Gauss Formula and Symmetric Extensions
of the Laplacian on Configuration Spaces
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Abstract

We prove an analogue of the classical Gauss formula for the configu-
ration space I'y over a domain A of R? and study symmetric extensions
of the corresponding Laplacian on I's.

1 Introduction

The classical Gauss formula says that

/ divo () m (dx) = / (v(s),ns)gam(ds). (1.1)
A oA

Here A is a bounded domain with smooth boundary 9A, v € C! (A), m is
Lebesgue measure on R?, 7 is the corresponding surface measure on A and
ns is the outer normal to JA at the point s. Infinite-dimensional generalizations
of for the case of Gauss measures or, more generally, of a differentiable
measure one can found in [4], [I2], [14]. An interesting Poisson analogue of the
Gauss formula was proved in [I3]. In this paper we prove a different version
of the Gauss formula for the configuration space which one can consider as a
natural lifting” (see [1], [11]) of the classical formula (L.1)).

The article is arranged as follows. In Section 2 we give a brief review of
the analysis on configurations spaces. In Section 3 we prove the corresponding
Gauss formula. Section 4 is devoted to the study of symmetric realizations of
the Laplace operator in L? (I‘A, w?) . Here I'y is the configuration space over a
domain A C R%, 7, denotes the Poisson measure with intensity o and 72 is the
restriction of 7, to I'p. In Section 5 we consider analogous questions for Gibbs
measures.
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2 Poisson Analysis, Intrinsic and Extrinsic
Differential Geometry of Poisson Spaces

In this section we provide a brief review of Poisson analysis and the intrinsic
and extrinsic differential geometry of the corresponding Poisson spaces needed
for this article. For a more detailed exposition of different aspects of Poisson
analysis and differential geometry of Poisson spaces see [1], [I1], [7], [8], [6] and
the references therein.

Let X = R?. For each point z € X the tangent space to X at x will be
denoted by T}, (X') and the tangle bundle will be denoted T'(X) = |, ¢ x T (X).
Consider the inner product on T; (X), which we denote by (-,")7. ). Let m
denote the Lebesgue measure on X.

The configuration space I" over X is defined as the set of all locally finite
subsets (configurations) in X:

I'={yC X||yn K| < oo for any compact K C X}, (2.2)
where |A| denotes the cardinality of a set A. Let A C X and define
Fa={yel|yNn(X\A)=0}. (2.3)

We can identify any v € I' with the Radon measure Zwey €z, Where €, is the
Dirac measure at the point x and €, :=zero measure. For any f € Cp (X)
(the set of all continuous functions on X with compact support) we introduce
the map I' > v — (f,7) := [ f(z) 7y (dx) = 3, f(2).

Let O.(X) be the family of all open subsets of X which have compact
closures. Define for any A € O, (X) and for any n € Z; = NU {0}

(= {y e Tally| =n}, 1 = {0}.
Note that we have a bijection ZN\”/SH — Fg\n), where

A" = {($17...,l‘n) eAnlxk} #x]7k7é]}

and S, is the permutation group over (1,...,n). This bijection defines a locally
compact metrizable Hausdorf topology on I‘E\"). Let s7% : A" — F&") be such that
s (21,. @) > {T1, . T} € 1"5\"). It is obvious that 'y = [, 1"5\”).

This space is equipped with the usual topology of disjoint unions and corre-
sponding Borel o-algebra B(I'y). Let B(I') be the smallest o-algebra on T’
such that all restriction mappings I' 3 v —— ppy = YN A =: 74 € T’y are
B(T') /B (I'p)-measurable. So, B(I') NT'y = B(I's). Note that B(T') is the
Borel g-algebra corresponding to the smallest topology on I' such that all maps
I' 5 v — (f,v) are continuous.

Consider a C'-density p > 0 m—a.e. Set o (dz) = p(x)m (dz), then o is
a non-atomic Radon measure on X. For any n € N we introduce the product-
measure 0" on (X", B(X™)). Clearly, c®™ (X”\f(") = 0. The measure o®"
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. . 5 ~1
can be considered as a finite measure on A", and by op, = o®" o (s%)
we denote the corresponding image measure on Fs\") under s%. The Lebesgue-

Poisson measure on B (I'y) with intensity measure o is defined by

1
Ap = —onm, (2.4)
n=0

where 040 =gy on Fg?) = {0} . It is obvious that the measure
ah = e (M)A (2.5)

is a probability measure on B (I'y) . The Poisson measure on B (I') with intensity
measure ¢ is probability measure 7, such that

A =m,0(pp)”", A O, (X). (2.6)

Let V (X) be the set of all C*-vector fields on X (i.e., smooth sections of
T (X)) and let Vo (X) C V(X) be the set of all vector fields with compact
support. Let v € Vo (X) and for any = € X the curve R 5 ¢t — ¢} () € X be
defined as the solution to the following Cauchy problem: 4¢? (z) = v (¢} (z)),
¢y (x) = x. Then for any ¢t € R, ¢} € Diffy (X) (the set of all diffeomorphisms
on X with compact support) and for any ¢,s € R ¢} o ¢% = o7, ..

For any ¢ € Diff, (X) and for any v € I" we can define ¢ () := {¢ (z) |z € v} .
For a function F' : I' — R we define the directional derivative along the vector
field v € Vo (X) as

d v
(VoF) (7) = FE @M (2.7)
t=0
provided the right hand side exists.
Let D = C§° (X) be the set of all C*° -functions on X with compact support
and let FCg° (D,T") be the set of all functions F' : I' — R of the form

F(y)=gr ((¢1,7) -5 {on,7)), v €T, (2.8)

where ¢1,...,o5 € D and gp € Cp° (RY). The set FCp° (D,T) is a dense
subset in the space L? (T,B(T),n,) =: L?(m,). We have that for any F €
FCe (D,T) of the form (2.8))

N
(TF) () =3 22 (form) oo lowa ) - (Vg n)s (29)

= 94

where (V) (z) := (Ve (z),v ()7, (x), V denotes the gradient on X.

We introduce the tangent space T, (I') to the configuration space I' at the
point v € I' as the Hilbert space of measurable v-square-integrable sections
(measurable vector fields) V,, : X — T (X) with the scalar product

VLV = [ @V @)y 1), @10)
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VA}, V2 € T, (T). The corresponding tangent bundle is T'(T') = U,er Ty (). It
is obvious that any v € Vo (X) can be considered as ”constant” vector ﬁeld on
I such that ' 3 v +— V, (-) = v(-) € T, (T') . We define the intrinsic gradient
of a function F : T' — R as the mapping I' 5 v — (V''F) (y) € T}, (T') such

that for any v € Vg (X)

(VoF) (1) =(V'"F (1) v)p 1) (2.11)
provided it exists. Then for any F € FCy° (D,T') of the form (2.8))
a dgr
(°F) (50) = 30 5o (G2 - fowi ) s ). (2.12)

yel,z e X.
The logarithmic derivative of o is defined as the vector field X > z +—

B (x) == Vp’?ﬂg) € T, (X), where as usual 37 (z) := 0 if p(x) = 0; and the

logarithmic derivative of o along v € V (X) is defined as

dive v (2) == (87 (z) ,v (@)1, (x) + divv (2),

where div := div,, is the divergence on X w.r.t. m. One has the following
integration by parts formula:

/(VFF)( )G (7)o () (2.13)

/F VFG ) o (dy) — /F ) (dive v, v) 7o (dY) -

for any F,G € FC° (D,T).
Let V € V(T), i.e,, a section V : I' — T'(I'). The divergence divga Vs
defined via the duality relation

[V P @) oy @) = = [ F) (@, V) ) o ) (214)
for all F' € FCg° (D,T'), provided it exists. For any vector field
ZG ),yel,zeX (2.15)
with G; € FC° (D,T'),v; € Vo (X), j=1,...,N we have
N N
(aivh, V) () =3 (V5,65) () + D2 G5 () {div v,9) (2.16)
j=1 j=1
Then obviously for all G € FCp° (D,T)
divi (G-V)=G-divy V+(V'GV)

us

—_ (2.17)
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Let us define two classes of smooth functions on I': FC5° (D, T) is the set of
functions of the form , where gp € C° (RN ) (:= the set of all C*°-functions
f on RY such that f and all its partial derivatives are polynomially bounded);
and FP (D,T) is the set of functions of the form , where gp € P (IRN)
(:= the set of all polynomials on RY). For F,G € FC;° (D,T') we introduce an
intrinsic pre-Dirichlet form as

& (F.G) = / (VI'F (y),V'G (7)>Tw ) o (7). (2.18)
T

We introduce also a differential operator H- on the domain FC° (D,T)
which is given on any F' € FCg° (D,T") of the form 2.8)) by the formula

(Hy F)(y) = (2.19)

- Z aqzaqj (o1 b)) [ (V1) Dy (g, )7 ()

N
0
S ZE (o) s oy /A% dz)
= 94

_.Z %? (01,7) - {ons ) /X (Vs (), 67 (2))p, () 7 (d2),

where A denotes the Laplace operator on X.
For all F,G € FC° (D,I') we can write

& (F,G)= (HL F,G)

LQ(’TTD-) 9
HE = —divy_ V" on FCp® (D,T). (2.21)

Note that (£5 ,FCp° (D,T)) (the form £ on the domain FCp® (D,T)) is a
closable bilinear form in L? (7,) . Its closure (L D (L)) is associated with a
positive definite self-adjoint operator (the Friedrichs’ extension of HTI:U) which
we also denote by HL (and its domain by D (Hy. )).

For any F € FCp° (D,T) we define the Poissonian gradient V¥ as

(VPF) (v,2) = F(y+e,) —F(7), y€T, z € X. (2.22)

Note that the operation I' 3 v — v+ ¢, € I' is a n,-a.e. well-defined map
since 7, ({y € T'jxz € v}) = 0.

Let B be a linear operator on L?(c) and ||B| < 1. One can define the
operator Exp B on

o}

Exp L? (o @Exanz = & @L2 X", 0%m), (2.23)

n=0
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where Exp, L? (¢) := R, by Exp B lExp, L2(0)i= B®" n e N,Exp B [Exp, L2(0)=
1. Let A be a positive self-adjoint operator in L? (¢). Consider the contraction
semi-group e ~*4, t > 0, and define a positive self-adjoint operator d Exp A as the
generator of the semigroup Exp(e™*4),t > 0: Exp(e™*4) = exp (—tdExp A).
The operator d Exp A is called the second quantization of the one-particle op-
erator A. For any ¢ € L? (¢) one can introduce the coherent state

oo

1
Expy = <n' g0®”> € ExpL? (o).

n=0

There is a canonical Wiener-Ito-Segal isomorphism between the spaces Exp L? (o)
and L? (7,) such that

Exp L? (0) 2 Expp — ex, (p,-) :==exp ((log (1 + ¢) ,) — (¢)o),
QO S D7§0 > 717

where (p), = [y ¢(z)o(dz) (see, e.g., [1],[8]). We denote by HY the image of
the operator d Exp A under this isomorphism.

Suppose that D C Dom A. Then one can introduce the extrinsic pre-Dirichlet
form with coefficient A on FP (D,T’) by

EL A (F,G) = / (VPF,AVG) , (o) T (7). (2.24)

T

Then the following equality holds

Er a(F,G) = (HAF,G) o . (2.25)
In the case when A is the Dirichlet operator H, which is given on D by
(Hop) (z) := —div, Vo (2) (2.26)
=—Ap(z)— (87 (z), Ve (x»Tz(X) )
we have
Hy =H (2.27)

on the dense domain FCp° (D,T).

3 Gauss Formula for the Space
of Configurations

In this section we give a proof of a variant of the classical Gauss formula for the
space of configurations 'y (cf. [13], [12]).

Let A be an open domain of X = R¢ and let I'y be defined by . If
A € O, (X) then one can define 72 by . In general case one can introduce
this measure by the formula:

d=r,0 (pa)~". (3.1)
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For any non-negative B(I'y) x B(A)-measurable function U we have Mecke
identity (see, e.g., [9], and note that (¢ @ 7)) {(y,z) |z € v} =0)

/FA Jvoteno @ @) - / J G t@). 62

In particular, for any G € FC° (D,I'), ¢ € L? (o) the following formula
holds

// Gy +en)p(@)o(d)md @)= [ GE)pnmd(d).  (33)

Ta

In the following we always suppose that the boundary A of A is piecewise
C'. By ns we denote the outer normal to A (at the point s € OA) . Let m be
the surface measure on JA corresponding to Lebesgue measure m. Set

o (ds) :=p(s)m(ds).
The following theorem gives an analog of the classical Gauss formula.

Theorem 3.1 (Gauss formula for Poisson measure). For any vector field V' of
the form the following formula holds

/ (diVL V) (v) 7 (d) (3.4)
Ta
:/ / <V(7+ss,s),ns>TS(X)5(d5)7r£(dv)_

T'a JOA

Proof. By linearity we see that it is sufficient to prove (3.4) for N = 1. Consider
V(v,2) =G (y)v(z), where v € Vy (X) and

G ()= g6 (1. ). (Whar, ) € FGF (D.T). (35)
Then by and
[ (@t vy @ = [ (95600 +6 ) diva o) m )
Ta Ta

N
:/F ((Zaaff<wl,7>,...,<¢M77>) (Voo 7) + G () <divgv,fy>) W(/,\ (dv)
A = %%
N
:/ / (Zag ¢1;’y+€z>,...,<1/}M7fy+5x>)vv,wj(x)_’_

+G(y+e,)divev (x)) o (dz) 7 (dv).

Denote for fixed v € '
a(z)=G(y+ez)v ().
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Then
(divy a) (z) (3.6)

N
= 3 () e (a0, 22) Vo () 4G 3+ 22) dive 0 (0).
j=1
By and the classical Gauss formula,
[ (@ v)@mtan = [ [ ave@otenv@)o s @)
FA FA A
— [ [ (G ey o ds) (@)
T'n JOA

— [ ] s o o s (@),
T'a JOA

O

Corollary 3.2. For any vector field V of the form and G € FCp° (D,T)
we have

/F (V1. V"G M)y, iy 7o ()
= [ [ GO+t nnmad i) @)
T'p JOA
- [ ) (@, v) (e )
Ta

Proof. Formula is a direct consequence of and Theorem |3.1 O
Note that (see (2.12)), for any F € FC°(D,T),
VE(y4e,)=VIF(y+eg,2), (3.8)
and let us set

0
%F(’Y +es) = (VF(y +es),ns)1,(x)- (3.9)

Proposition 3.3 (The first Green formula). Let F,G € FC;° (D,I'). Then
| (0. C (), oy 7 (@) (3.10)
A
= / (Hr, F) (1) G (y) g (dy)
Ta
0
[ Glorre) P e)s ds) b (@),
Ia JOA on

Proof. Formula (3.10) directly follows from Corollary [3.2)and formulas (3.8)) and
(3-9)- O
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Proposition 3.4 (The second Green formula). Let F,G € FC;° (D,T'). Then
| R 060 - FO) (G () w2 @) (311
— [ [ (FOtergmttte) -Gl gl +e)) o @)t (@)
Iy JoA

Proof. Formula (3.11]) is a direct consequence of Proposition O
Define (cf. (2.24)
Envm, (F,G) = /FA (VPF, HC,VPG)LQ(AJ) 7 (dy), (3.12)

F,Ge FP(D,T).

Note that the form is not symmetric and does not coincide with the
bilinear form of the operator H, I' in L? (FA, ) Nevertheless, one can prove
the following formula.

Proposition 3.5. For any F,G € FP (D,T)

EL u, (F.G) (3.13)

_ r — s7rA .
—/FAFw)(H%G)() (d7) + / /8 Gy + )5 (ds) 7 (dv)

Aan

Proof. By (3.3), (3.12), (2.22)), (2.26), (3.8)) and the classical Gauss formula

Ennm, (F,G) = /F (VPF HoVTG) oy oy o (d7)

=/F /A<F<v+am>—F<v>>-HU<G<v+em>—G(v))o—(dxmé(dw)
/F Fly+e0) = F (7)) - HoG (y +22) o (da) 7 (dy)

A JA
——/ | PG div, VG (+2,) o (i) 7 (a0
T'a
/ )-div, VG (v + &2) o (dz) 7 (dy)
T'a
7/ /divg (F(y+¢2) VG (v +ez)) o (dz) w2 (dv)
T'pa JA
+/FA/ <VFF(’}/+€m,x),VFG(’erer,:c»Tm(X)U(dx)ﬂ(/,\ (dvy)
[ Feo)sieGe s @)
T'p JOA

/ / (v+es) 8G(’y+€z)5(ds)7rf7\(dfy)
Ty JOA
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+ / (VI'F (7)), VFG(7)>TW(F) 2 (dv)

[ P gnae e s s a @),
Ta JOA
Now the assertion follows by Proposition O

4 Symmetric Extensions of H;U in ? (FA,WQ) .

Let D (A) := C° (A) be the set of all C*°-functions on X with compact support
in A. Define FCg° (D (A) ,I'p) as the set of all functions F' € FCp° (D, T's) of the
form on I'y with ¢; € D(A),j =1,...,N. In this section we study sym-
metric extensions of the minimal operator Hy  min := (H}: ,FC (D (A) ,FA))
which are defined by the same differential expression (2.19). Note first that
H, min is a symmetric operator in L?(T'p, ). This directly follows from
Proposition and the fact that for F € Cp°(D(A),T'a), s € OA

9 r
%F(7+SS> = <V F(’)/ +€S7S) ?nS>TS(X) = (41)

N
Zai S0177+58>7"'7<30N7’7+€S>) <VS0] (S)ans>TS(X) =0.

Define the maximal operator Hy  max by the standard relation
H7rc, max -— (H7rg min)*v

where ()" denotes adjoint in L? (FA, ) Note that H;_ max extends any
symmetric extension of Hr_ min.

Proposition 4.1. We have FC°(D,T'a) C Dom(Hx, max) and for any F €
FC(D,T)

(HepmsFY) = HEFY) + [ PO 2)atds). @2)

Proof. Tt follows directly from Proposition and (4.1) that for any F €
FC2(D,T'p) and G € FCP(D(A),Ta)

/F ((Hy F)(7)G(y) = F(7)(Hy G)(7)) W?(dv)

—— [ [ 66 guFr+ e atds) man),
r'a JoOA on
The latter relation implies (4.2]). O

Corollary 4.2. For any F,G € FC°(D,T'))
gw/\ H, (F7 G) = (Fa H‘n’,,,maxG)Lz(pA) . (43)
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Proof. Formula (4.3)) is a direct consequence of (3.13) and (4.2)). O
Remark 4.3. Suppose that
FCr(D(A),T) C FCFCr (D). (4.4)

Then obviously by Corollary- o max; ) 1S a symmetric extension of Hr_ min

if and only if (Eﬂ,\ H, ,]-") is a symmetric bilinear form.

In what follows, we describe a class of self-adjoint extensions of Hr_ min
which are defined by the standard differential expression (without any
additional term). Besides, we give a differential expression corresponding to the
Friedrichs extension of Hy_ min. We start with the following simple proposition.

Proposition 4.4. Suppose that the condition (4.4)) is fulfilled and (H};U,}") 18
a symmetric extension of Hy  wmin. Then for any F € F

/ EF (y4¢e5) 6 (ds) =0, for m2-a.e. vy €Ty
A on

Proof. Since Hy max extends (H};U,]:), the assertion follows from Proposi-

tion [4.11 O

In the following we will use the system of Charlier polynomials (see, e.g., [,
[8], [6]) which can be defined through the following generating functional

ex, (¢,-) = exp ((log (1 +¢) - Z [@Qna (#°7,1)

where ¢ € D, (p)on = [, ¢(x)o(dx). Note that the Charlier polynomials of
different order are mutually orthogonal in L? (ﬂé\) . More precisely,

/FA Qn,A (90(”)77) QA (1/}(’")77) w3 (dy) = n! 6 (w(")ﬂ/)(”))

¢ € DO y(m) ¢ pom

L2(An,o®n)

To prove the main result of this section we need the following simple lemma.

Lemma 4.5. Let m € N and ¢ € D,y € A. Then

Qo (92,7 +ey) = Qo (92™,7) + me () Q-1 (s0®(m’1),v) . (4.5)

Proof. For any z > 0 we have

N (zevtey) =1 +20)ed (z0,7)-

We can expand both sides of this equality into series

ZZnQn,A (@®n77+5y) 1+Z(p ZZ QnA y Y )
=0

and then a comparison of coefficients gives (4.5]). O
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Corollary 4.6. Let m e Nypo € Dy € A and s € OA. Then
VQua (67" +5,) =mVe (1) Quota (25" D9)  (46)
0
®m — ®
%Qm(‘p 7fy+€5) - <va,A (QD n;’Y+Es) )nS>TS(X)
0
—m ®(m—1) ) 47
mp @ (s) @m-1. (<p Y (4.7)

Let A be some subalgebra of D and D (A) C A. Define the class FP (A,T'y)
as the set of functions F' € FP (D,I'a) of the form on 'y, with ¢; € A,
j=1,...,N. The following theorem describes all symmetric extensions of the
operator (H- ,FP (D (A),I's)) which are given by the differential expression

(2.19) on the set FP (A, Ty).

Theorem 4.7. (HE ,FP(A,T,)) is a symmetric operator in L* (72) if and
only if (H,, A) is a symmetric operator in L? (A, o) and for any p € A

/8 9 () (ds) = 0. (4.8)

Aan

Remark 4.8. Under the assumptions of Theorem (H}:U ,FP (A, F)) is the im-
age of the second quantization of the symmetric (in L? (A, o)) operator (H,,.A) .

Remark 4.9. Tt directly follows from the proof of Theorem [£.7] that the “only
if” part of this theorem is valid without the assumption that A is an algebra.
We need only the inclusion D(A) € A C D.

Remark 4.10. It follows from the classical Gauss formula that the condition
(4.8) is equivalent to the condition

/A (Ho) () o (dz) = 0. (4.9)

Proof. First suppose that (HJ,.A) is a symmetric operator on L?(A,o) and
for any ap € A the condition is fulfilled. For ¢,9 € A consider F =
Qr.A ( ,7) G=Qmna( w®m,’y) (since A is an algebra, F,G € FP (A,T4)).

By ([.5), (£.7) and . we have
0 -
/ Qur (9557 + €4) o= Qua (65, 7 + £,)5 (ds) 72 (d)
Ta JOA on
=m s Qi (9% )Qm 1A (1/1@’("’ D 7 A(dy) / 8n 5) 7 (ds)

+km - Qk—l,A (sﬁ®(k D 7’)’) Qm— 1,A (7/1®(m b ’Y) c/;\(d’Y)

0 5 1 0 .
X /{Mgp(s) a—nw (s)G (ds) =k - k! Opm (%1/))122(,\’0.) /{M (s) yw(s)a(ds)

n

12
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and analogously

So, by standard Green formula
®Fk 9 @m ~ A
Qk,A (QD Y + Es) ?Qm,A(d] Y + ES)J (dS) To (d’Y)
'y JoA n

0 -
—/ Qo (V2™ 7 +¢5) a*Qk,A(Sﬁmy’Y +e4)6 (ds) ) (dv)
T'a JOA n

oA

= kb (. ity [ (06) 50 (9= 0 (6) 5o (6)) )
(

Then by and we have
/F (HE.F) (1) G (7) - F () (HE.G) (1)) 72 (dy) =0 (4.10)

By standard arguments it follows that (H}:U,]:P (A, FA)) is a symmetric
operator in L? (2.

Conversely, suppose that (H};ﬁ,fp (A, FA)) is a symmetric operator in

L?(m}). Let 9,9 € A Then Qi (v,7) = (9,7) = (P)ons Qra(W,7) =
(7)) = (¥),n and Qoa = 1 (see, e.g., [§]). By the same arguments as in
the first part of this proof

0 =/F (HE.Qua (9,7) Qua (¥,7) — Qua (0,7) (HE Qua (¥,7))) 7l (dv)

~ [ Qe [ S @)

Ta

O 4 (s)5 (ds)

A
+ . Qo,AQoaT, (dv) /(91\4?(5) an

\ o .
[ @@ Qo [ e

= [ (0 gt )= 0(5) grps)) ).

So, by the classical Green formula (¢, How)LQ(A’U) = (H, o, w)LQ(Aﬁ)
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By ([2.19) and (2.26]) we see that H};UQLA (p,v) = (Hy,7) , and H};U QoA =

0. So, by B.3)

0= /r ((HE Q1.4 (9,7)) Qoa — Q1,4 (0,7) (Hy. Qon)) T (dv)

0

= [ e an = [ Hoowom) = [ Towaan.

O

Theorem 4.11. Suppose that (H,,A) is an essentially self-adjoint operator
in L* (A,0). Then (HL ,FP(A,T'x)) is an essentially self-adjoint operator in
L? (FA, ﬂ'ff\) if and only if for any v € A condition is fulfilled.

Proof. The result follows immediately from Theorem [£.7] Remarks [£.§ and the
fact that the second quantization of an essentially self-adjoint operator is an
essentially self-adjoint operator in the corresponding Hilbert space. O

Denote by Dy the set of all functions from D satisfying the Neumann bound-
ary condition 8%90 [oa= 0. Clearly, Dy is a subalgebra of D. The following result
is an important special case of Theorem

Theorem 4.12. Suppose that (H,,Dn) is an essentially self-adjoint operator
in L? (A,0) . Then (HE ,FCp° (Dn,T'a)) is an essentially self-adjoint operator
in L2 (FA, ﬂf,\) Moreover, the closure of this operator coincides with the second
quantization of the closure of (Hy, DN) .

Let us give another simple example of an operator satisfying the conditions
of Theorem E.11]

Ezample 4.13. Put X =R, A = (0,1) and o (dz) = dz (the Lebesgue measure
on R). Then (H,¢) () = —¢" (). Then (4.8) is equivalent to the condition

¢ (1) =¢"(0).
Define A := {¢ € C%[0,1] ¢ (0) = ¢ (1),¢' (0) = ¢’ (1) } . Then the operator
(f%,fl) is essentially self-adjoint in L?((0,1),dz) and the conditions of

Corollary are fulfilled. Note that for a general domain A with a bounded
piecewise C! boundary H, is a symmetric operator on the algebra

A ={p € D]y satisfies ([£.8) and ¢ [ OA = ¢ (p) = const }

in L2 (A, o). (This fact directly follows from the standard Green formula).

To end this section, we shall present an explicit formula for the action of
the Friedrichs extension H}:m p of Hy_ min on smooth cylinder functions. By
Dp denote the set of all functions from D satisfying the Dirichlet boundary
condition on OA and let H, p be the Friedrichs extension of (H,, D(A)). The
following proposition gives a formula for the action of H}:m p on the smooth

cylinder functions.
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Theorem 4.14. Suppose that (H, p,Dp) is an essentially self-adjoint in L? (A, o).
Then the closure of the operator (H}:U’D,.FP (DD,FA)) defined by the differen-
tial expression for F = gp ({(¢1,),--.,{pn,)) € FP(Dp,T)

(Hr, pF) (7) = (4.11)

N
) 0)+ Y 2 (Grnhoee o) [ G205 (s,

coincides with the Friedrichs extension of Hy min in L? (W{,\) .

Proof. First, we recall that, for F,G € FP(D(A),T)
(Hy F,G)r2(ray = (Hfy F,G)r2(ns).

Here Hf; is the image of the second quantization of the symmetric (in L?(A))
operator (H,,D(A)). Therefore, the Friedrichs extension HX _.p of the mini-
mal operator Hr_ min is the image of the second quantization of H, p. In par-
ticular, (H}:mD,]:P (Dp, FA)) is essentially self-adjoint in L? (71'9) . Therefore,
we only need to prove . This, however, directly follows from Proposi-
tion and the operator 1nclu51on Hr min C HF p C Hm max- (Note that for
F e .7:73(DD, I'p) the differential expressions and 1)) coincide). O

5 Gibbsian case

Consider a function ¢ : R — R U {+o0}, such that ¢ (—x) = ¢ (). For any
Ae O, (]Rd) the conditional energy Ei : ' - RU {400} is defined by

EL(7) = B2 (ya) + W (7alvac) (5.1)

where

W)= Y. dl@—y) (5.2)

TEYA, YEVAC

describes the interaction energy between v5 and e (A€ := R\ A) and

Ef ()= Y d@—y (5.3)

{z,y} €

is the conditional energy corresponding to A.
Consider for any v € T, A € B(I)

M08 =1 O [ZR ] [Mataevin) G

xexp B (1ac Uyia)| mn (1)
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where
28 )= [ exp [<Bf (e )] o (0. (5.5)

A probability measure g = p? on (T, B(I)) is called a grand canonical Gibbs
measure with potential ¢, or Ruelle measure, if for all A € O, (X) and A € B(I)
the following Dobrushin-Lenford-Ruelle equation is true

[ G ) = (). (56)
For any 7 = (r1,...,74) € Z¢ consider the cube
1 1
Qr = {IGRCI T12S$i<7’i+2}

and for any v € I' set v, := vg,. Let A,, be the cube with side length 2n — 1
centered at the origin in R?. In what follows we shall always assume the following
conditions on the interaction ¢.

(SS) (Superstability). There exists A > 0, B > 0 such that if v € 'y, then

ER (=Y (All* = Bhi).

rezd

(LR) (Lower regularity). There exists a decreasing positive function a : N — R

such that
> a(lrl) < oo,
rezd
and for any A’, A” which are each finite unions cubes of the form @, and

disjoint, and all v/ € A’, 7" € A",

W& 2= > allr ="l -

T/,’I‘HEZd
Here ||-|| denotes the maximum norm on R¢.

(D) (Differentiability). e=¢ is C! on R%, ¢ is C' on R?\ {0} and the gradient
V¢ satisfies the condition

Vo e L (]Rd7 ef‘ﬁdm) N L? (]Rd, e”bdm) .

(C) ¢ has compact support.

Remark 5.1. The assumption that e=? is C* on RY, ¢ is C' on R?\ {0} was
made only to avoid purely technical complications below. Weak differentiability
would have been enough.
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For any v € Vp (X) consider the function:
Li(y) =~ Y (Ve —y),v(@) —vy)px)-
{z.y}cy

It is well-known that under the assumptions above ¢, L € L? (T, i)
Set
By (7) := LY (7) + (dive, 7).

Then the following integration by part formula is true:

/F (VLF) ()G (7) p(dy)

_ / F(7) (V5G) () p(dv) - / F ()G (7) BS () (d)

for any F,G € FC° (D,T).
For any vector field of the form ([2.15)) set

N
div;, V:= > (V.. Fi+ By F)).

i=1
Then obviously for G € FCy° (D,T)
divy, (GV) = Gdiv,, (V) + (V"G, V) -

Then this divergence is dual to the gradient V! w.r.t. p :

T _ .. T
/F<v F.V) iy d ——/FFdw# Vdp.

Set

r._ s Lol
HY = —div}, V'

Then for any F,G € FC° (D,T)
/ (VIE,VYG) iy dpe = / FH),Gdp.
r r

Let A € O, (Rd). Set pp = pu® Opxl. First of all note that

ZZ (Vo (z—y),v (@)1, (x)-

xTEYy yE’Y

Let € A. Then for pp-a.e. v €Tp 1z ¢ v and

El,(v+e)= Y, o()= > o(7)

~/ Cyu{x} v Cyu{z}
A ({2 })>0 |/ |=2
' ({z})>0

= L? (n).

(5.8)

(5.11)

(5.12)
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Then by the Nguyen-Zessin identity (see [10])

/ / h (7, 2) 7 (dz) jua ()

T'pA JA

:/ / By + eayz) e P 0T () iy (dy)
T'a JA

:/ /h(7+€x7x) e @) m (dz) i (dvy) .
T'pa JA

Theorem 5.2 (Gauss formula for the Gibbsian case). For any vector field V
of the form (2.15) we have

[ (@ v) @ () (513)

:/ / (V (7 +e5,8) ), (xy € 7700 (ds) pa () -
T'p JOA

Proof. Clearly, it is sufficient to prove ([5.13)) only for a field of the form
V(3,2) = G () v ().
Then

(@ v) @ (@

:/ / iaﬁ(wjl YA €x) s (UON, Y+ €2) Vorby () + G (v + ;) dive (z)
Tpr JA jzlaqj ’ T/ ’ ’ x v¥j -

yeyU{x}
y#x

~G(y+es) . <V¢<x—y>,v<x>>w)} ™I (da) pa (dy)

(see the beginning of the proof of Theorem [3.1)).
Set
a(x) =G (y+ep)v(x)e @M eV (X)

(for pp-a.e. vy € Tp :x ¢ 7). Then
(diva) (z) = e~ (e(z=)7)
X [ VG (74 20) + G (7 +22) (dive) () = G (7 +2,) Vo (6 (@ =), )] -

Obviously,

M oG
D g WLy Feah s Uy +62)) Vot (1) = VoG (1 +20),

j=1 "

Z <v¢ ($ - y) y U (‘Z)>TT(X) = vv <¢ ({,E - ) 7’7> )

yey
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and hence
/FA (le V) ) pa (dy) = /FA/ (diva) (x) (dz) pa (d)
/FA /8A )1, (x) M (ds) pa (dv)
:/PA/8A<G(’Y+EI)U(S),TLS>TI(X)€ (p(s— 7 (ds) ua (d)
- FA/BA<V<7+€S’S)’nS>TI(X)€ ($(s—  (ds) ja () -

O

Proposition 5.3 (The first Green formula formula for Gibbsian case). For any

F,G € FC* (D,T)
/rA (VEF (), VEG (M), py i () (5.14)
- [ HER GG @)
" /rA jn O e a%F(’V +eg)e” T (ds) pa (dy)

Proof. Formula (5.14]) directly follows from (5.10)) and Theorem O

Proposition 5.4 (The second Green formula formula for Gibbsian case). For
any F,G € FC* (D,T)

[ UER 060 - FO @G () m@)  615)

//3A< (12 3,61+ <)

G 20) gl 22) ) e i ) o ()

Proof. Formula (5.15]) is a direct consequence of Proposition O

As in Section 4, one can define the minimal operator H,, min := (H),, FC;°(D(A),T's)).
It directly follows from Proposition that H,, min is & symmetric operator in
L?*(Tz, pa)- Define the maximal operator H, max by

Hu, max ‘= (H;,L, min)*7

where ()" denotes adjoint in L2 (T'a, pip) -
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Proposition 5.5. We have FC°(D,T'x) C Dom(H, max) and for any F €
FCP(D,Ty)

(Hy ) (1) = (HYF) (4 / Fly+ £2)e=@6=) 7 (ds).
8A

Proof. The proof is analogous to that of Proposition 1] O

Let us give two examples of symmetric extensions of H,, win corresponding
to Neumann and Dirichlet boundary conditions, respectively.

Proposition 5.6. (H), FCy°(Dy,T')) is a symmetric operator in L*(Tx, jin).
Proof. The proof directly follows from Proposition O

Define the operator

N

(HE o F)0) = (HEY )+ 30 2 ((pnabs o fonen)) [ o (o)e @600 ),

=1 ' A on
(5.16)
Clearly, formula (5.16]) is a Gibbsian analogue of (4.11)).

Proposition 5.7. HED is a symmetric extension of H, min. Moreover, for
F,G e FC*(Dp,T'r)

(HY ,F.G) = / (VT F(), V' GN)z, (rx) (). (5.17)

Proof. Tt follows from Proposition ) that H, min C H pC H, max. More-
over, it is easy to see from that H I plisa symmetrlc operator. Equality

(5.17)) follows from ([5.14)). O
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