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The procedure of construction of a big class of operators on configuration spaces is presented.
Second order differential operators are studied on configuration space over domain with
boundary. Symmetric extensions of the minimal operator are discovered.

1 Introduction

The aim of the present article is the construction of a big class of operators on configuration
spaces over whole underlying space or only domain of them and discovery conditions under which
this operators will be symmetric. Our underlying space is the usuall R¢ with Borel o-algebra
B (Rd) and the fixed measure ¢ on (}Rd, B (Rd)), such that

do (x) = p(x)dx,
where p >0 a.a., p € Llloc (Rd, dx), ,01/2 € VV;M2 (Rd, da:).

Definition 1. Configuration space I' = I'pa is the space of all locally finite subsets (configura-
tions) of R%:

= {7 c R¢ ‘]’yA\ < +oo for any compact A C Rd} ,
where |-| means the cardinality of a set and
YA =7 NA.
Let us define the o-algebra B (I") as the minimal o-algebra such that all mappings

['Sy— |yl

are B (I')-measurable for any A € B, (R?), where B, (R?) is the family of all Borel subsets of R
with compact closure.

The space I' can be naturally embedded into the space M (Rd) of all measures on R? in the
following way

7€FH25I€M(R‘1)
rey

where ¢, is a Dirac measure at the point x. Thus I' can be endowed with topology generated
by the weak topology on M (]Rd). Moreover, it can be shown, that the o-algebra B (I") is really
the Borel o-algebra with respect to this topology.

For f € Cy (Rd) we can define a pairing between function and configuration:

() =S f (@)

xrey



2 D.L. Finkelshtein

This definition is correct since the sum in the r.h.s. is finite due to definition of configurations.
Consider also the class of cylindrical smooth functions: F' € FC;° (', D) iff
F(’Y) = gF(<90177>7"'a<90N7/7>)7 (1)

where ¢1,...,on € D = C(RY), gr € C;° (RY) (the space of all infinitely differentiable
functions on RY which are bounded together with all its derivatives).
Note that, if f € Cy (Rd) then for any v € T’

(fiv+e)—(f,7€Co (Rd> :
Analogously, if F' € FC;° (I', D) then for any v € I'
F(y+e)—F(y)eD.

Consider also the space I'y of the all configurations of A € B (Rd):
PA:{chdhmAC:V)}, (2)

where A€ := R%\ A.

2 Measures on the configuration spaces

Let us consider a class M} _(I') of the probability measures on (I', B(T')) which have all finite
locale moments, it means that

e ML () / al™ dps () < +o0 (3)

for any n € N and for any A € B, (Rd).

We start from the non-negative B (I') x B (R?)-measurable function r : I' x R? — R;. We
suppose that r (v, z) is defined for p-a.a. v € ' and a.a. = € R? (note that we always assume
that « & ).

Definition 2. The measure u € M. _(T') is called the Gibbs measure corresponding to r if for
any non-negative B (I') x B (R?)-measurable function h : I' x R? — R the following Campbell-
Mecke identity holds:

[ nenaydut) = [ [ ner+ena)r (oo (@) duta). (cw)

ey

For examples of the such measures we start from the case when r = 1. Mecke [3] proved that
there exists only one such measure p for given Radon measure ¢ on R?. This measure is called
the Poisson measure with intensity ¢ and denotes by 7,. There exists a direct construction of
the Poisson measure. For explore it we start from the space I'p, where A € B, (Rd). Clearly,

Tye= || (.
n€Np

where T Xl) is the set of all n-particle configurations (subsets) of A, Ng = NU {0}. There is a

bijection A™/S,, — FX]), where A" := {(z1,...,2,) € A" |z}, # zj, k # j}, and Sy, is the permu-

tation group over {1,...,n}. Therefore we can consider on Fan) the image (™ of the product
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measure ¢ under this bijection. Consider also a o-algebra B (I'y) as the minimal o-algebra
such that all mappings

LaA 3y — | (4)

are B (I'j)-measurable for any A’ € B.(A). Then the Poisson measure 72 on (T'y, B (Ty)) is
defined as

= 7o) Z %0("). (5)

n=0

It can be shown that the measurable space (I, B(T")) is the projective limit of the measurable
spaces (T'a,B(T'4)) and that the family of measures {72} AeB.(x) is consistent. Therefore one
has define the Poisson measure 7, on (I', B(I")) as the projective limit of this family.

Another examples were founded by Nguen and Zessin [4]. They shown that a big class of
Gibbs measures constructed by the quite general potential are satisfied to the Campbell-Mecke
identity. More precisely, let ® be a potential, i.e., a measurable function ® : Iy — R U {400},
such that ® () = 0. Define for any A € B, (R?) the conditional energy E} : T — R U {400}
such that EY (y) = 2 oney a0 ® (M) i 32, e inaajso |2 (M)] < oo and E? (v) = +oo otherwise
(the notation 7 € v means that n is a finite subset of ). Then for fixed § > 0 we define for
v eI, A € B(I') a specification

1{ZX’B’¢(7)<+00}

a,3,% _
HA (7? A) - ng@ ("}/)
A

/ 1a (ac Uh) e PER U dr, (7Y | (6)
T

where Z37® (v) = Jr e PER (WeWh) drr,, (7"). A measure u € M (T') is called the grand canon-
ical Gibbs measure with interaction potential ® iff for all A € F. (R?) and for all A € B(I)
the following Dobrushin-Lanford-Ruelle identity holds

w(A) = / 2% (4, A) dpa (). (7)

The set of all such probability measures p will be denoted by Gy (o, 5P).
Therefore, let p € Gge (pdz, fP) and let p has the local first moment (i.e., (3) is true for
n = 1). Then p satisfies the Campbell-Mecke identity with

r(y,2) = exp (~BEL, (v +e2) ) - (8)
Let us recall that

o = Z{x}cﬁ@YU{x} o (77) ;i Z{x}Cn@yU{x} ‘(I) (77)| < 400
E{z} (r+ee) { —+00, otherwise ’ 9)

Of course, all our considerations will be true in the general situation with function r, but
with some additional conditions on it. Thus, if we will want to use our results for examples
above, we have to check such conditions for corresponding r.

3 Construction of operators

First of all, for p-a.a. v € I' let us consider a measure on (Rd, B (Rd)):

doy (z) =71 (v,x)do (x).
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Therefore, we have a family of spaces {L2 (Rd, O"y)} without loss of generality we assume

veF(
that this family is indexed by all space I).

Suppose that we have the family of operators {B (7)}76F in the corresponding spaces
2 d
{L (]R ,07) }veF such that

D c Dom (B (7)), B(y)1e L? (Rd, ay) nL! (Rd,av) . (10)
Suppose also that for F' € FC° (I, D) there are functions Fy, € FC° (I, D), ¢y : I x R —

R,k =1,...,n such that ¢ (7,-) € L? (R, 0,) N L* (R¢, 0,) for pra.a. v,7' €T and for x € v
if we consider F () as function of z then

ZFk ) (v, ).

Then we can consider the bilinear form & on FCp° (I', D) generated by the family {B ()}, cr:

n(£.6) //R F(y+e) = F()|,_ (G(y+e) = GM)r(y,z)do (x) du(v)

for F,G € FCy° (I, D).
Note that for x & v one has

B(),F(=F(B{)1) ), (11)
since then F' () is a constant as a function of z.

Proposition 1. For any F,G € FCp° (I, D) the following equality holds

£, (F.G) = /F H,F (7) G () du ().

where
D BO)FO, . — > Fly—e)(B(y—ea)1)(2)
ey ey
~ [ BOLFG e (ua)do () +F ) (/ (BO)1) (@) (2) do (@)
R4 R4
Proof.
| [ BOLF G+ = F ) (6 0+2) - G)r () do(z) i 3)
= [ [, BOLFG+e)-Glatedr (oo (@) dula)
//R F (42 G ()7 (7,2)do () du ()

[ [ P& BOD@: G0+ (o) do @) du ()
I JRd
[ PO (BE)) @G0 () do ) du )
= [ [ XRG4 aen Gh e do @) dul)
r de:l
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//R F(y+es)-G)r(v.a)do(z)du(y)
_/F/de ) (B(y)1) (z) - G (y+ex)r (7, 7) do (z) dp (7)
+//de Y) - (B()1) ()G ()7 (v,7)do (z)dp (7)
_ /; <;Fk v) o (x v—ex))G(v)du(v)
_/F< [ BOLE(+e)r (fy,x)dU(l?))G(’Y)dN(’Y)
/F (;@F (v —e2) (B(y—ez)1) (m)> G (v)dp ()
+/FF(7)G(7) (/Rd (B(y)1) (@)r (v, ) dU(l“)) dp (7).
m

Therefore if B (7y) are symmetric operators on C$°(R?) in L2 (Rd, a,y) for any v € T', then the

corresponding operator H,, is a symmetric operator on FCy° (I', D) in L? (T, p

4 Second order differential operators

In this section we generalized results obtained in [1, 2] for the Poisson measure on our general

case.
Suppose that 7 (7, -) € C! (Rd) for p-a.a. vy €T.

Consider now instead of B () the Dirichlet operator A (y) corresponding to the bilinear form

&, (F0) = | (A1) VF ). Vg o) do, (o).

where A (v, z) = (aij (7, JU)) —

/R (A (2) VS (1), Vo () dory ()

Rd

/Rddlv (v, 2)Vf(x)r(y,x)p(x))g(x)de
/ (div (A (@) 7 (v,2) p (x) g (x) d
Rd
/RdW 2) V[ (2),V (r(v,2)p(x)) g (z)de

; and a;j (7, ) = aj; (v,-) is a smooth functions on R?. Since,

(12)
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where (y,2) = VIn (r (,2) p ().
Since A () 1 = 0 then the operator H,, corresponding to the family {A ()}

form
= A(W),F(

dSie

~ver has the simple

V==t

Let us now study the operator H, in the space L? (T'a, pa), where jup is the projection of
the measure y onto I'y and A is the regular (bounded or not) domain of R? with piecewise C*
boundary OA.

Proposition 2. The first Green formula for the operator H,, holds:

g H,F (v) G () dpa (7)
:/F /A<A (v, 2) Vo F (v + ), VaG (v + £2)) doy (x) dua (7)

0 -
- / O Py 4e) Gy +es)ddy (s)dun (7).
r, Joa Ons

where

S (5) = (A(2,9) VS (5).m,).

Proof. Due to Campbell-Mecke identity one has

HFP OGO i () = [ [ (A4, F(+2) G20 doy (@) din ().
FA FA
Then, write for A (v) the first Green formula:
A (@) g () doy ()

where do., (s) =1 (v,s)p(s)dS (s) for s € JA. As a result, we obtain the statement. [
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Corollary 1. The second Green formula for the operator H,, has the following form
| HF0)G0) = F () HG () dan ()
A
0 0 -
— [ ] (GG orte)-Flata) - 5P (r+2)-Glote) ) do (s)du (3).
Tp JOA \OTls Tis

Remark 1. Note that for any function F' € FC;° (I', D) in the form (1)
N

0
8715 'Y"‘gs Z 7+55 Tg@k (3)7

where

- 0
Fie(1) 1= 50 (p1,7) s Gono ) 1 S K< N,

Let us consider now the minimal operator
Hyin = (wacfo (FA7D (A))) )

which is symmetric in L? (T's, pa) (there D (A) = C5° (A)). We define the maximal operator by
the standard way:

Hmax - (Hmin>*

Proposition 3. FC;° (I'a, D) C Dom (Hyax) and for any G € Cp° (I's, D)

HpaxG (7) = H,G () +

[ G (9

Proof. It follows directly from the second Green formula that for any G € FCp°(D,I'5) and
F e FCR(D(A),Ta)

/((HuG)(v)F(v)—G(v)(HuF)( dpa(y / F(y G(7+6s)d07()duA('y)-
1N T'a JOA

ns

In the case when A is not depend on v: A (7v,z) = A (x) one has that

o 0
i ()= 5 F(5) = (A VS (5).m)

is the usual co-normal derivative.
Thus if we define the following set of functions, which satisfied Neumann-type boundary
conditions on OA:

DN(A):{feD‘ 0 f(s):o,seaA},

Ovg

then the operator (H,,, FC° (U, Dy (A))) will be symmetric in L? (T'a, pa).
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