Symmetric differential operators
of the second order in Poisson spaces
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Abstract

We study symmetric differential operators of the second order in Pois-
son spaces.

1 Introduction

Recently [4] we have proved an analogue of the classical Gauss formula for the
configuration space I'y over a domain A of R? and have studied symmetric
extensions of the corresponding Laplacian on I'y. (We refer to [1], [2], [6], [8]
for the basis notions of analysis and geometry on configuration spaces.) The
purpose of this paper is to extend some of the results of [4] to the case of general
second order differential operators.

The article is arranged as follows. In Section 2 we present some well-known
facts on second order differential operators in L? (Rd). In Section 3 we construct
the second quantization of a closable operator and define symmetric second order
differential operators H fﬂ and Hf;A in L?(T', 7,) and L? (FA, W?) respectively.
Here 7, is the Poisson measure with intensity ¢ and 7r£ is the restriction of 7,
to I's. In Section 4 we prove an analogue of the classical Green formula for H fg.
It gives the possibility to describe symmetric extensions of the corresponding
minimal operator in L? (I'y,7}) (see Section 5).
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2 Differential operators of the second order
in 1” (R, o) .
Let A be the second order symmetric differential expression of the form

d

(Af) (@)= ) 53%‘ (ajk (x) 97 (x)) +e(x) f(z), (2.1)

Jk=1 Oy,

where aj, € C? (R?),c € C(R?) and ajr = ax; (all the functions aji,c are
assumed to be real).

Let A be an open domain of R%. In the following we always suppose that
the boundary A of A is piecewise C'. Let /m be the surface measure on OA
corresponding to Lebesgue measure m on R%. By n, we denote the outer normal
to OA (at the point s € A) and for any f € C* (A) we consider the co-normal
derivative

of
on®

(s) := Z ar (s) ng (s)cos (ns,si), s€O0A. (2.2)

d
jik=1 J
Let us introduce also the bilinear form

d
a(u,v) (x) := ajr (x) 887“ (x) ;—;k (x), u,veC? (Rd) . (2.3)
j.k=1 J

Consider a C'-density p > 0 on R, Set o (dx) = p (x) m (dz), then o is a non-
atomic Radon measure on R?. Let & be the surface measure on dA corresponding
too

o (ds) = p(s)m(ds).

It’s easy to see, that for any f,g € C? (Rd)

(Af) @) g (@) -  (2) (A9) (2) ) o (d)
L. )
= [ (t@atemp) @) =g @) a(rlnp) @) o (da).

Then let us construct a new differential expression A, which acts on the smooth
function f on R? as follows

(Ao f) (z) := (Af) (z) +a(f,Inp) (z). (2.4)
It defines the second order symmetric differential operator:
Cs (RY) > f = (A f) € L? (o),

where LP (o) := L? (R%,0).
In the following we always suppose that

ce L*(o)NnL' (o). (2.5)



Definition 2.1. Introduce a class of smooth functions, which are equal to
constant outside some compact set:

ICo := linear hull of {1,CF (Rd)}. (2.6)

The following proposition is a variant of well-known integration by part
formula.

Proposition 2.2. For any f,g € Ko the following statements are true:
1. {A,f, Asf g} € L?> (o) N L (o).
2. (Aqf, g)m(g) =/, Aag)L2(o) :
3. (The first Green formula)

/ (A, f) (2) g (2) o (dz) = / ¢(2) f (2) g (z) o (dz)
A

A

+ / a(f,g) (2o (dz) +

4. (The second Green formula)

/A (Ao f) (x) g (x) = [ (2) (Asg) (x)) o (dx)

R CRICEC ) EC RER

3 The image of the second quantization opera-
tor in Poisson spaces

Let (B, D (B)) be a closable operator in a real separable Hilbert space H with
a dense domain D (B). Define the Fock space as follows

ExpH := éExan = é?@”, (3.1)
n=0 n=0

where Exp, H := R. Consider an operator <B("), (D (B))®n) in Exp, H,n € N,

such as
B™:=B®1...914+1®B®1...01+...+1®...91®B, (3.2
and set B(Y) := 0 in Exp, H. Let

Expy,, (D (B)) i= {(fo,...,fk,o,...) fi€ (D(B))®j,j:o,...,meNo},
(3.3)



where Ny := NU{0}. Define the second quantization d Exp B of the operator B
as an operator on the dense domain Exp;, (D (B)) in ExpH such that

dExp B | Exp,, H = B"™ n € Ny. (3.4)
Proposition 3.1. The operator (d Exp B, Exp s, (D (B))) is closable in ExpH.
Proof. 1t’s easy to see that for any n € Ny D ((B("))*) is a dense domain in
Exp,, H. O

In the following we retain the notation d Exp B for the closure of this oper-
ator.

Set ‘H := L? (o) and suppose that D := C§° (RY) € D(B) c C> (R?).
There is a canonical isomorphism between Exp L? (o) and L? (I', 7,) =: L? (7,)
(where I := T'ga, 7, is a Poisson measure with intensity measure o) such that

Exp, L? (0) 3 ¢®" — Qy (¢®",) € L*(1,) o € D C D (B), (3.5)

where Q,, (¢®",-) is a Charlier polynomial on I" (see [1] , [4] for details). Let
HE be the image of the operator d Exp B under this isomorphism. The proof
of the following proposition is analogous to that of Theorem 5.1 of [1].

Proposition 3.2. For all F,G € FP (D,T) the following formula holds

/F(HEF) () - G () 7o (dv)
_ /F [ BYPF(.2)- V76 (1.2)0 (da) m, (d7). (36

Note that FC3° (D, rcbhb (H }; ) and by standard approximation arguments
one can extend (3.6) on F,G € FC* (D,T) (see, e.g., [1]).

Set now ‘H := L? (A, o) and suppose that D (A) C D (B) C D, where D (A) =
Cg° (A). We consider the canonical isomorphism between Exp L? (A, o) and
L? (I‘A, 7rf,\) such that

Exp,, ? (A, o) 2 %" QnA (<p®", ) eL? (’/Tf_,\) , (3.7

where Qa , (p®",) is a Charlier polynomial on I'y. Denote by Hg’A the im-
age of dExp B under this isomorphism. Clearly (cf. (3.6))) for any F,G €
FCF (D, Ty).

[ (5 F) () 60w a)

= /F /ABVPF (v,z) - VPG (v, z) o (dx) 71'(17\ (dv). (3.8)



Suppose that the operator B is associated with the differential expression
Ay
Bf:Aafa fGD(B)

In this situation we’ll write H; and H4" instead of H} and Hp™, respectively.

Let F' € FC© (D,T), i.e.,

F(’Y) =gr (<9013/7>7"'7 <(10N7’y>)’ (39)
Pj €D7]:175N59F ECI?O (RN)a

where Cp° (]RN ) is the set of all C*°-functions g on RY such that ¢ and all its
partial derivatives are polynomially bounded. Set

S 0

Fr(3) = G (fom) o bom ) 1S P < N, (3.10)
. 0?
Fr,s (7) = aq %Fq (<90177> 3 vy <<)0N57>) ’ 1 S r,Ss S N. (311)

The direct calculation gives the next result:

Proposition 3.3. For any ' € FC;° (D,T) the following formula holds

Frg (v +e0) alpr ps) (@)

AF (y+e,) =

WE

w
Il

T7

2

+ Y Fr (v + ) (Apr) (2) +a (o, Inp) (2) — ¢ (2) o1 (2)

r=1
+F(y+e)c(x).

Remark 3.4. 1. By (3.9) for any function ' € FC;° (D,I') and for any v € T

we have
F(y+e)€Ks. (3.12)

2. Note that when we write, for example, A, F () we mean that the expression
A, acts on constant F (v) as on the constant function of x € R%. But we can
also consider the action of the expression A, on function F () as function of
some x € v when others point of v are fixed. In this situation we will write
(As), F (7),z € 7. It’s easy to see that for any = € v

N
(Ao F() = 3 Brs () a(or 0s) (@) (3.13)
r,s=1

N
+)E () (Aopr) (@) +a (o Inp) (@) = ¢ (@) pr (7)) + F (7) ¢ (2).



Proposition 3.5. For any F' € FC;° (D,T) the following formula holds

(HA,F) (v) = ((A6). F (7) ,7) = {F (v =) e(),7)

—/ F(’y+5z)c(z)o(d:c)+F(*y)/ c(x)o (dx).
Rd

Rd

Proof. By (3.6), Proposition 2.2 and the Mecke identity we have
[ HE ) 0)-G ()7 (@)
= [ [ AP+ -G+ enatdn) m (@)
//RdA F(1)-G (1 +2) o (de) my ()
—//RdA F(y+e4)- G (7)o (do) mo ()

//RdAF o (dx) 7y (d)
//Rd<z Frs(v+e2) alpr, @) (z)

r,s=1

+ ZF Y+ e2) (Asor) () + a(@r,Inp) () —

r=1

+ F(v+€x)0(rc)> G (v +es) o (de) o (dy)

//Rd G (v + ;) o (dx) 7y (dy)
7//]1@ (7 +ez) c(2) G (7) 0 (dw) 7o (d)

+[ [ Fo o (da) o ()

/(Z Frs () (a(¢r,05),7)

r,s=1

+ Z Fr () (Agor + a(pr,In p) — @rc, )

+ F(7) (e,7) G (7) 7o (dv)

_ /F (F(y—2)e(),7) G () mo (d7)

(3.14)

c(@)¢r (2))



7/1“ (/RdF('erem)c(z)U(dI)> G (7) 7o (d)

s (Fo) [ o) 6o @),
So, by (3.13) the proof is fulfilled. O

Proposition 3.6. For any F,G € FC;° (D,T's) the following formula holds
(HEAF) () = (40). F (1), 7) = (F (=) e (),)

- [Fatedc@otin+FO) [c@ot) g

A

0
F ) a (ds).
[ () 5 (ds)

Proof. The proof is analogous to that of (3.14). O

4 Green Formulas

We start with the so-called second Green formula:

Proposition 4.1. For any F,G € FC;° (D,I's) the following formula holds
| (wEre)-60)-Fa)- (15.6) w)) ) (@)
A

0

:/ /( aF(v—&—ss)-G(v—kES)—F(v—kes- 'y+55)
T'a JOA on

A

_/FA/Rd\A(F(7+5x)G(7)—G(7+gm)p(7)> (@) o (da) 7 (d).

Proof. By (3.14)), (3.12) and the Mecke identity we have



—/W/FwanW+%wwwﬁww

T'a JA

—t/‘ F(y+22) G (7) e (x) o (dz) 7 (dy)
T'p JRA

and from the corresponding formula for fFA F(v)- (HY G)(7) 7 (dy) one has

/FA ((HX,F) (v)- G (y) = F (7) - (HA,G) (7)) 75 (dv)
- /FA/A(A"F(’Y“””) (Gv+es) = F(y+en) 4,G (v +e)) o (d) my (dv)
/FA/A(F(W)G(Hex)G(V)F(ng))C(I)g(dx)ﬂg(dw
_/FA /R (FO+2)G0) =Gy +2) F() e(@)o (dn) 7 (d)

So, (3.12) and (2.8) imply the statement of proposition. O

Let us consider for any F,G € FC;° (D,T'y) (F has the form (3.9) , G has
the analogous form G (v) := ga ({(¢1,7) , ..., (¥ar,7))) the bilinear form

>

N M
a" (F,G) (v) =YY F; () Ge (7) (a(95,9%) ,7) (4.2)

j=1k=1

<

and the corresponding (pre-)Dirichlet form:

&y (RG) = [ o (R.G)(0)m (@). (13)
A
In the following we always suppose, that
c=0on R4\ A. (4.4)
Using this condition we can prove the so-called first Green formula.
Proposition 4.2. For any F,G € FC;° (D,T's)

6&MR®:/'w2mw»mwﬁww
IN

- [ @Ry e)-6 0w @) (45)

P
—/ Fy+e0) Gy +20) 5 (ds) 7 (dr) |
r, Joa On°

where we understand ¢ as the operator of the multiplication on the function ¢ ()
in L? (A, 0).



Proof. We have for any F,G € FC (D,T )

/FA (HA,F) (7) - G (v) 75 (dv)
AgF (v + ) - G (v +e5) o (da) 7l (dy)
F(7)e(2)G (v +e,) 0 (dx) m) (dy)
F(y+e:)G(y)e(x)o (dz) mp (dy)
(M) G (7) e () o (da) wy (d)

a(F(v+e2),G (v +er)) o (dz) wl (dy)

_|_
;\

— — T T T
!

¢(2) VPF (3,2) VPG (7,2) o (da) 7 (dv)

0
+ P (y+2) Gy +2,)6 (ds) (d).
s Joa On
Next, by Mecke identity one has
| [ertre) carenomntan = [ o (R.6) )7 @),
FA 1—‘A
so, by (3.8)) we have

/F (HY F) () -G ()7 (dv)

A (4.6)

/r/aAc’)n“ (v + ) G (7 +4) & (ds) my (dy) -

O
5 The symmetric extensions
of the minimal operator
Let us consider the minimal operator:
Huin == (HY ,FC° (D(A),Th)). (5.1)

9



By the first Green formula the operator Hy;, is symmetric in L? (T ) . We define
the maximal operator by the standard way:

Hmax = (Hmin)* . (52)
We can formulate the following proposition

Proposition 5.1.
FC° (D, TA) C D (Hpax)

and for any G € FC;° (D,T'y)
HuaxG = HYG.

Proof. For any F' € FCp° (D (A),Ty),G € FC (D,I's) we have

/F (HuinF) (1) - G () — F (7) - (HE.G) (7)) 7 ()

:/ /aA (aiaF(’Y+Es)-G(7+€s)—F('y+gs).aiaG(,y_i_es))&(ds)ﬁg(d’y)

0 )
—— [ FO) [ nGO+e) s n ).
I oA ON
Hence G € D (Hpax) and by (4.4)

HoueG = (H.G) (1) = [ LGy 4205 (ds) = HEAG (7).

an On?
O
Therefore we have the following inclusion
Huin € HY™ © Hiax. (5.3)

Suppose that A be an algebra, such that D(A) C A C D.
Remark 5.2. If the operator (A,,.A) is symmetric in L? (A) , then (Hi;A, FP (A, I‘A)>

is the symmetric extension of Hy, in L2 (T'y) .

To describe symmetric extensions of Hyyi,, which are defined by the differ-
ential expression H fa, we start with the following simple proposition.

Proposition 5.3. Suppose that
FCF (D(A),Tpy)C FC FCF (D,Ty)

and (H£o7.7:) be a symmetric extensions of Huyin. Then for any F € F

0 F(y+es)5(ds) = 0. (mod 72)
A on®




Proof. Tt’s easy to see from (5.3)) and the fact, that the symmetric extension of
Hyin is the symmetric restriction of Hyax. O

Now we can formulate our main result.

Theorem 5.4. The operator (Hfa7fp (A,Ty)) is symmetric in L* (L) if and
only if the operator (A,, A) is symmetric in L? (A) and for any ¢ € A

/ 0 v (s)a(ds) =0. (5.4)
0.

A on@

Moreover, in this case
(HE FP(ATN) = (HEN FP(ATY)).

Proof. Suppose that the operator (4,,.4) is symmetric in L? (A) and for any
¢ € A the condition (5.4) is valid. For ¢, € A consider F (7) = Qun.a (¢%™,7),
G(7) = Qm.a (v®™, 7). By (4.1) and condition (4.4) one has

(HEUF’ G)L%r?) - (F’ HEUG)Lz(ﬂg)

bt [”aiag"(s) Y )
X (vaA (V™) +map (5) Qm—1.a (¢®(m_1),7>)

- (Qn,A (#%",7) + 1 (s) Qn-1, (w@’("‘” , 'y))

3(Za¢ (8) Qm-1.a (¢®(m_1)77)] & (ds) 72 (dv)

=n . Qn—l,A (@®(n71)av> QM,A (¢®ma’>’) 7T(17\ (d’}/)
A

X m

wnm | Qn-1, (so®(”‘”,v) Qm-1,A (z/}@“"‘”,v) w5 (dv)

O ()1 (s)5 (ds)

A 8na

-m . Qn,A (QD®TL7’V) mel,l\ <¢®(m71)a’7) 7T</7\ (d’}/)
A

X

11



by (2.8) and condition (5.4).
Next, we have by (3.14), (3.15) and (4.4)

0
5 - F (v +es)a(ds)
oA

= 1Quan (¢7000) [ ST -

A on@

(HE, F) () = (HEAF) () =

by condition (5.4)).

Conversely, let the operator (Hﬁa,fp (A, FA)) be symmetric in L? (T'y).
For any ¢, € A consider the functions F'(v) = Q1,4 (¢,7) = (¢,7) — (P)ya
and G (7) = Qu.a (¥,7) = (¥, 7) — (¥) 45 - Then F,G € FP (A,T}). Clearly,

Qi (0, 7) 7 (dy) = | Qua (¢, 7) 72 (dv) = 0.

T'a

By (4.1) and (4.4) we have

0_/FA/5»A(5'H“ (Qua (W, 7) + ¢ (9))
Q) 49 (0) v (5)) & ()

— [ ()00~ p(0) () o )
= [ (o0 @) 4 )~ 0 0) - (Ao0) ) ().

Now set for any ¢ € A F(y) = Q1.4 (¢,7),G(7) = Qo,a = 1. Then by (4.1)
and (4.4) one has

0 - -
0—/FA 5A6‘n“ @ (s)5 (ds) 7 (dy) = / 5 s) o (ds).

O

Example 5.5. The simple example of such algebra A is the algebra Dy of func-
tions, which satisfy Neumann-type boundary condition:

B
5 ¥ (s)

=0, s€0N, ¢ €EDy. (5.5)

It’s easy to see that for any F' € FCp° (Dnr,I'a),G € FC (D,T'a)
& (F.G) = / (HE F) (1) - G (7) 7 (dv)
A
- / (HPAF) (7) - G (7) 7 (dr).
A

12



Corollary 5.6. Suppose that (A,, A) is the essentially self-adjoint operator
in L? (A). Then (HY ,FP(A,Ty)) is the essentially self-adjoint operator in
L? (T'y) if and only if for any ¢ € A the condition (5.4) is fulfilled.

Proof. The result follows immediately from Corollary [5.4l and the fact that the
second quantization of an essentially self-adjoint operator is the essentially self-
adjoint operator in the corresponding Hilbert space. O

Now we find the explicit formula for the action of the Friedrichs extension of
Hpin on the smooth cylinder functions. Denote by Dp the set of all functions
from D satisfying the Dirichlet boundary condition on OA and let A, p be the
Friedrichs extension of (A,,D(A)). The following proposition gives a formula
for the action of H EG,D on the smooth cylinder functions.

Theorem 5.7. Suppose that Dp is an essential domain for A, p. Then the
closure of the operator (Hfﬂ . FP(Dp, I‘A)) defined by the differential expres-

sion

(HX, ,F) (7) = (HY,F) (7)

5.6
_ZagF Q017 y. SDNv / 8na¢j ( ) ( )

coincides with the Friedrichs extension of Huyin in L? (T'A) . Moreover, for any
F .G e FC;O (Dp,TA)

& (1.6 = [ (HELF) () GO)nd )
Ta
- [ AR ) Gy (@),
JUN
Proof. First, we recall that, for F' € FP(D(A),T'y)
HY F=H'F
and we can consider H A as the image of the second quantization of the

symmetric (in L2(A)) operator (As,D(A)). Therefore, the Friedrichs exten-
sion H fo , of the minimal operator Hp;, is the image of the second quanti-

zation of A, p. In particular, FP(Dp,I's) is an essential domain of HEU‘D.
So, the assertion directly follows from Proposition 5.1, the operator inclusion
Hpin C Hfﬂ  C Hpax and the fact that for F € FP(Dp,Ty)

HY F=HY"F = HyaF.

The last statement is a direct consequence of (4.5). O

13



Remark 5.8. Note that for any F' € FC;° (D,T's), G € FC;° (Dp,Ty)

& 4 (1.G) = [ (HuusF) (0)- G )2 ()

T'a

_ /F (HPAF) (7) - G (7) 7 (dy) -
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