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Indecomposable Homotopy Types with at most two
non—trivial Homology Groups

Hans—Joachim Baues and Yuri Drozd

ABSTRACT. We classify indecomposable spaces in the stable range with at
most two non-trivial finitely generated homology groups.

It is a classical result of Brown—Copeland [BC] and Eckmann-Hilton [EH] that
a l-connected homotopy type X with at most two non trivial homology groups
H,X = A and H,X = B,2 <m < n, is a mapping cone of a map

(1) kx : M(B,n—1) — M(A,m)

Here M (A, m) denotes the Moore space with homology A in degree m.

Let p be a prime and let Z(,) C Q be the smallest subring of Q containing
1/q for all primes ¢ # p. We consider finitely generated Z ;-modules A and B in
the stable range n < 2m — 2. Hence X is a p-local space with at most two non—
trivial homology groups in a stable range. Then the homotopy type of X admits a
decomposition as a one point union

(2) X~XV...VX;

where all X; with 1 < ¢ < j are indecomposable and this decomposition is unique
up to permutation. We classify in this paper the indecomposable summands in (2).

THEOREM (A). Let A and B be finitely generated free Z () —modules. Then the
classification of indecomposable summands in (2) is

finite  if m,_1(S™) ® Ly is cyclic,
tame if Tp_1(S™) Q@ Ly 2 Z/p® L[p*,k > 1, and
wild  otherwise.

Here mp,_1(S™) = wf_,,_1 is given by stable homotopy group of spheres since
we assume n < 2m — 2. For example the wild case appears forn —m -1 =9
since 7§ = Z/2® Z/2® Z /2 and tame cases appear for n —m — 1 = 8,15 since
78 =Z/2®Z /2 and 7§, = Z/2® Z [480. The proof of theorem (A) is based on the
representation theory of matrices with entries in a fixed Z —module M. For the
finite and tame cases we describe the indecomposable summands explicitly.
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The space X in (2) is (m — 1)—connected and we write conn(X) = m — 1 if
H,, X # 0. Moreover if H,X # 0 the p-local dimension of X is

We say that X is trivial if X is a one point union of Moore spaces or equivalently
if kx in (1) is null homotopic.

n if H,X is a free Zy-module
n+ 1 otherwise

THEOREM (B). Let A and B be finitely generated Z(y,—modules and let
dim(,, (X) —m < 4p — 5. Then the classification of indecomposable summands
in (2) is

tame ifn—m=2p—2,
essentially finite ifn—m=2p—3,2p—1, and
trivial otherwise.

For odd primes p this result can be deduced from the more general result of
Henn [H]. For the prime p = 2 and dim(,)(X) — m < 2 the result is due to
J. H. C. Whitehead [W1] and Chang [Ch]. Therefore we give a proof only for
the highly sophisticated case p = 2 and dim(;)(X) — m = 3. This case was also
treated by Baues—Hennes [BH]; see also [B1] and [B2]. Our approach here using
representation theory yields a new proof and confirms the intricate computation in
[BH].

THEOREM (C). Let p = 2 and let A and B be finitely generated Z [2—vector
spaces and letn = m+3 > 9. Then the classification of indecomposable summands
in (2) is wild.

This result solves an old question of homotopy theory: Let A* = A% be the
homotopy category of (m — 1)—connected (m + k)—dimensional finite CW-spaces
with m > k + 1. Since the spaces of theorem (C) are objects in A* we get:

COROLLARY (D). A* has wild representation type for k > 4.

It was shown in Baues-Drozd [BD1] that A* has wild representation type for
k > 6. On the other hand J. H. C. Whitehead [W1] and Chang [Ch] computed
the indecomposable objects of A%; compare also the books of Hilton [H1], [H2].
Moreover Baues—Hennes computed all indecomposable objects of A2. Hence since
A is wild for k£ > 4 the representation type of A* is now known for all k. This
answers a classification problem started by J. H. C. Whitehead 50 years ago.

In this paper a space is a CW—complex. Let Top*/ ~ be the homotopy category
of pointed spaces and pointed maps. For pointed spaces X,Y let [X,Y] be the set
of homotopy classes of pointed maps X — Y'; this is the set of morphism X — Y
in the category Top*/ ~.

1. The torsion free case

A space X is decomposable if there exists a homotopy equivalence X ~ AV B
where AV B is the one point union of non—contractible spaces A and B; otherwise
X is indecomposable.

DEeFINITION 1.1. We say that X is a p-local (m,n)—atom if X is a 1-connected
indecomposable space for which the homology groups H,,(X) and H,(X) are non
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trivial finitely generated Z ,-modules and H;(X) =0 for i # n,m. We say that
X is torsion free if the homology Hy,(X), H,(X) are free Z ,)-modules.

The indecomposable summands of the space X in the introduction are either
indecomposable Moore spaces or (m, n)—atoms as in (1.1).
For a prime p let S&) be the p-local sphere. An element a € 7,_1(S™) ® Z(p)

yields a map « : S&;l — S(’g) and the mapping cone of this map is denoted by

(1.1) Ca = S(p) Ua €(p)-

For n € Z with 1/n € Z,) C Q there is a homotopy equivalence Cy =~ Chpq.
THEOREM 1.2, If m, 1(S™) ® Z(p) = Z/p* is a cyclic group with generator ¢

then the spaces C,, with o = &,p€,... ,p*1€ form a complete list of torsion free
p-local (n, m)—atoms.

This result yields the finite case of theorem (A). The next result yields the tame
case of theorem (A).

THEOREM 1.3. If 1, 1(S™)®Z(p) = Z[/p® Z/p" with generators n € Z/p and
£ € Z/p* then a complete list of torsion free p—local (n, m)—atoms A(g) and A(g, p)
is given as follows.

We consider a finite connected non empty subword g of the infinite word (¢ € Z)

(1) oo &in&iraniyon. ..
where &; € {¢,p¢, ... ,p*71¢}. Hence g corresponds to a connected subgraph of the

infinite graph /J/J/J /l /J /J e

in which the vertical edges denote i and the diagonal edges denote elements in
{&,p€, ... ,p*71¢}. According to the graph g we attach p-local cells e?p) to a one
point union of p-local spheres S&). Here each vertex of level n in the graph g is a
cell and each vertex of level m in g is a sphere and the cell is attached according to
the edges of the graph g. More precisely, let B be the set of vertices of level m of
g and let T be the set of vertices of level n of g and consider the one pont unions
of p-local spheres

@ m

Spl= \/ Sn=t (T=top cells)
ecT

Sp= \/ ST (B=bottom spheres)
e€B

with §7—1 = Sloy» 96" = S(p)- Then the atom A(g) is the mapping cone of a map
(3) g S — ST

Here o, is defined by the graph g, in particular, if e € T is the top vertex of &7 in
g then the coordinate o is given by the sum i,&; + ipn : Sp=l — §my S C S
where a is the bottom vertex of §; and b is the bottom vertex of n and i,, 7 are the
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inclusions. Hence the space A(g) is the p-local form of a “lightning flash space”
defined in Baues-Drozd [BD3].

Next we define a cyclic word (g,¢) where g is a word as above of the form
g=&n...&_1n€ with ¢ > 1 and ¢ is an automorphism of a finite dimensional
Z [p—vector space V = V(). Two cyclic words (g, ), (¢',¢') are equivalent if ¢' is
a cyclic permutation of g, that is (1 <7 <¢)

g =&m&iran...En&in ... &i—1n,

and there is an isomorphism 9 : V(¢) — V(¢') with ¢ = 9y ~1¢'. A cyclic word
(g, ) is a special cyclic word if g is not of the form g = ¢’'¢’ ... g" where the right
hand side is a k—fold power of a word ¢’ with k& > 1 and if ¢ is an indecomposable
automorphism. Here we say that an automorphism of a homomorphism f between
vector spaces is decomposable if f is a non—trivial direct sum of homomorphism.

For a special cyclic word (g = &17... 0., ¢) we define the p-local (m,n)-atom
A(g, @) by the mapping cone of a map

d d
4) Og,p \/ Spt = \/ Sp

Here d = dimgz /,(V (¢)) and \/*Y denotes the d—fold connected sum of the space ¥

with inclusion js : S C \/dS for d =1,...,d. Let by € B be the bottom vertex of
& and £y € T be the top vertex of §&. Then the map oy, on j557 with e € T— {0}
is defined as a, above compatible with the inclusion js. The map oy, restricted

to Vd S{;_l, however, is a sum of the map V§:1 js&. and of the map

d d
Vit =V s

given by n and ¢. We sketch the map a4, for d =2 and g = & 1nénés as follows

~ By

(6=1) 5 =2)
to to
. J
Now the atoms A(g, ¢) and A(g’, ) given by special cyclic words are homotopy
equivalent if and only if (g, ) and (¢’, ') are equivalent.

2. Proof of theorem (A)
Forl<m<nand BRC Q let
(2.1) CW(m,n)g C Top*/ ~

be the full subcategory consisting of 1-connected spaces X with at most two non
trivial homology groups H,, X = A and H, X = B which are finitely generated R-
modules. Hence A and B are direct sums of the cyclic R—modules R and Z /pk, k>
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1, % ¢ R. We associate with X an element
(2.2) kx € [M(B,n—1),M(A,m)]

obtained by the homology decomposition of X. Here M (A, m) is the Moore space
of A in degree m and X is homotopy equivalent to the mapping cone of a map
representing kx. Now let M(m,n)g be the following category. Objects are triple
kx = (4,B,kx) with kx as in (2.2) and morphisms kx — ky are commutative
diagrams

(2.3) MB,n 1) —2> M(B',n-1)

kxl lky

M((A,m) 2 MA,m)

in Top*/ ~. Using the homology decomposition of spaces we get the following
result.

LEMMA 2.1. Forn > m+ 3 there is a functor
k:CW(m,n)g = M(m,n)g

which carries X to kx in (2.2). This functor reflects isomorphism, is full and
representative.

The lemma, shows that k induces a bijection on equivalence classes of objects.
For n = m + 2 there is slightly more delicate lemma which we describe in (3.1)
below. For n < 2m — 2 the categories in (2.1) are additive categories with the direct
sum defined by one point union of spaces and maps respectively. The functor k is
additive since kxvy = kx V ky.

Next we define for a finitely generated R—module M the following category of
matrices with entries in M denoted by Matg(M). Objects are triple (A4, B, k)
where A and B are finitely generated free R—modules and & € Hom(B, A ® M).
Morphisms are pairs 8 : B = B',a: A — A’ for which the diagram

(2.4) B B

kl lkl
a®l

AQM —A' oM

commutes. Let M(m,n)’;;‘r,/ee be the full subcategory of M(m,n)g consisting of
objects (A, B, kx) for which A and B are finitely generated free R—modules. Then
the following result is an easy application of standard facts of homotopy theory.

LeEMMA 2.2. Let M = 7,_1(S™) @ R. Then for n < 2m — 2 one has an
isomorphism of additive categories

M(m, n)ie = Mat (M)
Proof. The isomorphism carries kx to the induced morphism
k:B=m MByn-1) %0 MAm)=A0M
and carries the morphism (a, 8) in (2.3) to (mp—1(8), 7m (@)). q.e.d.



6 HANS-JOACHIM BAUES AND YURI DROZD

Using (2.2), (2.1) we see that theorem (A) and (1.2) and (1.3) are consequences
of the representation theory in the category Matg(M).
Proof of (1.3). Let R = Z,) be given by a prime p. Let M = Z/p® Z/p" be
generated by elements n € Z/p and & € Z/p*. Then an object k in Matg(M). is
given by

k=Kn+ L¢

where K, L are a x b-matrices with entries in Z /p and Z /p* respectively. We may
suppose that L is of block—diagonal form

I 0
ol
L — p2I3
0
where the identity matrices I1, I, I3, ... may have different sizes. Then for K one

gets the known matrix problem

where the squares denote matrices which are transformed by conjugation and where
the arrows indicate that we may add rows (columns) of the lower (right) stripes to
those of the upper (left) ones. The answer of this problem is known by Bondarenko
[B] or Drozd [D] and this yields the indecomposable objects described in (1.3).
q.e.d.

We now recall some notation from representation theory. The wild quiver W
consists of one vertex v and two arrows a,b : v — v. Let Vec be the category
of finite dimensional vector spaces over a field k and let Wild be the category
of representations of W in Vec (i. e. objects are functors A : W — Vec and
morphisms A — B are natural transformations). The direct sum of vector spaces
yields a direct sum A® B in Wild. The universal problem of representation theory
is the computation of all objects in Wild which are indecomposable with respect
to direct sum. We call a classification problem wild if it requires the solution of the
universal problem of representation theory.

PROPOSITION 2.3. Let R = Zy,) and let M be a finitely generated Z ) —module
which is not cyclic and not of the form Z/p ® Z/p'. Then the classification of
indecomposable objects in Matg(M) is a wild problem.

This result proves by (2.2) and (2.1) the wild case of theorem (A).

Proof of (2.3). The proposition is well known if M has 3 cyclic summands. Hence
one only has to prove wildness for M = Z /p? ® Z /p®. Then an object in Mat (M)
is a pair of a x b-matrices (K, L) over Z/p®>. We now consider special matrices K, L
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of the following shape. We choose r x r—matrices X,Y over Z/p and we choose
a =b="Tr. Then let K = I, be the identity matrix and let L = L(X,Y) be the
matrix

0 00 O 0 0 0
0 00 I, 0 0 O
0 00 O I. 0 O
L=(0 0 0 O 0 I, 0
0 00 O 0 0 I
pl, 0 0 pX pY 0 O
L0 0 0 pI, 0 0 O]

Then a simple though tedious calculation shows that (K = I,,, L) is isomorphic in
Matg(M) to (K = I,, L") with L' = L(X’,Y") if and only if there is an invertible
r X r—matrix R with RX = X'R and RY = Y’R. This shows that the classification
of indecomposable objects in Matg (M) for M = Z /p* ® Z/p? is wild. q.e.d.

3. Proof of theorem (B)

We consider the following diagram of functors (m > 4)

(3.1) CW(m,m+ 2)z M(m,m + 2)z

\/

M(m,m + 2)z/ ~

Here CW(m, m+2)z and M(m, m+2)z are defined as in (2.2) and (2.3) for R = Z.
The functor k is defined as in (2.1) though this functor maps only to a quotient
category of M(m,m + 2). The functor ¢ is the quotient functor for the following
natural quivalence relation ~ in M(m,m + 2)z. Consider the diagram

187:81
—_—

M(B,m+1) M(B',m+1)
kxl / lkY
M(A,m) —— M(A',m)

where (a, 8), (a1, 81) are morphisms kx — ky in M(m,m + 2)z. Then we set
(a, 8) ~ (a1, B1) if there is

£ € [M(A,m), M(B',m+1)] = Ext(4, B')

with 81 = 8 and a; = a + ky€. Since m > 4 we know that all categories and
functors in (3.1) are additive.

PrOPOSITION 3.1. The functor k in (3.1) is well defined. Moreover k reflects
isomorphisms, is full and representative.

This is a special case of the classification result 6.8.2 in Baues [B1]. Since also
the quotient functor ¢ reflects isomorphisms, is full and representative we see that
the indecomposable objects in CW (m,m + 2) coincide with the mapping cones of
indecomposable objects in M(m,m + 2)z.

In order to obtain an algebraic description of the category M(m,m + 2)z we
recall first some general notation on bimodule problems. Let A4, B be two categories
(fully additive, i. e., such additive categories where every idempotent splits), U be
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an A-B-bimodule, i. e., a functor A°? x B — Ab. Define the category EI(U) of
elements of this bimodule as follows:

(3.2) ObEIV) = [ U(4,B)

AcObA
BecObB

A morphism 4 — v, where u € U(4,B),v € U(A',B'), is a pair (a,3), where
a: A" — A B8: B — B, such that fu = va (Here we write va for U(a, 1)v and Su
for U(1, B)u).

We have the following example of a category of elements in a bimodule. Let
M™ be the full subcategory of Top*/ ~ consisting of Moore spaces M (A, m) of
finitely generated abelian groups. Then the suspension ¥ : M™ — M™*! is an
equivalence of categories for m > 3 and M"™ is an additive category for m > 3. We
have a bimodule

(3.3) U: (M™% x M™ — Ab

defined by the abelian group [M(A,m + 1), M(H, m)]. Now the category EL(U)
coincides with M(m, m + 2)z.

We describe M™ and the bifunctor U algebraically as follows. For an abelian
group A, consider the short exact sequence

A
(1) ARZL)2 G(A) » AxZ/2
coresponding to the composition
A*Z]2A—> ARLZ/2.

Applying Hom(_,Z /4), one gets the exact sequence

2) Hom(A  Z/2,7,/4) — Hom(G(A), Z /4) - Hom(A ® Z /2, Z,/4)
Ext(A,ISrl ®7/2) Hom(ill,Z /2)

Now, applying - ® H, one gets

(3) Ext(4,Z/2)® H 5 Hom(G(A),Z/4) @ H — Hom(A,Z/2) @ H — 0

2 2
Ext(4, H ® Z/2) Hom(A, H ® Z./2)

(all groups are supposed to be finitely generated).
Now define G(A, H) by the push—down diagram:

4)
Ext(A, H ® Z/2) —2> Hom(G(A4),Z /4) ® H ——~ Hom(4, H ® Z/2) — 0

| | |

Ext(4, G(H)) G(A, H) Hom(A, H ® Z/2) — 0

A 12

Define the category J where objects are abelian groups (finitely generated) and
morphisms are pairs (¢, $),¢ : A = B, o : G(A) — G(B) such that the following
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diagram commutes:

(5) A®Z[2 G(A4) AxZ[2
cp®1l Jl lcp*l
BZ/2——G(B)——=B=x*xZ/2

Then G(A, H) can be consider as J-J-bimodule, the (right) action of (p,$) : A —
A’ induced by

(0, 9)" = Ext(p,G(H)) ® Hom(4,Z/4) © H
and the (left) action of (1,%) : H — H' induced by

(4, %)« = Ext(A,¢) ® Hom(G(A4),Z/4) ® ¢.
Hence, one can consider the category EI(G) of the elements of this bimodule.

PROPOSITION 3.2. For m > 3 there is an isomorphism of categories 3 = M™
and one has a natural isomorphism

[M(B,m+1), M(H,m)] = G(B, H)
Hence the category M(m,m + 2) is isomorphic to the category E1(G).

This result is proved in (8.2.10) Baues [B1]. In order to obtain the indecom-
posable objects in CW(m,m + 2)z we thus have to classify the indecomposable
objects in the category E1(G).

Note that if A = ; A; and H = €P, H;, the elements of G(A, H) can be
naturally written as the matrices (g;;) with g;; € G(A;, H;). Hence, we only have
to calculate G(A4, H) with indecomposable A, H and the action of the morphisms
A — A and H — H' for indecomposable A, A’; H, H'. Thus, we are interested in
the cases A = Z /2%, H = Z/2" (putting Z /2> = Z). First note that, if A = Z*®
with a > 1, the sequence (1) splits and A® Z /2 = AxZ /2= 7 /2. Moreover, given
p: A" = A, the homomorphisms $ : G(A’) = G(A) such that (¢, $) is a morphism
from J, are given by the homomorphisms ¢' : A *Z/2 — A ® Z /2; namely, w. r. t.
the decomposition G(A) = AQZ/2® A+ Z/2, § is given by the matrix (w§1 i )
Certainly, in this case (2) and (3) are also split sequences, hence, the lower row of
the push—down (4) also splits, i. e.

G(A,H) = Ext(A,G(H)) ® Hom(A,H ® Z /2).
If A > 1, one also has that Ext(A,G(H)) = Ext(A,H xZ/2)® Ext(4,H ® Z/2), so
G(A,H) = Ext(A, H+Z /2)®Ext(A, HQZ [2)®Hom(A, HRZ /2) and all three direct
summands here are Z /2. We denote them, respectively, by G (%, %), G(x*, @) and
G(*®,®). One easily sees that a homomorphism (p, $), where § = (cp?l wﬁ’l
maps a triple (g1, gs, gs) from this direct sum to (¢*g1,9*ga + &' gs,©*gs), where
@' is the composition
Hom(A, H ® Z/2) ~ Hom(A ® Z /2, H® Z/2) ~22 s Hom(A'+Z /2, HS Z/2) ~

~Ext(A' *Z/2,HR Z[2) ~ Ext(A',H  Z/2).
If (¥,9) : H' — H, then it maps (g1,92,93) t0 (Yug1,%g2 + (¥')xg1,%.g3) €
G(A,H'). If h =1, the sequence (1) for H is indeed

Z[2— Z]A—>Z]2,
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hence, for a > 1, one still has the exact sequence
Ext(A, H ® Z/2) — Ext(A,G(H)) - Ext(A, H xZ 2);

which is indeed
Z/2>—> Z/4—» Z/Q.

Again a homomorphism (¢,$) : A’ - A maps a pair (g1,93) with g1 €
Ext(4,G(H)),g92 € G(*®,®1) = Hom(4,H @ Z/2) to (¢*g1 + ¢'gs,*gs). On
the other hand, to define a homomorphism (1/1,12) : H —» H', where H = 72,
one only has to define % : Z/4 — H': then ¢ = Y ® Z[2:Z/2 — H'. Such a
homomorphism maps a pair (g1, g3) as above to (1;* g1, U4g3)-

Suppose now that ¢ = 1. Then (1) is indeed

Z[2— Z[/4—>7)]2.

If A > 1, the tensor multiplication by H does not change this exact sequence; nf in
(4) is split monomorphism, hence, G(A, H) ~ Z [4® Ext(A, H % Z [2), and we have
an exact sequence

Z/2=G(',®n) = Z/4—= G(®,®) =Z/2.

A morphism (p, %) is given by any homomorphism & : G(A4') — Z/4: then
¢ = Plagz/2 € Hom(A' ® Z/2,72/2) ~ Hom(A’,Z/2). It maps a pair (g1,92) €

Hom(G(A),Z /4)® H @ Ext(A, H xZ [2) to (($* @ 1)g1, ¢*g2). A morphism (¢,%) :
H — H', where ¢ = (1&%@1 ¢¢*I1)’ maps (g1,92) 10 (1 @ ¥)ugr + Yigs, (¥ * 1)igo).
At last, if @ = 1 = h, the sequence (3) is

7/2%7)25% 72/2 - 0and g =0

Hence, G(A, H) = Ext(A,G(H)) ® Hom(A,H ® Z/2), both summand being Z/2
(we denote them by G(1#, ') and G(®1,' ®) respectively, putting G(1*,! ®) = 0).

Denote by G the sub-bimodule of @ such that, for A = Z /2%, H = 7.J2",
G(A, H) = G(p*,* ®). In the definition of the weak equivalence (6), one always has
A(Ime*n®, u(8)s) C G(A, H). We will use this remark later to show that indeed
the weak equivalence coincide with the isomorphism in EI(G).

Now we are going to reformulate our bimodule problem in the matrix form.

This bimodule problem can obviously be rewritten in the matrix form as follws.
We consider the “striped” matrices M with the horizontal stripes marked by the
set & = {®p,n *|h € N} U {®c} and the vertical stripes marked by the set F =
{*®,*%*|la € N}U{*®}. We denote by M (z,y) the block placed at the intersection
of the horizontal stripe z and the vertical stripe y. These matrices should satisfy
the following conditions:

(1) The number of rows in the stripes ®j and p* is the same, as well as the
number of columns in the stripes *® and *,.

(2) M(p*,2®) = 0; M(®1,%*) = 0; M (®p, *') = 0. (We consider them as “ma-
trices over the zero ring Z/1”).

(3) The matrices M (®p,' ®) with h > 1 and M (1%, x?) with a > 1 are with the
entries from Z /4, all other ones are with the entries from Z /2.
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Here is the picture describing such matrices (we always indicate the ring, where
the entries of the blocks are from):

lp 2@ 3 ... @ SO ST -
® [Z)2 Z)2 Z)2 ... Z/2 | ... 0 0 0O
® |ZJ4 Z)2 )2 ... ZJ2 | ... ZJ2 Z)2 O
®1 |ZJ4 )2 Z)2 ... ZJ2 | ... Z)2 Z)2 O
®co |Z/4 ZJ2 ZJ2 ... T)2 | ... ZJ2 Z]2 0O
s 0 0 0 ... 0 | ..z Z]2 12
| 0 0 0 ... 0 | .. z/2z]2 12
0 0 0 ... 0 | .. Z/4 Z/4 Z)2

The following transformations of the matrix M are called “admissible transfor-
mations” (in what follows we denote by M (x,_ ) and by M(_,y), respectively, the
horizontal stripe marked by z and the vertical stripe marked by y).

(a) Replacing the stripes M (®p,_) and M (5%, ) by X M(®}) and X M (%).

(a’) Replacing the stripes M (_,* ®) and M (., x*) by M(_,*®)X and M (,**)X.

(b) Replacing M (®p,_) by M(®4, )+ XM (Qp, ) +Y M (3*,_), where b’ > h, k
any.

(b") Replacing M(_, %) by M(,+%) + M(,+*)X + M(.}®), where @ > a,b
any.

(C) Replgcmg M(h*7 —) by M(h*7 —) +XM(h’*7 —) and M(®h7 —)Y by M(®h7 —) +
2h=F X M (®p, -), where b’ < h.

(c’) Replacing M(,,*®) by M(,*®) + M(,,* ®)X and M(_,%*) by M(_, %) +
20— M (_, ¥ )X, where o' < a.

(d) Replacing M (1%,.) by Mi(x,.) + 2X M (3*,.) + 2Y M(®, ) for arbitrary
h, k.

(d’) Replacing M (., ®) by M(_,'®) + 2M(,,*®)X + 2M(,,**)Y for arbitrary
a,b.

(e) Replacing M (®3,! ®),h > 1, by M(®4,' ®) +2X M (5%, '), b’ any.

(¢)) Replacing M (1%,%%),a > 1, by M(1%,%%) + 2M (®1,* ®)X, d' any.

Here X,Y always denote arbitrary matrices of the appropriate size with the
entries from Z/4; in the transformations of type (a) and (a’) the matrix X should
be invertible. Certainly, if an original block was with the entries from Z/2, the
resulting one should also be calculated modulo 2; if an original block was over zero
ring, so is the resulting one.

Two matrices, M, M’ (of the same size) are called equivalent if they can be
transformed to each other by a sequence of admissible transformations. Call M, M’
equivalent modulo 2 if M can be transformed by a sequence of admissible transfor-
mations to a matrix M” such that M” = M’ mod 2. Of course, considering the
equivalence modulo 2, we may reduce the stripes M(_,! ®) and M (3%, _) modulo 2
(thus forgetting the transformations of types (d), (d’)), as well as always suppose
X,Y being over Z /2.

One can easily see that for the equivalence modulo 2 we get a sort of represen-
tations of a bunch of chains in the sense of [D]. Therefore, one can write down all
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indecomposable matrices. Namely, we have the chain & for rows, with the order:
R >R > ...>Qc0 > ... > 3% > 9% > 1%,
and the chain F for columns, with the order:
I<?@<... <@ <. ... < <H < x
The equivalence relation ~ is given by
®p ~p ¥(h € N);°®@ ~ x%(a € N).

Remind the corresponding combinatorics. Put X = £ U F and write z —y if z €
E,y € F or vice versa. Then X—word is a sequence w = T172%oT3 . .. yTy, Where
z; € X,r; € {~,—}, such that r; # r;11(6 = 2...,n — 1),z 012501 In X(@ =
1,...,n—1). Such a word is said to be full if:

either ro =~ or 21 » y for any y # z1;

either r,, =~ or z,, » y for any y # z,.

w is called eyclic if o = r, = — and z, ~ x1; it is called aperiodic if it is not of
the type v ~v ~ ... ~ v for a shorter word v.

Call a polynomial 7 (¢) € Z /2[t] primitive if it is a power of an irreducible poly-
nomial (with the leading coefficient 1). Then the indecomposable representations of
this bunch of chains are in 1-1 correspondence with the set SU B, where S consists
of all full words and B consists of the pairs (w, 7 (¢)), where w is an aperiodic cyclic
word and 7(t) # t¢ is a primitive polynomial. More precisely, we should identify
any word w with its inverse and any cycle with its cyclic shift!

We call the representations corresponding to S “strings” and those correspond-
ing to B “bands”.

The condition (2) from the definition of the matrix M imposes some restrictions
on the representations, which can occur as equivalence classes modulo 2 for such
matrices. In terms of the X—words, they mean that the corresponding word contains
no subword @ ® —p*, @1 — %, ¥! — @}, or their inverse. (Call such words admissible.)
One can easily check that such a word can only contain at most one subword of the
form ®p, — x® (or its inverse). To simplify the notations, we replace the subword
" ® —®p by “Qp, @n — *® by n®%; b * =% by px%, %% — p* by “*p; ®p — x* by
r0%. We also omit all ~ signs and alway replace a superscript ¢* by ¢ as well as a
subscript 5 by p. At last, we omit z; if ro =~ and z,, if r,, =~. Certainly, one can
always restore the original X—word having the result of all these simplifications.

Now, any admissible word (or its inverse) can be written as a subword of

() M Qp, ¥ Qpy x...%" ®p,,  (“usual word”)
or
(i) B @072k, @4 kL 097 @p, %72 Qpy, ... ¥ (“O—word”)

The strings correponding to §—words are called “f—strings”, all other ones are called
“usual string”. Any admissible cyclic word (or its shift) can be written in the form
a1 ®h1 %92 ®h2 %...0n ®hn %91

Moreover, the following conditions hold:

(1) a; = o0 or hj = oo can only occur at the end of a word as ® ® (®*°) or

®o0(00®);
(2) In any #—word, h_1 # 1 and a1 ¢ {1,00}.

Note that the description of the representations of a bunch of chains [D] implies:
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e Any row (column) of a string contains at most 1 non—zero element.
e There are at most 2 zero rows or columns in a string, namely, they are in
the following stripes:
— M(p*,.) if w has an end ®j, (or ,®), h # 00;
— M(_,%*) if w has an end *®, a # oc;
— M(®p,-) if whas an end p%;
— M(.*Q®) if w has an end ** (or *).
e The horizontal and vertical stripes of a band can be subdivided in such a way
that every new horizontal or vertical sub—stripe containsg exactly 1 non—zero
block, which is invertible.

COROLLARY 3.3. Let M be the reduction modulo 2 of an admissible matriz

M, N be its indecomposable direct summand. If N is a band or a 6—string, then
M~ No®M such that N=N mod 2.

So, from now on, we may only consider such M that M is a direct sum of usual
strings. Denote M the matrix obtained from M by replacing all invertible entries
by zeroes (in particular, all its elements are of the form 2¢). Let M = @}, M;,
where M; is the usual string corresponding to a word w;.

COROLLARY 3.4. M ~ M', where M' = M and the only non-zero rows and
columns of M' may be the following:

(1) the columns of M (., ®) corresponding to the ends'® occurring in the word
Wiy

(2) the rows of M' (1%, ) corresponding to the ends 1% occurring in the words w;;

(3) the rows of M'(_,! ®) corresponding to the ends p, * (h > 1);

(4) the columns of M'(1*,_) corresponding to the ends * ® (1 < a < 00).

We call all these ends the “distinguished ends”.

In what follows, we always suppose that already M = M'.

To prove Corollaries 3.3, 3.4, one only has to use the transformations (d), (d’)
and (e), ().

The following Lemma, is now decisive.

LEMMA 3.5. Suppose that two words w;, w; have a common distinguished end.
There is a sequence of admissible transformations of M = M' which does not
change the matriz M and the resulting transformation of M adds the row (column)
corresponding to the end of w; to that corresponding to the end of w; or vice versa.

COROLLARY 3.6. There is a sequence of admissible transformations of M =
M', which does not change M and transform M to a matriz having at most one
non—zero element in every row and every column.

Proof of Lemma. We consider the case of the end '®, all other cases being quite
analogous. So let w; =! ®p, *?2 ®p, ..., while w; =! ®p, **2 ®p,.... Suppose
that hy < k;. If indeed hy < k;, one can add the column corresponding to the end
l®p, of w; to that corresponding to the end '®j, of w; and then subtract the row
corresponding to the latter one from that corresponding to the first one to restore
M. If hy = ki1, compare as and by. If as < bs, one can perform the same transfor-
mations as above and afterwards subtract the column corresponding to , **2 from
that corresponding to j,*%, to restore M. Continuing these considerations, one
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sees that we can add the column corresponding to the end of w; to that correspond-
ing to the end of w; if (h1, a9, he,...) < (k1,be,ke,...) lexicographically. As the
lexicographical order is linear, it proves the lemma.

COROLLARY 3.7. Suppose M an indecomposable matriz such that M # 0 for
any matriz M’ equivalent to M. Let M = @]_, M;, where M; are usual strings.
Then, up to equivalence, there are but the following possibilities:

(1) r = 1,M = M corresponds to a word wy =' ®p, **2 ®p, ..., M has one
non—zero element in the matriz M (®,,! ®). We denote this case by the word
w =y ot R, ¥*2 Qpy - - -

(2) r = 1,M = M corresponds to a word | x%* ®p, *° ...; M has one non—
zero element in the matrix M(1%,%%). We denote this case by the word
w=...22 x5, % %1 6%

(3) r = 1,M = M, corresponds to a word ®* ®p, *°2...; M has one non—

zero element in the matrix M (1%,%*). We denote this case by the word
w =1 0% @p, ¥%2...

(4) r = 1,M = M, corresponds to a word p, % @p, % ...; M has one non—
zero element in the matriz M (®p,,' ®). We denote this case by the word
W= ...%p, @Y x5, 1.

(5) r = 2,M; corresponds to a word ! ®p, ** ®p, ..., Ms corresponds to a
word p,_, ¥~ @p_, *...; the unique non—zero element ofM 18 in the matriz
M(®_,,' ®). We denote this case by the word w = . ..xp_, @1 %p,_, 01 ®p,
% Qpy -

(6) r = 2, My corresponds to a word * ®p, *°2 @y, ...; My corresponds to a
word 1 %%~ @y, _, ¥*~2...; the unique non—zero element ofM 18 in the matriz
M (1%,%%). We denote this case by the wordw = .. .*2Qp_, @%~1 %1 6% Qp,
%2 Qpy -

Obviously, the cases (1)—(4) always give indecomposable representations. On
the other hand, in the case (5), if hy > h_1, the representation M evidently decom-
poses as My @ My; the same is with the case (6) and a—1 > a;. f by <h_; —1in
the case (5) or a—; < a1 — 1 in the case (6), the corresponding representation is evi-
dently indecomposable. Suppose, in the case (5), hy = h_1 — 1. Then we can delete
the non—zero element of M(®y_,,' ®) using the transformation (c), but it changes
the zero entry in M (;_,*,*). To restore it, we need that a_; > a1, moreover, if
a_1 = ay, we also need that he > h_q, etc. Thus, such a representation remains in-
decomposable if and only if (b1 +1,a_1, ho,6_2,...) < (h_1,a1,h_1,a9,...) lexico-
graphically. Just in the same way, the representation of type (6) is indecomposable
if and only if (a—1 + 1,h1,a_2,ha,...) < (a1,h_1, a2, h_2,...) lexicographically.

Therefore, the complete list of indecomposable matrices looks like follows.

THEOREM 3.8. Indecomposable objects in EX(G) are in 1-1 correspondence with
the following types of data:

(1) usual words, i. e. subword of the words ** ®p, *x*2 Qp, *...%" ®p,,, where
ai, hj € NU {00}, 00 being only possible for a1 or hy,.

(2) 8—words, i. e. subwords containing 0 of the words j,_, ®...% 2%, , Q%1%
0% ®p, *** Qpy ... ¥ Qp,,, where a;, h; € NU {00}, 00 being only possible
fO?" h_m or hna (0,1, h—l) 7é (17 1) and:
if ho1 =1,
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then (a—1+1, h1,a_2,ho,...) < (@1,h_2,a2,h_3,...) lezicographically, and,
if a) = 1,
then (h1+1,a_2,ho,a_3,...) < (h_1,a2,h_a,as,...) lexicographically. More-
over the 8—word does not coincide with -6' Q.

(3) Pairs (w,w(t)), where w is an aperiodic cyclic word: w ="' Qp,**2Qp, ...o" ®p,,
*%1 (up to shift), and w(t) # t¢ is a primitive polynomial over Z /2.

COROLLARY 3.9. Let a be an indecomposable element of the bimodule G. De-
note by a its component belonging to the sub-bimodule G and by Go the sub-
bimodule of G generated by & Then G, N Imn,u(a), = 0.

Proof. Follows immediately from the description above.

Here are examples of indecomposable representations.

(1) Usual string corresponding to the word 2 x° ® x* ®; *° ®4

36 16 W 43
®| 0 0 1
00 0
® 4 9| o 0
T . A=2-Z/80Z/16
K4
T H=Z/202 L/A®Z/16
X 0 1 0
2 1 0 0
1% 0 0 1
(2) f-string corresponding to the word o, ®* *3 @2 *28* @3 x°
26 3 1g 4 43 2
Ro 0 0 0 0 0 1 0 0
® 1 0 0 0 00 0 0
510 0 01 ]00/| 0 0
Rso| O 0 1 0 00 0 0
N 1 0 0 0
8 0 0 1 0
9% 00 0 1

A=Z/4A0Z/80®2-7/16
H=7/402-Z/80 L

(3) @-string corresponding to the word 2 x4 @' *3 ' ®2 @1

19 29 3g 43 2 «

0 1
0 0

0 [ 0 0
0 0

1%

2%

3%

1%

oY
[~
~lololo

O =IO

(] Ran] ot Han
=IO oo
OOl O
jen] fen] en] en
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A=2-Z/20Z/40TZ/8
H=Z7/20Z/A0Z/8® Z/16

(4) band corresponding to the word 2 ®4 ** ®1 ** ®q *
) =t2+t+1

2 and the polynomial

2 39 34 2,
1 0
o 0 1
1 0
295 0 1 O
0 1
Ry 1 1
N . 10
Frobenius matrix 4 01
corresponding to 7 (t) 10
2%
01
X 1 0
! 0 1

A=2-Z/4®4-7/8
H=2-7/202-7./4®2-7/16

4. Proof of theorem (C)

Let M™(Z/2) be the homotopy category of Moore spaces M (A, m) where A
is a finitely generated Z /2—vector space. Then we know by Baues [B1] 1.6.7 that
M™(Z/2) for m > 3 is isomorphic to the category mod(Z /4) of finitely generated
free Z /4-modules. Using this result we show:

THEOREM 4.1. Let m > 6. Then the bimodule M™3(Z /2)°P x M™(Z/2) —
Ab given by [M(a,m + 3), M (B, m)] is natural isomorphic to the bimodule

mod(Z/4)°? x mod(Z /4) — Ab
which carries (A, B) to Hom(A®Z/2,B® (Z /20 Z/2® Z/2)).
Since the quiver
e
—
is wild we see that theorem (4.1) implies theorem (C) in the introduction.

Proof of (4.1). Since the bimodule is biadditive it suffices to compute for A =
B = Z /2 the Z /4-bimodule » = [M(A,m + 3), M (B, m)]. Here the Z/4-module
structure is already determined by the structure of 7 as an abelian group. We know
that

Tmp2M(B,m)=17Z/4
TmssM(B,m) =Z/20 72
and that the Hopf map 5 : S™+3 — §™+2 induces the map
n* T2 M (B,m) = T3 M (B, m)
corresponding to the composite

Nt LA 1)22 L2072
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of the inclusion 7; and the quotient map. This follows for example from Baues—
Goerss [BG] 5.2. Moreover using Baues [B1] 1.6.11 we have the push out diagram
of abelian groups

Z[20Z[2——— Ext(A, 73 M (B, m)) T
W(W*)*
7 /2 ——— Ext(A, Ty2 (B,m) © Z /2) ——> G(A, T2 M (B, m))

Here (n*). is induced by n* above so that (n*). is split injective with cokernel Z /2.
Moreover we have by definition of the category G in Baues [B1] the isomorphism

G(A, Tmy2(B,m)) = G(Z/2,2/4) = /20 1./2

with j above corresponding to the inclusion ¢; : Z/2 C Z/2® Z/2. This shows
T=L[20L[2DZ/2. g.e.d.

(B]
(B1]
(B2]
[BC]
[BD1]

[BD2]

[BD3]
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