition (1.3).

2. Characterization properties

We start with a probability measure µ ∈M1
fm (Γ) and consider a non-negative B (Γ)×

B (
Rd

)
-measurable function r : Γ× Rd → R+. We suppose that r (γ, x) is defined for µ-

a.a. γ ∈ Γ and for σ-a.a. x ∈ Rd (note that we always assume that x 6∈ γ). The function
r is called the relative energy density.

Definition 2.1. The measure µ ∈M1
fm (Γ) is said to be the Gibbs measure correspond-

ing to the relative energy density r if for any non-negative B (Γ) × B (
Rd

)
-measurable

function h : Γ× Rd → R+ the following Campbell-Mecke identity holds

(2.1)
∫

Γ

∑
x∈γ

h (γ, x) dµ (γ) =
∫

Γ

∫

Rd

h (γ + εx, x) r (γ, x) dσ (x) dµ (γ) .

The following example shows that the class of such measures µ includes a big subclass
of grand canonical Gibbs measures.

Example 1 (General grand canonical Gibbs measure). Let µ ∈ Ggc (p dx, βΦ) with
p > 0 a.s. and p ∈ L1

loc

(
Rd, dx

)
and suppose µ has the first local moment (i.e., (1.1) is

true for n = 1). Then (see Lemma 6.7 in [22]) µ satisfies the Campbell–Mecke identity
with

r (γ, x) = exp
(
−βEΦ

{x} (γ + εx)
)

.

Recall that

EΦ
{x} (γ + εx) =





∑

{x}⊂ηbγ∪{x}
Φ(η) , if

∑

{x}⊂ηbγ∪{x}
|Φ(η)| < +∞

+∞, otherwise
.

Example 2 (Pair potential case). The second example is a particular case of the first
one

Φ (η) =

{
φ (x, y) , if η = {x, y}
0, if |η| 6= 2

,
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where φ : Rd × Rd → R ∪ {+∞} is a symmetric measurable function. Let µ ∈
Ggc (pdx, βφ); then

r (γ, x) =





exp

(
−β

∑
y∈γ

φ (x, y)

)
, if

∑
y∈γ

|φ (x, y)| < +∞

0, otherwise

.

The following fact is a direct corollary of the definition, actually it was shown in [6].

Lemma 2.2. For µ-a.a. γ ∈ Γ and for σ-a.a. x, y ∈ Rd so-called ”cocycle identity”
holds

(2.2) r (γ + εx, y) r (γ, x) = r (γ + εy, x) r (γ, y) .

Proof. For any non-negative B (Γ)×B (
Rd

)
-measurable functions h1, h2 : Γ×Rd → R+

one has
∫

Γ

(∑
x∈γ

h1 (γ, x)

) (∑
y∈γ

h2 (γ, y)

)
dµ (γ)

=
∫

Γ

∑
x∈γ

(
h1 (γ, x)

∑
y∈γ

h2 (γ, y)

)
dµ (γ)

=
∫

Γ

∫

Rd

h1 (γ + εx, x)
∑

y∈γ∪{x}
h2 (γ + εx, y) r (γ, x) dσ (x) dµ (γ)

=
∫

Γ

∫

Rd

h1 (γ + εx, x)
∑
y∈γ

h2 (γ + εx, y) r (γ, x) dσ (x) dµ (γ)

+
∫

Γ

∫

Rd

h1 (γ + εx, x) h2 (γ + εx, x) r (γ, x) dσ (x) dµ (γ)

=
∫

Γ

∫

Rd

∫

Rd

h1 (γ + εx + εy, x) h2 (γ + εx + εy, y)

× r (γ + εy, x) r (γ, y) dσ (y) dσ (x) dµ (γ)

+
∫

Γ

∫

Rd

h1 (γ + εx, x) h2 (γ + εx, x) r (γ, x) dσ (x) dµ (γ) .

These considerations are correct, since h1 (γ + εx, x) h2 (γ + εx, y) r (γ, x) is a non-nega-
tive B (Γ) × B (

Rd
)
-measurable function of the variables γ and y for σ-a.a. x ∈ Rd and

h1 (γ, x)
∑

y∈γ h2 (γ, y) is a non-negative B (Γ)×B (
Rd

)
-measurable function of the vari-

ables γ and x. Analogously, we obtain that
∫

Γ

(∑
x∈γ

h1 (γ, x)

)(∑
y∈γ

h2 (γ, y)

)
dµ (γ)

=
∫

Γ

∫

Rd

∫

Rd

h2 (γ + εy + εx, y)h1 (γ + εy + εx, x)

× r (γ + εx, y) r (γ, x) dσ (x) dσ (y) dµ (γ)

+
∫

Γ

∫

Rd

h2 (γ + εy, y)h1 (γ + εy, y) r (γ, y) dσ (y) dµ (γ) .

Comparing the left hand sides of these equalities we have (2.2). ¤

Let us now formulate our basic condition
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Condition 1. There exist sets Γ̃ ∈ B (Γ) and Γ̃0 ∈ B (Γ0) with µ
(
Γ̃
)

= 1 and

λσ

(
Γ0 \ Γ̃0

)
= 0 such that for any γ ∈ Γ̃, for any η ∈ Γ̃0, and for σ-a.a. x, y ∈ Rd

the value r (γ, x) is defined, the identity (2.2) holds and γ ∪ η ∈ Γ̃.

Under this condition we can construct a new functionR (γ, η) (γ ∈ Γ̃, η ∈ Γ̃0, γ∩η = ∅)
in the following way. Fix some order of the finite configuration η ∈ Γ̃0: η = {x1, . . . , xn}
and set

R (γ, η) = R (γ, {x1, . . . , xn})
:= r (γ, x1) · r (γ ∪ {x1} , x2) · r (γ ∪ {x1, x2} , x3) · . . .

× r (γ ∪ {x1, x2, x3, . . . , xn−2} , xn−1) r (γ ∪ {x1, x2, x3, . . . , xn−1} , xn) .

Lemma 2.3. (See also [11]). The definition of the function R (γ, η) does not depend on
the order of points in η and

(2.3) R (γ, η1 ∪ η2) = R (γ, η1)R (γ ∪ η1, η2) ,

where γ ∈ Γ̃, η1, η2 ∈ Γ̃0, γ ∩ η1 = γ ∩ η2 = η1 ∩ η2 = ∅.
Proof. The second statement is a direct consequence of the definition of R, therefore, we
need only to check the correctness of this definition. The case then |η| = 2 is identical
to (2.2). Suppose we prove this for any η ∈ Γ̃0, |η| ≤ n. Consider now η = {x1, . . . , xn+1}
and any permutation τ ∈ Sn+1. One has

R (
γ,

{
xτ(1), . . . , xτ(n+1)

})

:= r
(
γ, xτ(1)

) · r (
γ ∪ {

xτ(1)

}
, xτ(2)

)
r
(
γ ∪ {

xτ(1), xτ(2)

}
, xτ(3)

) · . . .
× r

(
γ ∪ {

xτ(1), xτ(2), xτ(3), . . . , xτ(n−2)

}
, xτ(n−1)

)

× r
(
γ ∪ {

xτ(1), xτ(2), xτ(3), . . . , xτ(n−1)

}
, xτ(n)

)

× r
(
γ ∪ {

xτ(1), xτ(2), xτ(3), . . . , xτ(n)

}
, xτ(n+1)

)
.

Let i = τ−1 (1); then τ (i) = 1. Therefore, by our assumption (if the apply transposition
τ = (τ (1) , τ (i)) to order {τ (1) , . . . , τ (i)}),
r
(
γ, xτ(1)

) · r (
γ ∪ {

xτ(1)

}
, xτ(2)

) · . . . · r (
γ ∪ {

xτ(1), xτ(2), xτ(3), . . . , xτ(i−1)

}
, xτ(i)

)

= r
(
γ, xτ(i)

) · r (
γ ∪ {

xτ(i)

}
, xτ(2)

) · . . . · r (
γ ∪ {

xτ(i), xτ(2), xτ(3), . . . , xτ(i−1)

}
, xτ(1)

)

= r (γ, x1) · r
(
γ ∪ {x1} , xτ(2)

) · r (
γ ∪ {

x1, xτ(2)

}
, xτ(3)

) · . . .
× r

(
γ ∪ {

x1, xτ(2), xτ(3), . . . , xτ(i−1)

}
, xτ(1)

)

Let γ′ = γ ∪ x1; then

R (
γ,

{
xτ(1), . . . , xτ(n+1)

})

= r
(
γ, xτ(1)

) · r (
γ ∪ {

xτ(1)

}
, xτ(2)

)

× r
(
γ ∪ {

xτ(1), xτ(2)

}
, xτ(3)

) · . . . · r (
γ ∪ {

xτ(1), xτ(2), . . . , xτ(i−1)

}
, xτ(i)

)

× r
(
γ ∪ {

xτ(1), xτ(2), . . . , xτ(i)

}
, xτ(i+1)

) · . . .
× r

(
γ ∪ {

xτ(1), xτ(2), . . . , xτ(n)

}
, xτ(n+1)

)

= r (γ, x1) · r
(
γ ∪ {x1} , xτ(2)

) · r (
γ ∪ {

x1, xτ(2)

}
, xτ(3)

) · . . .
× r

(
γ ∪ {

x1, xτ(2), . . . , xτ(i−1)

}
, xτ(1)

)

× r
(
γ ∪ {

xτ(1), xτ(2), . . . , xτ(i−1), x1

}
, xτ(i+1)

) · . . .
× r

(
γ ∪ {

xτ(1), xτ(2), . . . , xτ(i−1), x1, xτ(i+1), . . . , xτ(n)

}
, xτ(n+1)

)

= r (γ, x1) · r
(
γ′, xτ(2)

) · r (
γ′ ∪ {

xτ(2)

}
, xτ(3)

) · . . .
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× r
(
γ′ ∪ {

xτ(2), xτ(3), . . . , xτ(i−1)

}
, xτ(1)

)

× r
(
γ′ ∪ {

xτ(2), xτ(3), . . . , xτ(i−1), xτ(1)

}
, xτ(i+1)

) · . . .
× r

(
γ′ ∪ {

xτ(2), . . . , xτ(i−1), xτ(1), xτ(i+1), . . . , xτ(n)

}
, xτ(n+1)

)

= r (γ, x1)R
(
γ′,

{
xτ(2), . . . , xτ(i−1), xτ(1), xτ(i+1), . . . , xτ(n+1)

})

= r (γ, x1)R (γ ∪ x1, {x2, . . . , xi−1, xi, xi+1, . . . , xn+1}) ,

by induction assumption, under permutation
(

τ (2) . . . τ (i− 1) τ (1) τ (i + 1) . . . τ (n + 1)
2 . . . i− 1 i i + 1 . . . n + 1

)
∈ Sn.

Thus

R (
γ,

{
xτ(1), . . . , xτ(n+1)

})

= r (γ, x1)R (γ ∪ x1, {x2, . . . , xn+1}) = R (γ, {x1, . . . , xn+1}) ,

that finishes the proof. ¤

Remark 2.4. This result has combinatorial sense and follows directly from condition (2.2).

Remark 2.5. In the case of Example 1 for ξ = {x1, x2, x3, . . . , xm−1} one has

r (γ ∪ {x1, x2, x3, . . . , xm−1} , xm)

= exp
(
−βEΦ

{xm} ((γ ∪ ξ) + εxm)
)

= exp


−β

∑

γ′⊂γ∪ξ

Φ(γ′ + εxm)




= exp


−β

∑

γ′⊂γ

Φ(γ′ + εxm)− β
∑

γ′⊂γ

∑

ξ′⊂ξ:
ξ′ 6=∅

Φ ((γ′ ∪ ξ′) + εxm)


 .

Then

R (γ, η) = exp


−β

∑

γ′⊂γ

∑

η′⊂η:
η′ 6=∅

Φ(γ′ ∪ η′)


 .

In the following we will use the next notations

EΦ (η) =
∑

η′⊂η

Φ(η′) ; WΦ (η, γ) =
∑

γ′⊂γ:
γ′ 6=∅

∑

η′⊂η:
η′ 6=∅

Φ(γ′ ∪ η′) .

Therefore, we get

R (γ, η) = exp
(−βEΦ (η)− βWΦ (η, γ) + βΦ(0)

)

Note also that for any η1, η2 ∈ Γ0

(2.4) WΦ (η1, η2) = EΦ (η1 ∪ η2)− EΦ (η1)− EΦ (η2) .

Remark 2.6. In the case of Example 2 one has

R (γ, η) = exp
(−βEφ (η)− βWφ (η, γ)

)
,

where
Eφ (η) =

∑

{x,y}⊂η

φ (x, y) ; Wφ (η, γ) =
∑
x∈η
y∈γ

φ (x, y) .
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Theorem 2.7. For any non-negative B (Γ)-measurable functions F : Γ → R+ and for
all Λ ∈ Bc

(
Rd

)
the following generalization of the Ruelle identity holds

(2.5)
∫

Γ

F (γ) dµ (γ) =
∫

ΓΛ

∫

ΓRd\Λ

F (γ ∪ η)R (γ, η) dµ (γ) dλσ (η) .

Proof. Set in (2.1) h (γ, x) = 11{NΛ=n} (γ) 11Λ (x)F (γ). Then
∫

Γ

∑
x∈γ

h (γ, x) dµ (γ) = n

∫

Γ

11{NΛ=n} (γ)F (γ) dµ (γ) ;

∫

Γ

∫

Rd

h (γ + εx, x) r (γ, x) dσ (x) dµ (γ)

=
∫

Γ

∫

Λ

11{NΛ=n} (γ + εx) F (γ + εx) r (γ, x) dσ (x) dµ (γ) .

Hence,
∫

Γ

11{NΛ=n} (γ)F (γ) dµ (γ) =
1
n

∫

Λ

∫

Γ

11{NΛ=n−1} (γ) F (γ + εx) r (γ, x) dµ (γ) dσ (x) .

Applying this formula for F̃ (γ) := F (γ + εx) r (γ, x) one has
∫

Γ

11{NΛ=n} (γ)F (γ) dµ (γ)

=
1

n (n− 1)

∫

Λ2

∫

Γ

11{NΛ=n−2} (γ)F (γ + εx1 + εx2)

× r (γ + εx2 , x1) r (γ, x2) dµ (γ) dσ (x1) dσ (x2) .

Further,
∫

Γ

11{NΛ=n} (γ)F (γ) dµ (γ)

=
1
n!

∫

Λn

∫

Γ

11{NΛ=0} (γ) F (γ ∪ {x1, . . . , xn})
×R (γ, {x1, . . . , xn}) dµ (γ) dσ (x1) dσ (x2) . . . dσ (xn)

=
1
n!

∫

Λn

∫

ΓRd\Λ

F (γ ∪ {x1, . . . , xn})

×R (γ, {x1, . . . , xn}) dµ (γ) dσ (x1) dσ (x2) . . . dσ (xn) .

After summarizing on n we obtain (2.5). ¤

We will say that a measure µ ∈ M1
fm (Γ) is locally absolutely continuous w.r.t.

the Poisson measure πσ if for all Λ ∈ Bc (X) the projection µΛ of µ on ΓΛ is absolutely
continuous w.r.t. πΛ

σ .

Proposition 2.8. Let the measure µ is as above; then it is locally absolutely continuous
w.r.t. the Poisson measure πσ and for πΛ

σ -a.a. η ∈ ΓΛ

dµΛ

dπΛ
σ

(η) = eσ(Λ)

∫

ΓRd\Λ

R (γ, η) dµ (γ) .

Proof. Let f be a bounded non-negative B (ΓΛ)-measurable function and set F = f ◦pΛ.
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Then, by (2.5), we obtain∫

ΓΛ

f (γ) dµΛ (γ) =
∫

Γ

F (γ) dµ (γ) =
∫

ΓΛ

∫

ΓRd\Λ

F (γ ∪ η)R (γ, η) dµ (γ) dλσ (η)

=
∫

ΓΛ

f (η)

(∫

ΓRd\Λ

R (γ, η) dµ (γ)

)
dλσ (η)

= eσ(Λ)

∫

ΓΛ

f (η)

(∫

ΓRd\Λ

R (γ, η) dµ (γ)

)
dπΛ

σ (η) .

Thus we obtain just the required result. ¤
Corollary 2.9. From the general results (see, e.g., [21]), one has

(1) For all γ ∈ Γ the set {γ′ ∈ Γ| γ ∩ γ′ = ∅} has µ-measure zero.
(2) The set { (γ, γ′) ∈ Γ× Γ| γ ∩ γ′ = ∅} has µ⊗ µ-measure zero.
(3) The set {γ ∈ Γ| γ ∩A = ∅} has full µ-measure for any A ∈ B (

Rd
)

such that
σ (A) = 0.

Let us now construct on the configuration spaces specifications corresponding to r.
For any Λ ∈ Bc

(
Rd

)
we consider the partition function

ZΛ (γ) :=
∫

ΓΛ

R (
γRd\Λ, η

)
dλσ (η) , γ ∈ Γ.

Then a specification ΠΛ is defined for any γ ∈ Γ̃, ∆ ∈ B (Γ) by

ΠΛ (∆, γ) :=
11{ZΛ<∞} (γ)

ZΛ (γ)

∫

ΓΛ

11∆

(
γRd\Λ ∪ η

)R (
γRd\Λ, η

)
dλσ (η) .

Note that ZΛ (·) and ΠΛ (∆, ·) are BRd\Λ (Γ)-measurable for any ∆ ∈ B (Γ) , Λ ∈ Bc

(
Rd

)
.

Theorem 2.10. For all ∆ ∈ B (Γ) the following Dobrushin-Lanford-Ruelle equation
holds

(2.6)
∫

Γ

ΠΛ (∆, γ) dµ (γ) = µ (∆)

Let us now formulate an inverse result.

Theorem 2.11. Let µ ∈ M1
fm (Γ) , Γ̃ ∈ B (Γ) , µ

(
Γ̃
)

= 1, r : Γ × Rd → R+ is B (Γ) ×
B (
Rd

)
-measurable and defined for any γ ∈ Γ̃ and for σ-a.a. x ∈ Rd. Let also for any

γ ∈ Γ̃ and for σ-a.a. x, y ∈ Rd the identity (2.2) holds. Then we can define R and
{ΠΛ}Λ∈Bc(Rd) and

(1) If µ satisfies the equation (2.6) then µ satisfies the equation (2.1).
(2) If µ satisfies (2.5) then µ satisfies the equation (2.1).

The proofs of these theorems are analogously to the proofs in [18].

3. Correlation functionals

Recall that the measure µ is locally absolutely continuous w.r.t. πσ (see Proposi-
tion 2.8). Therefore, the set of finite configuration has zero measure. Due to this fact
there is no canonical way for restriction of the function r onto finite configurations. Let
us now fix the most useful restriction.

We describe some classes of functions. On Γ0 one consider L0(Γ0) the set of all
measurable functions on Γ0. Let L0

ls(Γ0) be the set of all measurable functions with local
support, i.e., G ∈ L0

ls(Γ0) if there exists Λ ∈ Bc(Rd) such that G ¹Γ0\ΓΛ= 0. L0
bs(Γ0)

denotes the set of all measurable functions with bounded support, the latter means that



10 D. L. FINKELSHTEIN AND YU. G. KONDRATIEV

there exist Λ ∈ Bc(Rd) and N ∈ N such that G ¹
Γ0\

(⊔N
n=0 Γ

(n)
Λ

)= 0. B(Γ0) the set of

bounded measurable functions. Analogously, Bls(Γ0) and Bbs(Γ0) are defined.
We consider also sets of cylinder measurable functions on Γ and Γ0: one say that

F ∈ Fcyl(Γ) or G ∈ Fcyl(Γ0) if F and G are measurable w.r.t. BΛ(Γ) and B(ΓΛ) corre-
spondingly for some Λ ∈ Bc(X). These functions can be characterized by the following
relations: F (γ) = F ¹ΓΛ (γΛ), G(η) = G ¹ΓΛ (ηΛ)

One may introduce the following ”key-mapping” between functions on Γ0 and Γ (see
[12], [15] for more details). Let G ∈ L0

ls(Γ0), then we put

(3.1) KG(γ) :=
∑

ξbγ

G(ξ), γ ∈ Γ.

The summation in the latter expression is extends over all finite sub configurations of γ
(in symbols ξ b γ). If G ∈ L0

ls(Γ0), then this sum is finite and moreover, KG ∈ Fcyl (Γ).
The mapping K : L0

ls(Γ0) → Fcyl (Γ) is linear, positivity preserving and invertible with
inverse

K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

Note also that the K-transform maps a function G ∈ Bbs(Γ0) into the cylinder polynomial
bounded function. In particular, if G ¹

Γ0\
⊔N

n=0 Γ
(n)
Λ

= 0 for some Λ ∈ Bc(X) and N ∈ N
then there exists C > 0 such that |KG(γ)| ≤ C (1 + |γΛ|)N .

We denote the restriction of K onto Γ0 by K0. That means for any G ∈ L0 (Γ0)

K0G(η) =
∑

ξ⊂η

G(ξ), K−1
0 G(η) =

∑

ξ⊂η

(−1)|η\ξ|G(ξ), η ∈ Γ0.

Note that K0 and K−1
0 are well defined.

Note again that K−1 : Fcyl(Γ) → L0
ls(Γ0) and K−1

0 : Fcyl(Γ0) → L0
ls(Γ0).

A set B ∈ B(Γ0) is called bounded iff there exists N ∈ N and Λ ∈ Bc(X) such that
B ⊂ ⊔N

n=0 Γ(n)
Λ . The family Bb(Γ0) of all bounded sets A ∈ B(Γ0) forms a ring of sets.

This ring generates B(Γ0).
Define a measure K∗µ on (Γ0,B (Γ0)) due to the relation

(K∗µ) (A) =
∫

Γ

K11A(γ)µ(dγ), for all A ∈ Bb(Γ0).

Due to µ ∈M1
fm(Γ), one has (K∗µ) (A) < +∞ for all A ∈ Bb(Γ0) (see [12]). Then we say

that K∗µ is locally finite and denote this by K∗µ ∈ Mlf(Γ0). Note that, in particular,
K∗πσ = λσ.

Moreover, if G ∈ L1 (Γ0,K
∗µ) then the series in the right hand side of (3.1) µ-a.s.

converges and KG ∈ L1 (Γ, µ) (see, e.g., [12]).
One can introduce also a convolution

(G1, G2) 7→ (G1 ? G2) (η) :=
∑

(ξ1,ξ2,ξ3)∈P3
∅(η)

G1(ξ1 ∪ ξ2) G2(ξ2 ∪ ξ3),

where P3
∅ (η) denotes the set of all partitions (ξ1, ξ2, ξ3) of η into 3 parts, i.e., all triples

(ξ1, ξ2, ξ3) with ξi ⊂ η, ξi ∩ ξj = ∅ if i 6= j and ξ1 ∪ ξ2 ∪ ξ3 = η. For G1, G2 ∈ L0
ls(Γ0)

K (G1 ? G2) = KG1 ·KG2,

that holds if G1, G2 ≥ 0 or if |G1| ? |G2| ∈ L1(Γ0,K
∗µ) or if G1, G2 ∈ L1(Γ0,K

∗µ) (then
K (G1 ? G2) ∈ L1(Γ, µ) too, see [12]).

Note that if F ∈ Fcyl(Γ) then we can consider the function FΛ := F ¹ΓΛ as measurable
cylinder function on Γ0. Then K−1

0 FΛ ∈ L0
ls(Γ0) [12] and, therefore, the K-transform is
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well defined on K−1
0 FΛ:

(
KK−1

0 FΛ

)
(γ) = F (γ) = F (γΛ) , γ ∈ Γ.

And, vise versa: any cylinder function G ∈ Fcyl(Γ0) such that there exists Λ ∈ Bc(X)
with G(η) = G(ηΛ), η ∈ Γ0 may be considered as measurable cylinder function on Γ,
putting G (γ) := G (γΛ). Then also(

KK−1
0 G

)
(γ) = G (γ) , γ ∈ Γ.

In the other words, the mapping KK−1
0 is a kind of a continuation mapping on cylinder

functions.
Clearly, we can not extend in this way general measurable functions. For example for

so-called Lebesgue-Poisson exponent

eλ (ϕ, η) :=
∏
x∈η

ϕ (x) , η ∈ Γ0,

where ϕ ∈ L1
(
Rd, dσ (x)

)
, one has eλ belongs to L1 (Γ0, λσ) but there is not sensible

definition of KK−1
0 eλ (ϕ, ·) .

Let us present now our main condition for fixing a useful restriction of r.

Condition 2. Let r̃ : Γ0 × Rd → R+ be a non-negative function such that r̃ (η, x) is
defined for any η ∈ Γ0 and for any x ∈ Rd \ η. Suppose that

(1) For any γ ∈ Γ̃, for σ-a.a. x ∈ Rd, and for any Λ ∈ Bc

(
Rd

)
one has

r̃ (γΛ, x) = r (γΛ, x) ;

and for any F ∈ Fcyl (Γ) , ϕ ∈ C0

(
Rd

)
∫

Γ

∫

Rd

ϕ (x) F (γ) r̃ (γΛ, x) dσ (x) dµ (γ)

→
∫

Γ

∫

Rd

ϕ (x) F (γ) r (γ, x) dσ (x) dµ (γ) , Λ ↑ Rd.

(2) For any η ∈ Γ0 and for any x, y ∈ Rd \ η the ”cocycled identity” holds

r̃ (η + εx, y) r̃ (η, x) = r̃ (η + εy, x) r̃ (η, y) .

(3) For any η ∈ Γ0 and for any x ∈ Rd

r̃ (η, x) > 0, x 6∈ η;

r̃ (∅, x) = 1.

Sometimes (see Theorem 4.5 below and its consequences) we need translation
invariance condition:

(4) For any {a, x, x1, . . . , xn} ⊂ Rd

r̃ ({x1 + a, . . . , xn + a} , x + a) = r̃ ({x1, . . . , xn} , x) .

Note that in Examples 1–2 these conditions are fulfilled (see, e.g., [12], [18], [7], [8]).
In that follows we will use for r̃ the same notation r.

In the following we need important lemma (about proof see, e.g., [12]).

Lemma 3.1 (Ruelle). Let H, G1, G2 be B(Γ0)-measurable functions. Then the following
equality holds

(3.2)
∫

Γ0

H(η) (G1 ∗G2) (η) λσ(dη) =
∫

Γ0

∫

Γ0

H(η1 ∪ η2)G1(η1)G2(η2)λσ(dη1)λσ(dη2),

where
(G1 ∗G2) (η) :=

∑

ξ⊂η

G1(η\ξ)G2(ξ),
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if either all functions are positive or one side of (3.2) exists for |G1|, |G2|, |H|.
Definition 3.2. An energy E : Γ0 → R is defined via relation

R (∅, η) = e−E(η).

The following simple but very important statement holds

Proposition 3.3. For any η ∈ Γ0, x ∈ Rd \ η one has

(3.3) r (η, x) = e−(E(η+εx)−E(η)).

Proof. Let us apply (2.3) for the case γ = ∅, η1 = η, η2 = {x}. Then

R (∅, η ∪ {x}) = R (∅, η)R (η, {x}) ,

hence,
e−E(η+εx) = e−E(η)r (η, x) ,

that fulfilled the proof. ¤

In fact, we prove that if µ and r are such that (2.1) is true and r has the restriction,
satisfying Condition 2, then r has to have the special form (3.3). Of course, we can not
define the energy on infinite configurations but formally (3.3) will be true if we change η
onto γ ∈ Γ.

Since µ is locally absolutely continuous w.r.t. the Poisson measure πσ one has K∗µ is
absolutely continuous w.r.t. the Lebesgue-Poisson measure λσ (see [12]). Therefore, we
may consider the correlation functional ρµ : Γ0 → R+ corresponding to µ:

ρµ (η) :=
d (K∗µ)

dλσ
(η) ,

and we know (see [12]) that for all Λ ∈ Bc

(
Rd

)
and for λσ-a.a. η ∈ ΓΛ

(3.4) ρµ (η) =
∫

ΓΛ

dµΛ

dλσ
(η ∪ ξ) dλσ (ξ) .

As a result, the following statement is true.

Proposition 3.4. For λσ-a.e. η ∈ Γ0

ρµ (η) =
∫

Γ

R (γ, η) µ (dγ) .

Proof. From Proposition 2.8 one has

dµΛ

dλσ
(η) =

∫

ΓRd\Λ

R (γ, η) dµ (γ) .

Using (2.5) and (2.3), we get
∫

ΓΛ

dµΛ

dλσ
(η ∪ ξ) dλσ (ξ) =

∫

ΓΛ

∫

ΓRd\Λ

R (γ, η ∪ ξ) dµ (γ) dλσ (ξ)

=
∫

ΓΛ

∫

ΓRd\Λ

R (γ, ξ)R (γ ∪ ξ, η) dµ (γ) dλσ (ξ) =
∫

Γ

R (γ, η)µ (dγ) .

Thus, according to (3.4), we obtain the assertion. ¤

Definition 3.5. Let Λ ∈ Bc

(
Rd

)
. A finite volume correlation functional ρΛ : ΓΛ →

(0;+∞) (in the volume Λ) is defined as

ρΛ (η) =
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ) dλσ (ξ) ,
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where

ZΛ (∅) =
∫

ΓΛ

R (∅, η) dλσ (η) .

Remark 3.6. Note that if arbitrary non-negative measurable function r satisfies (2.2)
then we can construct the function R and, therefore, E, as well as define the functional
ρΛ.

Proposition 3.7. The finite volume correlation functional is normalized, i.e., ρΛ (∅) =
1, and Lenard-positive, i.e.,

(3.5)
∫

ΓΛ

(−1)|ξ| ρΛ (η ∪ ξ) dλσ (ξ) ≥ 0.

Proof. The proof of the first statement is clear. For the second one we use (3.2). One
has∫

ΓΛ

(−1)|ξ| ρΛ (η ∪ ξ) dλσ (ξ) =
∫

ΓΛ

eλ (−1, ξ)
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ ∪ ζ) dλσ (ζ) dλσ (ξ)

=
1

ZΛ (∅)
∫

ΓΛ

(eλ (−1, ξ) ∗ eλ (1, ξ))R (∅, η ∪ ξ) dλσ (ξ) =
R (∅, η)
ZΛ (∅) ≥ 0,

where we use the identity

(eλ (f1, ·) ∗ eλ (f2, ·)) (η) = eλ (f1 + f2, η)

that may be obtained via direct calculation. ¤

4. Stability condition and Ruelle bounds

Stability condition is a classical condition in statistical physics. In our case it has
the following form.

(S) There exists a constant Bst ≥ 1 such that

R (∅, η) ≤ (Bst)
|η|

, η ∈ Γ0.

Remark 4.1. In the case of Example 2

R (∅, η) = exp
(−βEφ (η)− βWφ (η, ∅)) = exp

(−βEφ (η)
)
,

Recall that the stability condition for a pair potential Gibbs measure is that there exists
B ≥ 0 such that

(4.1) Eφ (η) ≥ −B |η| , η ∈ Γ0.

Then our condition is equivalent to this with Bst = eβB .

At present, there are not good sufficient conditions on general many-body potential
for stability. Such conditions are known just for pair-potential (Dobrushin-Fisher-Ruelle
criterion, see, e.g., [23]) and for some special many-body potentials [5].

But by definition for η = {x1, . . . , xn}
(4.2) R (∅, η) = r ({x1} , x2) r ({x1, x2} , x3) . . . r ({x1, . . . , xn−1} , xn) ,

whence, if φ is pair stable potential and for any η ∈ Γ0, x /∈ η

r (η, x) ≤ rφ (η, x) := exp

(
−β

∑
y∈η

φ (x, y)

)
,

then (S) holds.
Using stability condition, we can prove some useful facts.
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Proposition 4.2. Let (S) holds; then for all Λ ∈ Bc

(
Rd

)
and for λσ-a.a. η ∈ Γ0

1 ≤ ZΛ (∅) ≤ exp (Bstσ (Λ)) ;

0 ≤ ρΛ (η) ≤ (Bst)
|η| exp (Bstσ (Λ)) .

Proof. Using (S), we obtain

1 =
∫

{∅}
R (∅, η) dλσ (η) ≤

∫

ΓΛ

R (∅, η) dλσ (η) ≤
∫

ΓΛ

(Bst)
|η|

dλσ (η) = exp (Bstσ (Λ))

and

0 ≤ ρΛ (η) =
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ) dλσ (ξ)

≤
∫

ΓΛ

(Bst)
|η|+|ξ|

dλσ (ξ) = (Bst)
|η| exp (Bstσ (Λ)) ,

that finishes the proof. ¤
Remark 4.3. The inequality

ρΛ (η) ≤ (Bst)
|η| exp (Bstσ (Λ))

is called the local Ruelle bounds.

Definition 4.4. The correlation functional ρµ is said to be satisfied the Ruelle bounds
if there exists CR > 0 such that for λσ-a.a. η ∈ Γ0

(4.3) ρµ (η) ≤ (CR)|η| .

The family {ρΛ}Λ∈Bc(Rd) is said to be satisfied the uniform Ruelle bounds if there exists
CR > 0 such that for all Λ ∈ Bc

(
Rd

)
and for λσ-a.a. η ∈ Γ0

(4.4) ρΛ (η) ≤ (CR)|η| .

Note that, by (4.3),∫

ΓΛ

2|η|ρµ (η) dλσ (η) ≤
∫

ΓΛ

(2CR)|η| dλσ (η) = exp (2CR |Λ|) < +∞,

then (see [12]) for λσ-a.e. η ∈ ΓΛ

dµΛ

dλσ
(η) =

∫

ΓΛ

(−1)|ξ| ρµ (η ∪ ξ) dλσ (ξ) .

The sufficient conditions for (4.4) was found in [23]. For demonstrate them we need
some additional objects. Let us fix a positive number t > 0. For every a ∈ Zd we define
a cube

L (a) =
{

x ∈ Rd

∣∣∣∣
(

ai − 1
2

)
t ≤ xi ≤

(
ai +

1
2

)
t

}

and set n (η, a) = |η ∩ L (a)| . Now we formulate the superstability condition.
(SS) There exist A > 0, B ≥ 0 such that if A is a finite subset of Zd and η ∈ ∪a∈AL (a)

then

(4.5) R (∅, η) ≤ exp

(∑

a∈A

[
Bn (η, a)−An2 (η, a)

]
)

.

Since
∑

a∈ABn (η, a) = B |η|, we see that superstability condition is stronger than sta-
bility.

Note also that usually (4.5) is wrote in the equivalent form

E (η) ≥
∑

a∈A

[
An2 (η, a)−Bn (η, a)

]
.
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Let us consider (cf. (2.4)) for any η1, η2 ∈ Γ0, η1 ∩ η2 = ∅
W (η1, η2) := E (η1 ∪ η2)− E (η1)− E (η2) .

And now we can formulate the lower regularity condition.
(LR) There exists a decreasing positive function Ψ on the positive integers such that

∑

a∈Zd

Ψ(|a|) < +∞

and if A1,A2 are finite subsets of Zd and η1 ∈ ∪a1∈A1L (a1), η2 ∈ ∪a2∈A2L (a2), then

W (η1, η2) ≥ −1
2

∑

a1∈A1

∑

a2∈A2

Ψ (|a1 − a2|)
[
n2 (η1, a1) + n2 (η2, a2)

]
.

Note that conditions (SS) and (LR) are translation invariant and independent of the
choice of t.

And now we formulate the Ruelle theorem. We assume that forth part of the Condi-
tion 2 holds.

Theorem 4.5 (Ruelle, [23]). Let conditions (SS) and (LR) hold; then the family {ρΛ :
Λ ∈ Bc

(
Rd

)}
satisfies the uniform Ruelle bounds with proper CR.

Again, by (4.2) and (4.5), we see that if φ is pair superstable potential and for any
η ∈ Γ0, x /∈ η

(4.6) r (η, x) ≤ rφ (η, x) ,

then (SS) holds.
Due to this considerations, let us now to find some sufficient conditions for (SS) (and,

therefore, (S)). We define two functions:

δ∗ (η, x) = min
y∈η

|x− y| , δ∗ (η, x) = max
y∈η

|x− y| , η ∈ Γ0, x /∈ η

and let B (x, s) be the ball with center at x and radius s > 0.

Proposition 4.6. Let there exist 0 < a1 < a2 < +∞, C1, C2 > 0, ε1, ε2 > 0, b >
C2

ad+ε2
2

such that

(4.7) r (η, x) ≤ exp

( ∑
x∈η3

C2

(δ∗ (η, x))d+ε2
+ b |η2| −

∑
x∈η1

C1

(δ∗ (η, x))d+ε1

)
,

for η ∈ Γ0, x /∈ η, where η1 = η ∩ B (x, a1), η2 = η ∩ (B (x, a2) \B (x, a1)), η3 =
η \ (η1 ∪ η2). Then (SS) holds.

Proof. By the Dobrushin-Fisher-Ruelle criterion (see, e.g., [5], [23]) one has that if
φ (x, y) = V (x− y), where

(4.8) V (x) =





C1

|x|d+ε1
, |x| < a1,

− C2

|x|d+ε2
, |x| > a2,

− b, a1 ≤ |x| ≤ a2,

thus φ is superstable.
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It now follows that
∑
y∈η

V (x− y) =
∑
y∈η1

C1

|x− y|d+ε1
−

∑
y∈η2

b−
∑
y∈η3

C2

|x− y|d+ε2

≤
∑
x∈η1

C1

(δ∗ (η, x))d+ε1
+ b |η2| −

∑
x∈η3

C2

(δ∗ (η, x))d+ε2
.

Further, using (4.7), we obtain

r (η, x) ≤ exp

(
−

∑
y∈η

V (x− y)

)
= rφ (η, x) ,

thus, by (4.6), condition (SS) holds. ¤
Remark 4.7. The inequality (4.7) is natural in the sense that r (η, x) → 0 if dist (η; x) → 0
and r (η, x) → 1 if dist (η; x) →∞.

Remark 4.8. Since the potential φ generating by (4.8) is also the lower-regular, we can
formulate some sufficient condition on r for (LR). Really, for η2 = {y1, . . . yn} one has

e−W (η1,η2) =
e−E(η1∪η2)

e−E(η1)e−E(η2)
=

R (∅, η1 ∪ η2)
R (∅, η1)R (∅, η2)

=
R (η1, η2)
R (∅, η2)

=
n∏

k=1

r (η1 ∪ {y1, . . . , yk−1} , yk)
r ({y1, . . . , yk − 1} , yk)

.

As a result, if for any η, ξ ∈ Γ0, x /∈ η ∪ ξ

r (η ∪ ξ, x)
r (ξ, x)

≤ rφ (η, x) ,

then (LS) holds. Therefore, if we change the left hand side of (4.7) onto
r (η ∪ ξ, x)

r (ξ, x)
, then

we obtain the sufficient condition on r for (LR). But this condition will be very specific
and non-natural.

5. The Kirkwood—Salsburg identities

We start from the so-called ”integrability-stability condition” (we interpret this name
below).

(IS) (Integrability-stability condition) There exists a increasing function bis : [0;+∞)
× (0;+∞) → [1;+∞) such that for any η ∈ Γ0, for σ-a.e. x ∈ Rd \ η, and for any
c ∈ (0;+∞) ∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ bis (|η| , c) .

Remark 5.1. In the case of the Example 2 under stability condition (4.1)

r (ξ ∪ η, x) =
∏

y∈ξ∪η

e−βφ(x,y) =
∏
y∈η

e−βφ(x,y)
∏

y∈ξ

e−βφ(x,y)

=
∏
y∈η

e−βφ(x,y)
∏

y∈ξ

(
1 +

(
e−βφ(x,y) − 1

))
,

Hence,

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ =

∣∣∣∣∣
∏
y∈η

e−βφ(x,y)eλ

(
e−βφ(x,·) − 1, ξ

)∣∣∣∣∣

≤ e2βB|η|eλ

(∣∣∣e−βφ(x,·) − 1
∣∣∣ , ξ

)
,
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and∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ e2βB|η|
∫

Γ0

eλ

(
c
∣∣∣e−βφ(x,·) − 1

∣∣∣ , ξ
)

dλσ (ξ)

= e2βB|η| exp
(∫

Rd

c
∣∣∣e−βφ(x,y) − 1

∣∣∣ dσ (y)
)

.

In the case of the pair potential the following integrability condition plays an essential
role:

(5.1) C (β) := ess sup
x∈Rd

∫

Rd

∣∣∣e−βφ(x,y) − 1
∣∣∣ dσ (y) < +∞.

Then, by (4.1) and (5.1), condition (IS) is true in this case with

bis (|η| , c) = e2βB|η|+cC(β)

These are arguments for name of this condition: we use both integrability and stability
conditions.

Let us consider also a weaker condition.
(IS-loc) (Local integrability-stability condition) For any η ∈ Γ0, for σ-a.e. x ∈ Rd \η,

for any c ∈ (0;+∞), and for any Λ ∈ Bc

(
Rd

)
one has

∫

ΓΛ

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) < +∞.

Proposition 5.2. Under (S) and (IS-loc) the finite-volume correlation functional ρΛ

satisfies the following finite-volume Kirkwood—Salsburg equation

(5.2) ρΛ (η ∪ {x}) = eλ (11Λ, η ∪ {x})
∫

ΓΛ

K−1
0 (r (η ∪ ·, x)) (ξ) ρΛ (η ∪ ξ) dλσ (ξ)

for λσ ⊗ σ-a.a. (η, x) ∈ ΓΛ × Λ.

Proof. We have for η ∈ ΓΛ, x ∈ Λ

ρΛ (η ∪ {x}) =
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ ∪ {x}) dλσ (ξ)

=
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ)R (η ∪ ξ, {x}) dλσ (ξ)

=
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ) r (η ∪ ξ, x) dλσ (ξ)

=
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ)K0

(
K−1

0 r (η ∪ ·, x)
)
(ξ) dλσ (ξ)

=
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ)
(
K−1

0 r (η ∪ ·, x) ∗ eλ (1, ·)) (ξ) dλσ (ξ) .

And now we may use identity (3.2), since
1

ZΛ (∅)
∫

ΓΛ

R (∅, η ∪ ξ)
∣∣(K−1

0 r (η ∪ ·, x) ∗ eλ (1, ·)) (ξ)
∣∣ dλσ (ξ)

≤ 1
ZΛ (∅)

∫

ΓΛ

∫

ΓΛ

R (∅, η ∪ ξ ∪ ζ)
∣∣K−1

0 (r (η ∪ ·, x)) (ξ)
∣∣ eλ (1, ζ) dλσ (ζ) dλσ (ξ)

=
∫

ΓΛ

∣∣K−1
0 (r (η ∪ ·, x)) (ξ)

∣∣ ρΛ (η ∪ ξ) dλσ (ξ)

≤
∫

ΓΛ

∣∣K−1
0 (r (η ∪ ·, x)) (ξ)

∣∣ (Bst)
|η|+|ξ| exp (Bstσ (Λ)) dλσ (ξ) < +∞.
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Thus,

ρΛ (η ∪ {x})

=
1

ZΛ (∅)
∫

ΓΛ

∫

ΓΛ

R (∅, η ∪ ξ ∪ ζ)K−1
0 (r (η ∪ ·, x)) (ξ) eλ (1, ζ) dλσ (ζ) dλσ (ξ)

=
∫

ΓΛ

K−1
0 (r (η ∪ ·, x)) (ξ) ρΛ (η ∪ ξ) dλσ (ξ) .

¤

Remark 5.3. We may set ρΛ ≡ 0 on Γ0 \ΓΛ and extend the equation (5.2) to λσ ⊗σ-a.a.
(η, x) ∈ Γ0 × Rd.

We need some lemmas for following considerations.

Lemma 5.4. Suppose that (IS) and (4.3) are true; then for any η ∈ Γ0 and for σ-a.a. x

K−1
0 r (· ∪ η, x) ∈ L1 (Γ0, ρµdλσ) .

Proof. Really,
∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ ρµ (ξ) dλσ (ξ)

≤
∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ (CR)ξ
dλσ (ξ) ≤ bis (|η| , CR) < +∞,

by (IS) and (4.3). ¤

Lemma 5.5. Suppose that (IS) and (4.3) are true; then for any G ∈ Bbs (Γ0) , ϕ ∈
C0

(
Rd

)
the following equality holds

∫

Γ0

∑
x∈η

ϕ (x)G (η \ {x}) ρµ (η) dλσ (η)

=
∫

Rd

ϕ (x)
(∫

Γ0

(
G ? K−1

0 r (·, x)
)
(η) ρµ (η) dλσ (η)

)
dσ (x) .

Proof. Let F = KG and apply Campbell-Mecke identity (2.1) for

h (γ, x) = ϕ (x)F (γ \ {x}) ,

we obtain∫

Γ

∑
x∈γ

ϕ (x) F (γ \ {x}) dµ (γ) =
∫

Γ

∫

Rd

F (γ)ϕ (x) r (γ, x) dσ (x) dµ (γ) .

Note that
∑
x∈γ

ϕ (x)F (γ \ {x}) = K

(∑
x∈·

ϕ (x)
(
K−1F

)
(· \ {x})

)
(γ) ,

since

K

(∑
x∈·

ϕ (x)
(
K−1F

)
(· \ {x})

)
(γ) =

∑
ηbγ

∑
x∈η

ϕ (x)
(
K−1F

)
(η \ {x})

=
∑
x∈γ

ϕ (x)
∑

ηbγ:x∈η

(
K−1F

)
(η \ {x}) =

∑
x∈γ

ϕ (x)
∑

ηbγ\{x}

(
K−1F

)
(η)

=
∑
x∈γ

ϕ (x) F (γ \ {x}) .
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Therefore,∫

Γ

∑
x∈γ

ϕ (x) F (γ \ {x}) dµ (γ) =
∫

Γ0

∑
x∈η

ϕ (x)
(
K−1F

)
(η \ {x}) ρµ (η) dλσ (η) .

Since K−1
0 r (·, x) ∈ L1 (Γ0, ρµdλσ) and G ∈ L1 (Γ0, ρµdλσ), we, by Condition 2, obtain
∫

Γ

∫

Rd

F (γ)ϕ (x) r (γ, x) dσ (x) dµ (γ)

= lim
Λ↑Rd

∫

Γ

∫

Rd

F (γ) ϕ (x) r (γΛ, x) dσ (x) dµ (γ)

= lim
Λ↑Rd

∫

Rd

ϕ (x)
(∫

Γ

(
KK−1F

)
(γ)

(
KK−1

0 r (·Λ, x)
)
(γ) dµ (γ)

)
dσ (x)

= lim
Λ↑Rd

∫

Rd

ϕ (x)
(∫

Γ

K
((

K−1F
)
(·) ?

(
K−1

0 r (·Λ, x)
))

(γ) dµ (γ)
)

dσ (x)

= lim
Λ↑Rd

∫

Rd

ϕ (x)
(∫

Γ0

(
K−1F

)
(η) ?

(
K−1

0 r (ηΛ, x)
)
ρµ (η) dλσ (η)

)
dσ (x)

=
∫

Rd

ϕ (x)
(∫

Γ0

G (η) ?
(
K−1

0 r (η, x)
)
ρµ (η) dλσ (η)

)
dσ (x) ,

and finally, one get ∫

Γ0

∑
x∈η

ϕ (x)G (η \ {x}) ρµ (η) dλσ (η)

=
∫

Rd

ϕ (x)
(∫

Γ0

(
G ? K−1

0 r (·, x)
)
(η) ρµ (η) dλσ (η)

)
dσ (x) .

The statement is proved. ¤

The following lemma is needed for the sequel as well as it is interesting itself.

Lemma 5.6. For any G1, G2,H ∈ L1
loc (Γ0, dλσ) the following identity holds provided

one of its sides exists ∫

Γ0

(
G1 ? K−1

0 G2

)
(η)H (η) dλσ (η)

=
∫

Γ0

∫

Γ0

G1 (η1)
(
K−1

0 G2 (· ∪ η1)
)
(η2) H (η1 ∪ η2) dλσ (η1) dλσ (η2) .

Proof. We prove it at first for HΛ := 11ΓΛH. Using (3.2), one has
∫

Γ0

(
G1 ? K−1

0 G2

)
(η) HΛ (η) dλσ (η)

=
∫

ΓΛ

(
K−1

0 K0

(
G1 ? K−1

0 G2

))
(η) H (η) dλσ (η)

=
∫

ΓΛ

(
K−1

0 (K0G1 ·G2)
)
(η) H (η) dλσ (η)

=
∫

ΓΛ

((K0G1 ·G2) ∗ eλ (−1, ·)) (η)H (η) dλσ (η)

=
∫

ΓΛ

∫

ΓΛ

K0G1 (η)G2 (η) eλ (−1, ξ) H (η ∪ ξ) dλσ (ξ) dλσ (η)

=
∫

ΓΛ

(∫

ΓΛ

(G1 ∗ eλ (1, ·)) (η)G2 (η)H (η ∪ ξ) dλσ (η)
)

eλ (−1, ξ) dλσ (ξ)
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=
∫

ΓΛ

(∫

ΓΛ

∫

ΓΛ

G1 (η) eλ (1, ζ)G2 (η ∪ ζ)H (η ∪ ξ ∪ ζ) dλσ (ζ) dλσ (η)
)

× eλ (−1, ξ) dλσ (ξ)

=
∫

ΓΛ

G1 (η)
(∫

ΓΛ

∫

ΓΛ

G2 (η ∪ ζ) eλ (−1, ξ)H (η ∪ ξ ∪ ζ) dλσ (ζ) dλσ (ξ)
)

dλσ (η)

=
∫

ΓΛ

G1 (η)
(∫

ΓΛ

(G2 (η ∪ ·) ∗ eλ (−1, ·)) (ξ)H (η ∪ ξ) dλσ (ξ)
)

dλσ (η)

=
∫

ΓΛ

∫

ΓΛ

G1 (η)
(
K−1

0 G2 (η ∪ ·)) (ξ)H (η ∪ ξ) dλσ (ξ) dλσ (η) .

Since the limit of the one side exists as Λ ↑ Rd, the assertion is true. ¤
Theorem 5.7 (Kirkwood—Salsburg equation). Let (IS) and (4.3) are true; then for
λσ-a.e. η ∈ Γ0 and for σ-a.e. x /∈ η

(5.3) ρµ (η ∪ {x}) =
∫

Γ0

(
K−1

0 r (· ∪ η, x)
)
(ξ) ρµ (η ∪ ξ) dλσ (ξ) .

Proof. Using (3.2) with

ϕ̂ (ξ) :=

{
ϕ (x) , ξ = {x}

0, otherwise,

one has∫

Γ0

∑
x∈η

ϕ (x)G (η \ {x}) ρµ (η) dλσ (η) =
∫

Γ0

∑

ξ⊂η

ϕ̂ (ξ)G (η \ ξ) ρµ (η) dλσ (η)

=
∫

Γ0

∫

Γ0

ϕ̂ (ξ)G (η) ρµ (η ∪ ξ) dλσ (ξ) dλσ (η)

=
∫

Rd

ϕ (x)
∫

Γ0

G (η) ρµ (η ∪ {x}) dλσ (η) dσ (x) .

Further, by Lemma 5.5,
∫

Rd

ϕ (x)
∫

Γ0

G (η) ρµ (η ∪ {x}) dλσ (η) dσ (x)

=
∫

Rd

ϕ (x)
(∫

Γ0

(
G ? K−1r (·, x)

)
(η) ρµ (η) dλσ (η)

)
dσ (x)

for any ϕ ∈ C0

(
Rd

)
, that follows

∫

Γ0

G (η) ρµ (η ∪ {x}) dλσ (η) =
∫

Γ0

(
G ? K−1r (·, x)

)
(η) ρµ (η) dλσ (η) .

And by Lemma 5.6, we get
∫

Γ0

(
G ? K−1r (·, x)

)
(η) ρµ (η) dλσ (η)

=
∫

Γ0

∫

Γ0

G (η)
(
K−1

0 r (· ∪ η, x)
)
(ξ) ρµ (η ∪ ξ) dλσ (η) dλσ (ξ) ,

hence, for any G ∈ L1 (Γ0, ρµdλσ)
∫

Γ0

G (η) ρµ (η ∪ {x}) dλσ (η)

=
∫

Γ0

∫

Γ0

G (η)
(
K−1

0 r (· ∪ η, x)
)
(ξ) ρµ (η ∪ ξ) dλσ (η) dλσ (ξ) ,
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and, as a result,

ρµ (η ∪ {x}) =
∫

Γ0

(
K−1

0 r (· ∪ η, x)
)
(ξ) ρµ (η ∪ ξ) dλσ (ξ) ,

that is (5.3). ¤

6. Existence results

Theorem 6.1. Let (Λn)n∈N be an order generating sequence in Bc

(
Rd

)
and (ρΛn

)n∈N
be the sequence of the corresponding finite volume correlation functionals that fulfills
the equation (5.2) and the uniform Ruelle bound, i.e., there exists a constant CR > 0
such that for λσ-a.a. η ∈ Γ0 and for all n ∈ N

ρΛn (η) ≤ (CR)|η| .

Let also (IS) holds for c = CR and (S) holds too; then there exists a measure µ ∈M1
fm (Γ)

satisfying the equation (2.1).

Proof. Let us consider the space L∞ (Γ0, λσ) as the dual space of L1 (Γ0, λσ) equipped
with the weak*-topology. According to the Banach-Alaoglu theorem, the set

B =
{

f ∈ L∞ (Γ0, λσ)
∣∣∣∣ess sup

γ∈Γ0

|f (γ)| ≤ 1
}

is compact. Put

ρ̃Λn (ξ) =
ρΛn (ξ)

(CR)|ξ|
.

Under the uniform Ruelle bound, we have ρ̃Λn ∈ B. Then there exists a subsequence(
ρ̃Λni

(ξ)
)
i∈N that weak*-converges. Without loss of generality we assume that (ρ̃Λn)n∈N

weak*-converge to ρ̃ ∈ B itself. Let ρ (η) = ρ̃ (η) (CR)|η| then for λσ-a.a. η ∈ Γ0 ρ (η) ≤
(CR)|η|. Clearly, ρdλσ ∈ Mlf (Γ0) and for all G ∈ Bbs (Γ0) one has

(
G ? Ḡ

)
(·) (CR)|·| ∈

L1 (Γ0, λσ); further,
∫

Γ0

(
G ? Ḡ

)
(η) ρ (η) dλσ (η) =

∫

Γ0

(
G ? Ḡ

)
(η) (CR)|η| ρ̃ (η) dλσ (η)

= lim
n→∞

∫

Γ0

(
G ? Ḡ

)
(η) (CR)|η| ρ̃Λn (η) dλσ (η) = lim

n→∞

∫

Γ0

(
G ? Ḡ

)
(η) ρΛn (η) dλσ (η) ≥ 0,

since ∫

Γ0

(
G ? Ḡ

)
(η) ρΛn (η) dλσ (η)

=
∫

ΓΛn

((
K0

(
G ? Ḡ

)) ∗ eλ (−1, ·)) (η) ρΛn (η) dλσ (η)

=
∫

ΓΛn

|K0G (η)|2
∫

ΓΛn

(−1)|ξ| ρΛn (ξ ∪ η) dλσ (ξ) dλσ (η) ≥ 0,

due to (3.5). Therefore, ρdλσ is a positive semi-defined locally finite measure. Since
∫

{∅}
ρ (η) dλσ (η) =

∫

Γ0

1{∅} (η) ρ (η) dλσ (η) = lim
n→∞

∫

Γ0

1{∅} (η) ρΛn (η) dλσ (η) = 1,

this measure is normalized. Then there exist a unique measure µ ∈ M1
fm (Γ) such

that ρdλσ = K∗µ (see Theorem 6.2 in [12]). Next, note that if for any c > 0 G ∈
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L1
(
Γ0, c

|·|dλσ

)
then

lim
n→∞

∫

Γ0

G (η) ρΛn (η) dλσ (η) = lim
n→∞

∫

Γ0

G (η) (CR)|η| ρ̃Λn (η) dλσ (η)

=
∫

Γ0

G (η) (CR)|η| ρ̃ (η) dλσ (η) =
∫

Γ0

G (η) ρ (η) dλσ (η) .

Let us consider for fixed G ∈ Bbs (Γ0) functions

fn (x) = 11Λn
(x)

∫

Γ0

G (η) ρΛn
(η ∪ {x}) dλσ (η) .

Using (5.2) and Lemma 5.6, we get

fn (x) = 11Λn (x)
∫

Γ0

∫

Γ0

G (η)K−1
0 (r (η ∪ ·, x)) (ξ) ρΛn

(η ∪ ξ) dλσ (ξ) dλσ (η)

= 11Λn
(x)

∫

Γ0

(
G ? K−1

0 r (·, x)
)
(η) ρΛn

(η) dλσ (η) .

Next,
∫

Γ0

(
G ? K−1

0 r (·, x)
)
(η) c|η|dλσ (η)

=
∫

Γ0

∫

Γ0

G (η) K−1
0 (r (η ∪ ·, x)) (ξ) c|η|+|ξ|dλσ (ξ) dλσ (η)

≤
∫

Γ0

|G (η)| c|η|bis (|η| , c) dλσ (η) < ∞,

since G ∈ Bbs (Γ0). Then for σ-a.a. x

fn (x) →
∫

Γ0

(
G ? K−1r (·, x)

)
(η) ρ (η) dλσ (η) =: f (x) , n →∞.

Using the Lebesgue dominate theorem, for any ϕ ∈ C0

(
Rd

)

∫

Rd

ϕ (x) fn (x) dσ (x) →
∫

Rd

ϕ (x) f (x) dσ (x) ,

since

|fn (x)| ≤
∫

Γ0

|G (η)| c|η|bis (|η| , CR) dλσ (η) < ∞.

But by Mecke identity,
∫

Rd

ϕ (x) fn (x) dσ (x) =
∫

Rd

ϕ (x) 11Λn (x)
∫

Γ0

G (η) ρΛn (η ∪ {x}) dλσ (η) dσ (x)

=
∫

Γ0

∑
x∈η

ϕ (x) 11Λn (x) G (η \ {x}) ρΛn (η) dλσ (η)

=
∫

Γ0

∑
x∈η

ϕ (x) G (η \ {x}) ρΛn (η) dλσ (η) ,
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starting from some big n. Since for every c > 0
∫

Γ0

∣∣∣∣∣
∑
x∈η

ϕ (x)G (η \ {x})
∣∣∣∣∣ c|η|dλσ (η)

≤
∫

Γ0

∑
x∈η

|ϕ (x)| |G (η \ {x})| c|η|dλσ (η)

=
∫

Γ0

∫

Rd

|ϕ (x)| |G (η)| c|η|+1dσ (x) dλσ (η) < ∞,

one has ∫

Rd

ϕ (x) fn (x) dσ (x) →
∫

Γ0

∑
x∈η

ϕ (x) G (η \ {x}) ρ (η) dλσ (η)

=
∫

Rd

ϕ (x)
∫

Γ0

G (η) ρ (η ∪ {x}) dλσ (η) dσ (x) .

Thus we have

f (x) =
∫

Γ0

G (η) ρ (η ∪ {x}) dλσ (η) .

As a result, for every G ∈ Bbs (Γ0)∫

Γ0

G (η) ρ (η ∪ {x}) dλσ (η) =
∫

Γ0

(
G ? K−1r (·, x)

)
(η) ρ (η) dλσ (η)

=
∫

Γ0

∫

Γ0

G (η)K−1
0 (r (η ∪ ·, x)) (ξ) ρ (η ∪ ξ) dλσ (ξ) dλσ (η) ,

Thus, ρ satisfies (5.3).
Moreover,

∫

Rd

ϕ (x) f (x) dσ (x) =
∫

Rd

ϕ (x)
(∫

Γ0

(
G ? K−1

0 r (·, x)
)
(η) ρ (η) dλσ (η)

)
dσ (x)

=
∫

Γ0

∑
x∈η

ϕ (x)G (η \ {x}) ρ (η) dλσ (η) .

Then (see the proof of Lemma 5.5) for any G ∈ Bbs (Γ0) and F = KG we have

(6.1)
∫

Γ

∑
x∈γ

ϕ (x)F (γ \ {x}) dµ (γ) =
∫

Γ

∫

Rd

F (γ) ϕ (x) r (γ, x) dσ (x) dµ (γ) .

Since ρ satisfies (5.3) and due to Lemma 5.6 and the Mecke identity, we may write
∫

Γ

K (G (·) 〈ϕ, ·〉) (γ) dµ (γ) =
∫

Γ0

G (η) 〈ϕ, η〉 ρ (η) dλσ (η)

=
∫

Γ0

∫

Rd

ϕ (x) G (η ∪ {x}) ρ (η ∪ {x}) dσ (x) dλσ (η)

=
∫

Rd

∫

Γ0

ϕ (x) G (η ∪ {x})
∫

Γ0

(
K−1

0 r (· ∪ η, x)
)
(ξ) ρ (η ∪ ξ) dλσ (ξ) dλσ (η) dσ (x)

=
∫

Rd

∫

Γ0

ϕ (x)
(
G (· ∪ {x}) ? K−1

0 r (·, x)
)
(η) ρ (η) dλσ (η) dσ (x)

=
∫

Rd

∫

Γ

ϕ (x)K
(
G (· ∪ {x}) ? K−1

0 r (·, x)
)
(γ) dµ (γ) dσ (x)

=
∫

Rd

∫

Γ

ϕ (x) (KG (· ∪ {x})) (γ) r (γ, x) (η) dµ (γ) dσ (x) .
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But by direct computation, one has

K (G (·) 〈ϕ, ·〉) (γ) = (KG) (γ) 〈ϕ, γ〉 −
∑
x∈γ

(KG) (γ \ {x})ϕ (x) ,

further, using (6.1), we obtain∫

Γ

(KG) (γ) 〈ϕ, γ〉 dµ (γ) =
∫

Rd

∫

Γ

ϕ (x) (KG (· ∪ {x})) (γ) r (γ, x) (η) dµ (γ) dσ (x)

+
∫

Rd

∫

Γ

ϕ (x) (KG) (γ) r (γ, x) (η) dµ (γ) dσ (x) ,

but, by definition of K, we see that

(KG) (γ ∪ {x}) = (KG (· ∪ {x})) (γ) + (KG) (γ) ,

and, as a result,∫

Γ

F (γ) 〈ϕ, γ〉 dµ (γ) =
∫

Γ

∫

Rd

F (γ ∪ {x}) ϕ (x) r (γ, x) dσ (x) dµ (γ)

for any ϕ ∈ C0

(
Rd

)
and F = KG, G ∈ Bbs (Γ0). ¤

Remark 6.2. In the pair-potential case the proof is more simpler since from the ∗-weak
convergence we can obtain convergence a.s. due to the Mayer—Montroll equation (see,
e.g., [23]). In this case it was true under the same conditions as Kirkwood—Salsburg
equation. In the our general case we can write Mayer—Montroll equation too:

(6.2) ρµ (η ∪ ξ) =
∫

Γ0

(
K−1

0 R (· ∪ η, ξ)
)
(ζ) ρµ (η ∪ ζ) dλσ (ζ)

for λσ ⊗ λσ-a.e. (η, ξ) ∈ Γ0 × Γ0. But it is true under just more strong condition than
condition (IS):

(EIS) (Exponential integrability-stability condition) There exist a increasing function
beis : [0;+∞)×N→ [1;+∞) and constant Beis ≥ 0 such that for any η, ζ ∈ Γ0, η∩ ζ = ∅
and for any c ∈ (0;+∞)∫

Γ0

∣∣(K−1
0 R (· ∪ η, ζ)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ (Beis)
|η||ζ|

beis (|ζ| , c) .

Due to exponential growth on |η| this condition is useful just for positive many-body
potential.

7. Uniqueness conditions

Let us start from the condition with another bound for the same integral as in (IS).
(MIS) (Modified integrability-stability condition) There exist a increasing function

bmis : [0;+∞) → [1;+∞) and constant Bmis ≥ 0 such that for any η ∈ Γ0, for any
x ∈ Rd \ η, and for any c ∈ (0;+∞)∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ p (η, x) bmis (c) ,

where p : Γ0 × Rd → [0;+∞) such that for any η ∈ Γ0 there exists x0 ∈ η such that

p (η \ {x0} , x0) ≤ Bmis.

Remark 7.1. In the case of Example 2 under condition (4.1) one has∫

Γ0

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) =
∏
y∈η

e−βφ(x,y)

∫

Γ0

∣∣∣eλ

(
e−βφ(x,·) − 1, ξ

)∣∣∣ c|ξ|dλσ (ξ)

= e−βW ({x},η)

∫

Γ0

∣∣∣eλ

(
c
(
e−βφ(x,·) − 1

)
, ξ

)∣∣∣ dλσ (ξ) ≤ e−βW ({x},η)ecC(β),
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and under (4.1) for any η ∈ Γ0 there exists x0 ∈ η such that

W ({x0} , η \ {x0}) ≥ −2B.

Thus, by (4.1) and (5.1), condition (MIS) is true in this case with

bmis (c) = ecC(β); p (η, x) = e−βW ({x},η); Bmis = e2βB .

And now we prove so-called modified Kirkwood—Salsburg equation. We will use
notation of condition (MIS). First of all, let us define for η ∈ Γ0, x ∈ η a function

κ̃ (η, x) :=

{
1, p (η \ {x} , x) ≤ Bmis

0, otherwise
,

now, by (MIS), we has ∑
x∈η

κ̃ (η, x) ≥ 1.

Also we define a function

κ (η, x) :=
κ̃ (η, x)∑

x∈η κ̃ (η, x)
∈ [0; 1] .

Theorem 7.2 (Modified Kirkwood—Salsburg equation). Let (IS), (4.3) and (MIS) are
true; then for any η 6= ∅

(7.1) ρµ (η) =
∑
x∈η

κ (η, x)
∫

Γ0

(
K−1

0 r (· ∪ (η \ {x}) , x)
)
(ξ) ρµ (ξ ∪ (η \ {x})) dλσ (ξ) .

Proof. Using (5.3), one has

∑
x∈η

κ (η, x)
∫

Γ0

(
K−1

0 r (· ∪ (η \ {x}) , x)
)
(ξ) ρµ (ξ ∪ (η \ {x})) dλσ (ξ)

=
∑
x∈η

κ (η, x) ρµ ((η \ {x}) ∪ {x}) = ρµ (η)
∑
x∈η

κ (η, x) = ρµ (η) .

¤

Remark 7.3. Actually, we prove that if ρ : Γ0 → [0;+∞) such that
1) ρ (∅) = 1;
2) there exists CR > 0 : ρ (η) ≤ (CR)|η| for λσ-a.a. η ∈ Γ0;
3) for any Λ ∈ Bc

(
Rd

)
one has that ρ is Lenard-positive, i.e.,

∫

ΓΛ

(−1)|ξ| ρ (η ∪ ξ) dλσ (ξ) ≥ 0 for λσ-a.a. η ∈ Γ0,

thus under (IS) and (MIS) (5.3) ⇒ (7.1) and under (EIS) (6.2) ⇔ (5.3) (clearly, we have
to change ρµ onto ρ in the equations).

Remark 7.4. We can prove also that under condition (MIS) (and moreover, under the lo-
cal condition (MIS)) the following finite-volume modified Kirkwood—Salsburg equation
holds

(7.2) ρΛ (η) = eλ (11Λ, η)

×
∑
x∈η

κ (η, x)
∫

Γ0

(
K−1

0 r (· ∪ (η \ {x}) , x)
)
(ξ) ρΛ (ξ ∪ (η \ {x})) dλσ (ξ) .

In the following we always assume that (S) and (MIS) hold.
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Definition 7.5. For arbitrary constant CR > 0 define a space ECR
in the following way

ECR
=

{
F ∈ L0 (Γ0, λσ)

∣∣∣∣∣‖F‖CR
:= ess sup

η∈Γ0

(
|F (η)|
C
|η|
R

)
< ∞

}
.

Lemma 7.6. ECR is a Banach space.

About proof see, e.g., Lemma 3.4.2 in [14].

Remark 7.7. Clearly, if ρµ is correlation functional and fulfills (4.3) with constant CR,
then ρµ ∈ ECR

.

Definition 7.8. Consider a ”modified” Kirkwood—Salsburg operator S : Bbs (Γ0) →
L∞ (Γ0, λσ) given for η 6= ∅ by

SF (η) =
∑
x∈η

κ (η, x)
∫

Γ0

(
K−1

0 r (· ∪ η \ {x} , x)
)
(ξ)F (ξ ∪ η \ {x}) dλσ (ξ)

and SF (∅) = 0.

Note that really SF ∈ L∞ (Γ0, λσ), since
∣∣∣∣
∫

Γ0

(
K−1

0 r (· ∪ η \ {x} , x)
)
(ξ)F (ξ ∪ η \ {x}) dλσ (ξ)

∣∣∣∣

≤ ‖F‖L∞(Γ0,λσ)

∫

Γ0

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ dλσ (ξ)

≤ ‖F‖L∞(Γ0,λσ) p (η \ {x} , x) bmis (1) ,

it follows that, for λσ-a.a. η ∈ Γ0

|SF (η)| ≤ ‖F‖L∞(Γ0,λσ) bmis (1)
∑
x∈η

κ (η, x) p (η \ {x} , x) ≤ ‖F‖L∞(Γ0,λσ) bmis (1)Bmis.

Theorem 7.9. S is bounded operator in ECR
with

‖S‖ ≤ Bmisbmis (CR)
CR

.

Proof. One has

‖SF‖CR
≤ ess sup

η∈Γ0

∑
x∈η

κ (η, x)
1

C
|η|
R

×
∣∣∣∣
∫

Γ0

(
K−1

0 r (· ∪ η \ {x} , x)
)
(ξ) F (ξ ∪ η \ {x}) dλσ (ξ)

∣∣∣∣

= ess sup
η∈Γ0

∑
x∈η

κ (η, x)
1

C
|η|
R

×
∫

Γ0

∣∣∣∣∣
(
K−1

0 r (· ∪ η \ {x} , x)
)
(ξ)

F (ξ ∪ η \ {x})
C
|ξ∪η\{x}|
R

∣∣∣∣∣ C
|ξ∪η\{x}|
R dλσ (ξ)

≤ ess sup
η∈Γ0

∑
x∈η

κ (η, x)
‖F‖CR

CR

∫

Γ0

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ C
|ξ|
R dλσ (ξ)

≤ ‖F‖CR

CR
ess sup

η∈Γ0

∑
x∈η

κ (η, x) p (η \ {x} , x) · bmis (CR) ≤ ‖F‖CR

CR
Bmisbmis (CR) ,

that fulfilled the proof. ¤
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Proposition 7.10. If function r be such that
Bmisbmis (CR)

CR
< 1,

then there exists a unique solution in ECR
of the equation

(7.3) F − SF = eλ (0, ·) .

Proof. Really, if

‖S‖CR
≤ Bmisbmis (CR)

CR
< 1,

then S is a contraction and (1− S)−1 :=
∑∞

j=0 Sj exists as a linear bounded operator.
Then the unique solution of (7.3) has the form (1− S)−1

eλ (0, ·) . ¤
And now we can prove the uniqueness result.

Theorem 7.11. Let (S) and (MIS) hold. Let CR > 0 be given. Then for all r such that
Bmisbmis (CR)

CR
< 1

there exists at most one correlation functional ρ that fulfills equations (5.3) and (4.3)
with constant CR.

Proof. Let ρ be a correlation functional such that equalities (5.3) and (4.3) with constant
CR hold. Then ρ ∈ ECR and it fulfills the equation (7.1). Therefore, it is a solution
to (7.3) and hence unique in ECR . ¤
Definition 7.12. Consider for the volume Λ ∈ Bc

(
Rd

)
an operator SΛ : ECR

→ ECR

in the following way
SΛ = 11ΓΛS11ΓΛ .

Since 0 ≤ ρΛ (η) ≤ (Bst)
|η| exp (Bstσ (Λ)), one has ρΛ ∈ EBst and

‖ρΛ‖Bst
= exp (Bstσ (Λ)) .

By (7.2), it follows that
(1− SΛ) ρΛ = eλ (0, ·) .

Note that ‖SΛ‖CR
≤ ‖S‖CR

and if CR ≥ C ′R then EC′R ⊂ ECR
. As a result, if

CR ≥ Bst, then ρΛ ∈ ECR
and SΛ is a contraction in ECR

. We get that

ρΛ = (1− SΛ)−1
eλ (0, ·) =

∞∑

j=0

Sj
Λeλ (0, ·) .

For every generating sequence (Λn)n∈N

‖ρΛn‖CR
≤

∞∑

j=0

(‖SΛn‖CR

)j ≤
∞∑

j=0

(‖S‖CR

)j =
1

1− ‖S‖CR

,

then (ρΛn)n∈N fulfills the uniform Ruelle bound. Then due to the proof of the existence
theorem, one has that there exists ρ ∈ E satisfying the equation (5.3) and then under
condition (MIS) satisfying the equation (7.1), thus, it is unique. Moreover, the corre-
sponding measure µ is unique too. As a result, we have the following theorem.

Theorem 7.13. Let r satisfies (S), (IS) and (MIS) and let CR > Bst be such that
Bmisbmis (CR)

CR
< 1.

Then there exists a unique measure µ ∈M1
fm (Γ) such that ρµ satisfies (4.3) with the Ru-

elle constant CR.
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The following theorem gives more strong converges result for correlation functions.
But previously we need additional condition on the relative energy density.

(UMIS) (Uniform modified integrability-stability condition) There exists a increasing
function bumis : [0; +∞) → [1;+∞) such that for any Λ ∈ Bc

(
Rd

)
and any ε > 0 there

exists Λ1 ∈ Bc

(
Rd

)
such that for σ-a.a. x ∈ Λ and for λσ-a.a. η ∈ Γ0∫

Γ0\ΓΛ1

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ εp (η, x) bumis (c) .

Remark 7.14. In the case of the Example 2 under condition (I ′) from [21] one has∫

Γ0\ΓΛ1

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ)

= e−βW ({x},η)

∫

Γ0\ΓΛ1

∣∣∣eλ

(
c
(
e−βφ(x,·) − 1

)
, ξ

)∣∣∣ dλσ (ξ)

= p (η, x)

(∫

Γ0

∣∣∣eλ

(
c
(
e−βφ(x,·) − 1

)
, ξ

)∣∣∣ dλσ (ξ)

−
∫

ΓΛ1

∣∣∣eλ

(
c
(
e−βφ(x,·) − 1

)
, ξ

)∣∣∣ dλσ (ξ)

)

= p (η, x)
(

exp
(∫

Rd

c
∣∣∣e−βφ(x,y) − 1

∣∣∣ dσ (y)
)
− exp

(∫

Λ1

c
∣∣∣e−βφ(x,y) − 1

∣∣∣ dσ (y)
))

≤ p (η, x) exp
(∫

Rd

c
∣∣∣e−βφ(x,y) − 1

∣∣∣ dσ (y)
) (∫

Rd\Λ1

c
∣∣∣e−βφ(x,y) − 1

∣∣∣ dσ (y)

)

< εp (η, x) ecC(β),

then in this case bumis (c) = bmis (c) = ecC(β).

Theorem 7.15. Let (S), (MIS) and (UMIS) hold and suppose r be such that CR ≥
Bst and

Bmisbmis (CR)
CR

< 1. Then for every generating sequence (Λn)n∈N and every

Λ0 ∈ Bc

(
Rd

)
the sequence of finite volume correlation functionals (ρΛn)n∈N converge to

ρ = (1− S)−1
eλ (0, ·), the unique solution of (7.3), in the following sense:

lim
n→∞

ess sup
η∈Γ0

|ρ (η)− ρΛn (η)|
(

1
CR

)|η|
= 0.

Proof. Note that for every Λ ∈ Bc

(
Rd

)
with Λ0 ⊂ Λ and for η ∈ ΓΛ0 we have (see [14])

that for any l ∈ N

(7.4) |ρ (η)− ρΛ (η)| (CR)|η|
∥∥∥11ΓΛ0

(1− S)−1 − (1− SΛ)−1
∥∥∥

CR

≤ (CR)|η|

 2 ‖S‖l+1

CR

1− ‖S‖CR

+
l∑

j=0

∥∥∥11ΓΛ0

(
Sj

Λ − Sj
)∥∥∥

CR


 .

Next, for any order generating sequence (Λs)s∈N0
and for any fixed j ∈ N we have (see

Lemma 3.4.11 from [14]) that for all s ≥ j

(7.5)
∥∥∥11ΓΛ0

(
Sj

Λs
− Sj

)∥∥∥
CR

≤ ‖S‖j−1
CR

j∑
r=1

(∥∥∥11ΓΛr−1
(SΛr − S)

∥∥∥
CR

+
∥∥∥11ΓΛr−1

(SΛn − SΛr )
∥∥∥

CR

)
.
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Next, for any Y1, Y2 ∈ B
(
Rd

)
such that Λ0 ⊂ Y1 ⊂ Y2 and for any F ∈ ECR

∥∥11ΓΛ0
(SY1 − SY2)F

∥∥
CR

= ess sup
η∈Γ0

∣∣∣∣∣11ΓΛ0
(η) ((SY1 − SY2)F ) (η)

(
1

CR

)|η|∣∣∣∣∣

= ess sup
η∈ΓΛ0

∣∣∣∣∣((SY1 − SY2) F ) (η)
(

1
CR

)|η|∣∣∣∣∣

= ess sup
η∈ΓΛ0

∣∣∣∣∣
∑
x∈η

κ (η, x)
∫

Γ0

(
K−1

0 r (· ∪ η \ {x} , x)
)
(ξ)F (ξ ∪ η \ {x})

× (
11ΓY1

(ξ ∪ η \ {x})− 11ΓY2
(ξ ∪ η \ {x})) dλσ (ξ)

(
1

CR

)|η|∣∣∣∣∣

≤ ess sup
η∈ΓΛ0

∑
x∈η

κ (η, x)
∫

Γ0

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ |F (ξ ∪ η \ {x})|
(

1
CR

)|η|+|ξ|−1

× (CR)|η|+|ξ|−1 ∣∣11ΓY1
(ξ ∪ η \ {x})− 11ΓY2

(ξ ∪ η \ {x})∣∣ dλσ (ξ)
(

1
CR

)|η|

≤ ‖F‖CR

CR
ess sup
η∈ΓΛ0

∑
x∈η

κ (η, x)

×
∫

Γ0

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ ∣∣11ΓY1
(ξ)− 11ΓY2

(ξ)
∣∣ (CR)|ξ| dλσ (ξ)

=
‖F‖CR

CR
ess sup
η∈ΓΛ0

∑
x∈η

κ (η, x)

×
∫

Γ0

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ 11ΓY2\ΓY1
(ξ) (CR)|ξ| dλσ (ξ)

=
‖F‖CR

CR
ess sup
η∈ΓΛ0

∑
x∈η

κ (η, x)
∫

Γ0,Y2\Γ0,Y1

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ (CR)|ξ| dλσ (ξ) ,

since for any ξ ∈ Γ0

ess sup
η∈ΓΛ0 ,x∈η

|F (ξ ∪ η \ {x})|
(

1
CR

)|η|+|ξ|−1 ∣∣11ΓY1
(ξ ∪ η \ {x})− 11ΓY2

(ξ ∪ η \ {x})∣∣

≤ ess sup
β∈Γ0

|F (β)|
(

1
CR

)|β| ∣∣11ΓY1
(ξ)− 11ΓY2

(ξ)
∣∣ = ‖F‖CR

∣∣11ΓY1
(ξ)− 11ΓY2

(ξ)
∣∣ .

As a result,

(7.6)
∥∥11ΓΛ0

(SY1 − SY2)
∥∥

CR

≤ 1
CR

ess sup
η∈ΓΛ0

∑
x∈η

κ (η, x)
∫

Γ0,Y2\Γ0,Y1

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ (CR)|ξ| dλσ (ξ) .

Let ε > 0 be given. Let us choose l such that

2 ‖S‖l+1
CR

1− ‖S‖CR

<
ε

2
.
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Then, due to (7.4),

(7.7) |ρ (η)− ρΛn (η)| 1

(CR)|η|
<

ε

2
+

l∑

j=0

∥∥∥11ΓΛ0

(
Sj

Λn
− Sj

)∥∥∥
CR

.

And now we construct a sequence (nr)r∈N0
in the following way. Let

ε1 = ε
CR

2l (l + 1) Bmisbumis (CR) ‖S‖j−1
CR

Take n0 = 0. Assume nr−1 is already chosen, then according to (UMIS) we can choose
nr such that for σ-a.a. x ∈ ΓΛnr−1

and for λσ-a.a. η ∈ Γ0

∫

Γ0\ΓΛnr

∣∣(K−1
0 r (· ∪ η, x)

)
(ξ)

∣∣ c|ξ|dλσ (ξ) ≤ ε1p (η, x) bumis (c) .

Let n ≥ nl ≥ nj then due to (7.5) for the sequence (Λn,Λnr )r∈N and (7.6)
∥∥∥11ΓΛ0

(
Sj

Λn
− Sj

)∥∥∥
CR

≤ ‖S‖j−1
CR

j∑
r=1

(∥∥∥11ΓΛnr−1

(
SΛnr

− S
)∥∥∥

CR

+
∥∥∥11ΓΛnr−1

(
SΛn

− SΛnr

)∥∥∥
CR

)

≤ ‖S‖j−1
CR

2
CR

×
j∑

r=1

(
ess sup

η∈ΓΛnr−1

∑
x∈η

κ (η, x)
∫

Γ0\Γ0,Λnr

∣∣(K−1
0 r (· ∪ η \ {x} , x)

)
(ξ)

∣∣ (CR)|ξ| dλσ (ξ)

)

≤ ‖S‖j−1
CR

2
CR

j∑
r=1

(
ess sup

η∈ΓΛnr−1

∑
x∈η

κ (η, x) p (η \ {x} , x) bumis (CR) ε1

)

< ‖S‖j−1
CR

2
CR

Bmisbumis (CR) jε1

<
2

CR
‖S‖j−1

CR
Bmisbumis (CR) jε1.

Therefore,
l∑

j=0

∥∥∥11ΓΛ0

(
Sj

Λn
− Sj

)∥∥∥
CR

<
2

CR
Bmisbumis (CR)

l (l + 1)
2

ε1.

And using (7.7), one has

|ρ (η)− ρΛn (η)| 1

(CR)|η|
<

ε

2
+

l (l + 1) Bmisbumis (CR) ‖S‖j−1
CR

CR
ε1 < ε.

This yields the required result. ¤
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25. S. Albeverio, Yu. G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces,
J. Func. Anal. 154 (1998), 444–500.
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