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INTRODUCTION

During the study of Cohen—Macaulay modules on curve singularities
(cf. [18, 12, 14, 9]) it was proved that these singularities split into three
classes:

e (Cohen—Macaulay finite, having only finitely many indecompos-
able Cohen—Macaulay modules;

e Cohen—Macaulay tame, i.e., such that, for each fixed r, the in-
decomposable Cohen—Macaulay modules of rank r form a finite
set of 1-parameter families;

e Cohen—Macaulay wild, that can be characterized in two ways:

— “geometrically” as those having n-parameter families of
non-isomorphic indecomposable Cohen—Macaulay modules
for arbitrary large n,

— “algebraically” as such that for every finitely generated al-
gebra A there is an exact functor from the category of finite
dimensional A-modules to the category of Cohen—Macaulay
modules over this singularity, which maps non-isomorphic
modules to non-isomorphic ones and indecomposable to in-
decomposable.

The latter property shows that the study of modules in the wild
case is extremely complicated and needs an essentially new and
highly non-trivial approach.

Moreover, it turned out that the above “trichotomy” is closely related
to the position of a curve singularity in the well-known Arnold’s list of
singularities having good deformation properties (cf. [1]). Namely:

e a singularity is Cohen-Macaulay finite if and only if it dom-
inates one of the simple plane curves singularities A,,, D,,, Eg,
E7, Es;

e asingularity is Cohen—Macaulay tame if and only if it dominates
one of the “serial” unimodal singularities T,,.

(Recall that a singularity (X, z) dominates (Y,y) if there is a birational
surjection (X, z) — (Y, y).)
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In [13, 4] it was proved that a normal surface singularity (in char-
acteristic 0) is Cohen—Macaulay finite if and only if it is a quotient
singularity. In [19] it was shown that a simple elliptic singularity is
always Cohen—-Macaulay tame. In both cases a complete description of
Cohen—Macaulay modules over such singularities was obtained. More-
over, in [19] Kahn elaborated a general method relating Cohen-Mac-
aulay modules over normal surface singularities to vector bundles over
some projective curves (usually singular and even non-reduced).

In this paper we use the Kahn correspondence and the results of [10]
to prove the following main theorems:

e every cusp singularity (cf. [17, 20]) is Cohen—Macaulay tame;
e a minimally elliptic singularity (cf. [23]) that is neither simple
elliptic nor a cusp one is Cohen—Macaulay wild.

As a corollary we get that any log-canonical surface singularity (cf. [21])
is Cohen—-Macaulay tame (or finite, as quotient singularities are also
log-canonical). There is some evidence that any other normal surface
singularity is Cohen-Macaulay wild. We also give a description of
Cohen—Macaulay modules over cusp singularities and use it to provide a
description of Cohen—Macaulay modules over curve singularities of type
T,, (there was no such description in [9], the proof of their tameness
was indirect).

1. GENERALITIES

In what follows we use the following

Definitions and Notations 1.1. o A surface singularity means
a spectrum X = Spec A, where A is a local, complete ! noether-
ian ring of Krull dimension 2. We denote by m = m4 the
maximal ideal of A and by k = A/m the residue field. We
always suppose that the field k is algebraically closed.

e Such a singularity is called normal if the ring A is normal, i.e.,
integral and integrally closed in its field of fractions ). In what
follows we only consider normal surface singularities. Recall
that any normal surface singularity is isolated, that is m is the
unique singular point of it.

e A resolution of a normal surface singularity is a birational proper
map 7 : X — X, where X is smooth, which induces an isomor-
phism X \ £ = X \ {m}, where F = 77 !(m),q. F is called
the exceptional curve on X (it is indeed a projective curve over
k). Denote by E; (i = 1,...,s) the irreducible components of
E. Put also X = X \{m}.

IFor the analytic case, see Remark 8.3 at the end of the paper.
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e A resolution 7 as above is called minimal if it cannot be de-
composed as

X 0o X L X,
where X’ is also smooth. It is known (cf., e.g., [24]) that 7 is
minimal if and only if neither of the components F; is a smooth
rational curve with self-intersection index E; - B; = —1.

e A cycle on X is a divisor Z = Zle k;E; with k; € Z. Such
a cycle is called positive if all k; > 0. We write Z < Z' if
Z' =% klE; with k; < k] for all 4.

e The fundamental cycle, denoted by Zj, is the minimal positive
cycle (with respect to the above defined partial order) such that
Zo - E; <0 for all .

e A positive cycle Z is called a weak reduction cycle if the sheaf
Oz(—Z7) is generically generated by its global section (i.e. gen-
erated outside a finite set) and H'(E,Oz(—2)) = 0. Here, as

usually, we write Oz = O /O3 (—Z) and consider Z as a closed

subscheme of X.

e A reduction cycle is a weak reduction cycle Z such that the
sheaf w, is generically generated by global sections, where w, =
wg ®o, Oz(—7) is the dualizing sheaf for Z and MY denotes
Homog (M, Og), where M is a coherent sheaf on a scheme S.

e One calls a surface singularity rational if H'(X, Oz) = 0 and
minimally elliptic if it is Gorenstein (i.e. wx =~ Ox) and
HY(X,03) ~ k.

e X is called a simple elliptic singularity if E is a smooth curve
of genus 1.

e We call the exceptional curve E a cyclic configuration in the
following cases:

(i) s = 1, F is rational and has a unique singular point that
is a simple node;
(ii) s = 2, E| ~ Fy ~ P! and they intersect transversally in
(exactly) 2 points;
(iii) s > 2, B; ~ P! for all 4, E; - E;,; = 1, E,- E; = 1, and
E; - E; = 0 otherwise.
For a cyclic configuration we set E,; = E) for all integers k.

e X is called a cusp singularity if E is a cyclic configuration. Note
that simple elliptic and cusp singularities are both minimally
elliptic. Moreover, for all of them Z; = FE.

e Denote by Coh(S) the category of coherent sheaves on a scheme
S and by VB(S) the category of vector bundles, that is locally
free coherent sheaves on S.

e For a surface singularity X = Spec A denote by CM(X), or by
CM(A), the category of (maximal) Cohen-Macaulay modules
over the ring A. If A is normal, Cohen—Macaulay modules
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coincide with reflezive modules, i.e. such A-modules M that
MYV ~ M, where MY = Homu(M,A). We always identify
an A-module M with its “sheafification” M, which is a quasi-
coherent sheaf on X.

Recall the main result of Kahn [19, Theorem 1.4] concerning the re-
lations between the vector bundles on a reduction cycle and the Cohen—
Macaulay modules over a normal surface singularity.

Theorem 1.2. Let 7 : X — X be a resolution of a normal surface
singularity with exceptional curve E and a reduction cycle Z. Denote
by Ry : CM(X) — VB(Z) the functor that is the composition of the
functors

CM(X) — VB(X): M — (x* M)V
and
VB(X) = VB(Z): F— F @0, 0.

This functor maps non-isomorphic objects to non-isomorphic ones, and
a vector bundle V € VB(Z) is isomorphic to RzM for some M if
and only if it is generically generated by global sections and there is an
extension of V to a vector bundle V5 on 27 such that the exact sequence

0—V(-2) —V,—V —0,
induces a monomorphism H*(E,V(Z)) — HY(E, V).

We denote by VB (Z) the full subcategory of VB(Z) consisting of
the vector bundles satisfying the latter Kahn’s conditions. Note that
obviously tk Rz M = rk M for any Cohen—Macaulay module M.

For minimally elliptic singularities one can give a simpler description
of the latter category (cf. [19, Theorem 2.1]).

Theorem 1.3. Let 7 : X — X be a minimal resolution of a minimal
elliptic singularity. Then the fundamental cycle Z = Zy is a reduction
cycle and the category VB (Z) consists of all vector bundles of the
form nOz & G, where G satisfies the following conditions:

(1) G is generically generated by global sections,
(2) HY(E,G) =0,
(3) dim H(E,G(Z)) < n.

In particular, indecomposable objects of VB®(Z) are the following:

e the trivial line bundle O,

e nO;®G, where G is an indecomposable vector bundle satisfying
the above conditions (1),(2), and n = dim H*(E,G(Z)).

Remark. In the paper [19], Theorems 1.2 and 1.3 are proved in the
“geometric” case, when A is a k-algebra and char k = 0, but one easily
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verifies that all proofs can be directly extended to the general situ-
ation. The results of Laufer [23] used in [19] are also valid in this
“abstract” context. Using the Grauert-Riemenschneider vanishing the-
orem to show that H'(E, Oz(—Z)) = 0 for the fundamental cycle of a
minimally elliptic singularity, is actually superfluous. Indeed, in this
case wy = Ox(—7) (23, Theorem 3.4}, so wz ~ Oz. By the Serre’s du-
ality [16, Corollary I11.7.7], HY(E, Oz(—Z2)) is dual to H*(E,wz(Z)) =
H(E,04(Z)). The latter is zero since deg Oz(Z) = Z - Z < 0.

2. COHEN—MACAULAY MODULES ON CUSP SINGULARITIES

In this section E denotes a cyclic configuration, v : E — E the
normalization of £ and E; (i = 1,...,s) the irreducible components of
E (if s > 1, they can be identified with the irreducible components of
E). We put Egy, = By, for all integers k, O = O, O = O, O; = Op,,
and we always identify O and O; with their images under v,. Denote
by S = {p1,pa,...,ps} the set of singular points of E and choose the
indices in such a way that v=1(p;) C E; U E;;;. Note that the latter
preimage always consists of 2 points, which we denote by p;, p/,, so
that p} € E; and p},, € E;j1. Let J be the conductor of O in O, i.e.
the biggest O-ideal contained in O. Then 0;/JO; = k(p,) ® k(p!).

Recall the description of vector bundles on a cyclic configuration
given in [10]. Call an s-sequence any sequence of integers of length
a multiple of s: d = (dy,...,d,s). Call this sequence aperiodic if it
cannot be obtained by repetition of a shorter s-sequence. Call a shift
of d any sequence d* = (dgy1,...,dps, dy,. .., dy); if k is a multiple of
s, we call such a shift an s-shift.

Theorem 2.1. Indecomposable vector bundles on a cyclic configuration
are in one-to-one correspondence with the triples B = (d, m, \), where
m is a positive integer, X € k* =k\{0} and d is a aperiodic s-sequence
defined up to an s-shift.

We denote the vector bundle corresponding to the triple B by G(B).
The precise construction of this sheaf is the following:

(1) Let d = (dy,...,d,s). Put G; = mO;(d;) and G(B) = @, G:.

Note that G;/JG; ~ mk(p,) & mk(p]). Put also
F(B) = G(B)/JG(B) =~ P (mk(p) & mk(p))).
i=1

Since F'(B) is a sky-scraper sheaf, we identify it with the vector
space of its global sections.

(2) Choose a k-bases {€/,,el, } (k=1,...,m) of F(B) in such a
way that { e, } form a basis of mk(p}) and { e, } form a basis
of mk(p).
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(3) Define the elements ey € F(B) (i=1,...,rs, k=1,...,m) in
the following way:

/ /! : -
€ + €\ if i#£rs,

/ 1 3 ; I
€1 T A€y it i=rs,k=1.

Denote by G(B) the subspace of F(B) with the basis
{exl|li=1,...;rs, k=1,... m}.

(4) Now G(B) is defined as the preimage of G(B) in G(B) under
the epimorphism G(B) — F(B). Note that rk G(B) = mr.

To use Kahn’s Theorem we have to calculate the cohomologies of
the sheaves G(B). Let H(B) = G(B)/G(B) = F(B)/G(B). The exact
sequence 0 — G(B) — G(B) — H(B) — 0 of sheaves over E gives the
exact sequence of cohomology groups

0 — H(G(B)) — H(G(B)) "2 H(B) — HY(G(B)) — H'(G(B)) — 0

(we identify H(B) with the space of its global sections and omit “E”

in the notation of cohomology). One knows that dimy H°(G(B)) =

mYy_:° (d; +1)* and dim HY(G(B)) = m>_;” (d; + 1)~, where

k+_{k it k>0, k__{—k itk <0,

0 otherwise 0 otherwise, ’

while dimy H(B) = mrs. So we only have to calculate rk h(B). Denote

by f the natural homomorphism H°(G(B)) — F(B). Then rk h(B) =
dimg(Im f + G(B)) — dimy G(B).

Identifying E; with P! we can suppose that p, = (1 : 0) and p =
(0:1). If d; > 0, a basis {go,...,gq } in H(O;(d;)) can be chosen
in such a way that go(p}) = 1, ¢1(p}) = 1, while all other values g;(p)
and g;(p}) equal 0, so the basis elements e}, and e}, can be chosen as
the images of gg and ¢, respectively. Hence Im f is generated by the
set { €, € |di >0} U{e) +ej[di=0}.

Call a subsequence p = (dg41,...,dg), where 0 < k < rs and
1 <1 < rs, a positive part of d if dyr; > 0 for j = 1,...,] and
either [ = rs or both dy, < 0 and di,;1 < 0. For such a positive
part put #(p) = [ if either [ = rs or p = (0,...,0) and O(p) =1+ 1
otherwise. Denote by P the set of all positive parts of d and put
0(d) = > ,ep 0(p). Put also 6(d,\) =1ifd = (0,...,0) and A =1
and d(d, A\) = 0 otherwise. The preceding consideration and a rather
simple straightforward calculations show that, for B = (d,m, \),

tk H(B) = m0(d) — 6(d, \),

whence the following:
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Theorem 2.2. For the vector bundle G = G(d, m, \),

dim H°(E,G) = m (Z(dl + 1)t — 0(d)> +4(d, \)
i=1
dim HY(E,G) = m (Z(di +1)" +rs — H(d)) +6(d, \).
i=1
We write d > 0 if d; > 0 for all ¢ = 1,...,rs and at least one of
them is strictly positive. Denote by 0 the zero sequence (0, ...,0) of
length s (the unique aperiodic zero s-sequence) and set |d| = "7", d;.
Actually the rank of the vector bundle G(d, m, \) equals mr and its
degree equals m|d|.

Definition 2.3. We call an aperiodic s-sequence d = (dy,ds, . .., d,s)
suitable if d > 0 and, for any shift d* of d, d* does not contain a sub-
sequence (0,1,1,...,1,0) (in particular (0,0)) and d* # (0,1,1,...,1).

Note that if d is suitable, then |d| > r and dimH(F,G) = m/|d|,
dimHY(E,G) =0 for G = G(d,m, \).

Corollary 2.4. A vector bundle G = G(d, m, \) satisfies Kahn’s con-
ditions (1),(2) of Theorem 1.3 if and only if either it is suitable or
d=0, m=1and A=1 (i.e. G~0).

Suppose now that the cycle configuration E is actually the excep-
tional curve of a cusp singularity X = Spec A. If s > 1, set b; =
—F-E; = —F;-E;, —2. Note that the intersection indices F; - F; < —2
and at least one of them is smaller than —2. If s =1, set by = —F - F.
Let b" = (by,...,bs,...,b1,...,bs) (r times). We write b for b'. Put
also n(G) = dimy H*(E, G(F)). Recall that in this case one can choose
FE itself as a reduction cycle.

Corollary 2.5. (1) Suppose that a G = G(d,m, \), where d is a
suitable sequence. Then
n(G) =m (Z:(alZ —b;+1)T—6(d - b’”)) +0(d—b",\),
i=1
son(G)O® G ~ RpM(d, m, ), where M(d,m, \) is a Cohen—
Macaulay A-module of rank rs + n(G).

(2) All Cohen—Macaulay modules M(d,m,\) are indecomposable
and every indecomposable Cohen—Macaulay A-module is iso-
morphic either to A or to one of the modules M (d, m, \), where
d s a suitable sequence.

3. LIFTING FAMILIES

Vector bundles on cyclic configurations form natural 1-parametric
families. We are going to show that these families can be lifted to 1-
parametric families of Cohen—Macaulay modules on cusp singularities.
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To do it, we first prove analogues of Kahn’s results for families of mod-
ules and vector bundles. For the sake of simplicity, we suppose from
now on that A is a k-algebra and all other algebras and schemes are k-
algebras and k-schemes. Moreover, we only consider k-schemes S such
that k(z) = k for each closed point x € S (for instance, schemes of finite
type over k). We write ®, dim, x, etc., instead of ®y, dimy, Xgpeck,
etc. Especially “finite dimensional” means “finite dimensional over k.”

We need also families with non-commutative base, so we give the
corresponding definitions.

Definition 3.1. Let S be a k-scheme and A be a k-algebra (maybe
non-commutative).

o A family of Og-modules based on A is, by definition, a coherent
sheaf of Og ® A-modules F on S, flat over A.

e Such a family is called a family of (mazimal) Cohen—Macaulay
modules (respectively vector bundles) if for every finite dimen-
sional A-module L the sheaf of Og-modules F ®, L is a sheaf of
Cohen—Macaulay Og-modules (respectively a locally free sheaf
of O-modules).

(Evidently, these properties have only to be verified for simple
A-modules.)

e We denote F(L) = F ®, L.

e We say that a family F is generically generated over S if there
is an open subset U C S such that S\ U is a finite set of closed
points and the restriction of F onto U is generated by the image

of I'(S, F) in I'(U, F).

In the commutative situation we can also globalize the latter defini-
tion.

Definition 3.2. Let S,T be k-schemes, p be the projection of S x T
onto T and g¢;, where t is a closed point of T', be the embedding S =~
Sxt—SxT.

o A family of Og-modules based on T is, by definition, a coherent
sheaf over S x T flat over T.

o If M is a family of sheaves over S based on T" and ¢ is a closed
point of T', denote by M(t) the sheaf g; M.

e Such a family is called a family of vector bundles (respectively
of (mazimal) Cohen-Macaulay modules) if M(t) is locally free
(respectively maximal Cohen—Macaulay module) for each closed
point t € T

e We say that a family F is generically generated over S if there
is an open subset U C S such that S\ U is a finite set of
closed points and the restriction onto U x T of the natural
homomorphism p* p, F — F is an epimorphism.
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General properties of flat families [15, Sections 6.1-6.3] imply the
following.

Proposition 3.3. (1) Suppose that T is a Cohen—Macaulay k-scheme.
A coherent sheaf M on S x T, flat over T, is a family of (max-
imal) Cohen—Macaulay modules if and only if M is a sheaf of
(mazximal) Cohen—Macaulay Ogyr-modules.

(2) Suppose that T is a smooth k-scheme. A coherent sheaf M on
S x T, flat over T, is a family of vector bundles if and only if
M is a vector bundle over S X T (i.e. a locally free sheaf of
Ogxr-modules).

We return to Definitions and Notations 1.1 and prove some results
analogous to those of Kahn about the relations between Cohen—Macau-
lay modules and vector bundles. In this case we call families of sheaves
on X = Spec A families of A-modules. Since we deal mostly with affine
or even non-commutative base, we restrict our considerations to this
case. The globalization of the obtained results is more or less evident.

A family of vector bundles over X based on an algebra A is called full
if it is isomorphic to (7*M)YY, where M is a family of Cohen—Macaulay
A-modules based on A.

Recall that an algebra A is said to be hereditary if gl.dimA < 1
(both left and right). Especially the local rings of points of any smooth
curve, as well as free non-commutative algebras, and, more generally,
path algebras of (oriented) graphs (cf. [11, Section II1.6]) are always
hereditary.

Proposition 3.4. (Cf. [1% Proposition 1.2].) Suppose that a family
F of vector bundles over X based on a hereditary algebra A (or on a
smooth curve) satisfies the following conditions:

(1) F is generically generated over X.

(2) The restriction map H(X, F) — HO(X, F) is an epimorphism
(or, equivalently, the map H}E()N(, F) — HY(X, F) is a monomor-
phism).

Then F s full.

Proof. The claim is evidently local, so we only have to prove it in the
case of algebras. Set M = n.F, F' = n*M/(torsion) and consider F’
as a subsheaf of F in a natural way. Note that if U C X is an open
subset and 71 (U) = |JU; is an affine covering of 7= 1(U), M(U) is a
submodule of @, F(U;). Since A is hereditary, a submodule of a flat
A-module is flat, so M is flat over A. It is coherent since 7 is proper
and M(L) ~ m,F(L) is Cohen-Macaulay by [15, Proposition 6.3.1],
so M is a family of Cohen-Macaulay modules based on A. Moreover,
since F is generically generated over X, codim Supp F/F’' > 2. But X
is normal, hence any sheaf of the form ANV is completely defined by its
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stalks at the points of height 1. In particular, (7*M)Y ~ (F')¥ ~ FV,
so F o~ FYW ~ (m* M)VV. O

Proposition 3.5. (Cf. [19, Proposition 1.6].)  Suppose that Z is
a weak reduction cycle on )N(, F is a family of vector bundles on X
based on a hereditary algebra A (or on a smooth curve) and V =
F ®o, Oz. If V is generically generated by global sections and the
map H(E,V(Z)) — HY(E,V) induced by the eract sequence

0—V(-2Z)—Vy—V —0,
where Vo = F Qo Oaz, is a monomorphism, then F is full.

Proof. Again one only has to consider the case of algebras; then one
simply has to follow literally the proof of Kahn using proposition 3.4.
d

Proposition 3.6. (Cf. [19, Proposition 1.9].) Suppose that Z is a weak

reduction cycle on X and a famaly V of vector bundles over Z based on
a hereditary algebra A (for instance, on a smooth affine curve) satisfies

the following conditions:

(1) V 1is generically generated over Z.

(2) There exists an extension of V to a family of vector bundles Vs
on 27 such that the induced map H*(E,V(Z)) — HY(E,V) is
mjective.

Then there is a full family of vector bundles F over X such that V ~
F ®o,y Oz. If A is finite dimensional, such a family is unique.

Proof. Since H*(E,N') = 0 for each quasicoherent sheaf over Z, any
family of vector bundles over 27 can be lifted to a family of vector
bundles over nZ for every n, hence to a family of vector bundles over
X. Proposition 3.5 implies that F is full. If A is finite dimensional,
the last assertion follows directly from [19, Proposition 1.9]. O

For minimally elliptic singularities one gets a simpler version.

Proposition 3.7. (Cf. [19, Theorem 2.1].) Letw : X — X be
the minimal resolution of a minimally elliptic singularity and Z be the
fundamental cycle on X. Suppose that a family V of vector bundles on
Z based on a hereditary algebra A is of the form V = G ® Oy ® P,
where P = HY(E,G(Z)) and G satisfies the following conditions:

(1) G is generically generated over Z ;

(2) HY(E,G) = 0;

(3) HY(E,G(Z)) is flat as A-module.
Then there is a full family of vector bundles F over X such that F®o,
Oz >~ V. If A is finite dimensional, such a family is unique.
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Proof. Note first that the Kiinneth formulae [7] imply that for each
A-module L

HY(E,G®x L) ~HYE,G)®y L =0 (since H*(E,G) =0)
and
H(E,G®) L) ~HY(E,G)®) L (since HY(E,G) is flat).

Since the ring A is hereditary, the A-module P is flat as a submodule
of @, V(U;) for an affine covering £ = J, U;. It follows that in this
situation we can again repeat the arguments of the corresponding proof
from [19, Page 151] to show that the family V = G & O, ® P satisfies
the conditions of Proposition 3.6. O

Remark 3.8. Suppose that in Propositions 3.6 and 3.7 we consider fam-
ilies based on a smooth affine curve T'. Then the uniqueness assertion
from [19, Proposition 1.9] can be applied to the generic fibres. It implies
that for any two liftings F, F’ there is an open dense subset U C T
such that F|y ~ F'|y. On the other hand, if the base is a projective
smooth curve T, we can only lift a family V of vector bundles over Z
satisfying the corresponding conditions to a family of vector bundles
over X on an open subset U C T'. Moreover, on a smaller open subset
such a lifting is unique. This consideration implies that there is an
etale covering ¢ : 7" — T' such that 0V can be lifted to a full family of
vector bundles over X, hence gives rise to a family of Cohen—-Macaulay
A-modules with the base T".

For cusp singularities we can now precise Corollary 2.5 in the follow-
ing way. (We use the notations of Section 2.)

Corollary 3.9. Let X = Spec A be a cusp singularity. For each suit-
able aperiodic s-sequence d there is a family of Cohen—Macaulay A-
modules M(d) based on T, where T =k*\ {1} ifd=Db, and T' = k*
otherwise, such that M (d,m,\) ~ M(d)®o, L(m, ) for everym € N
and every A € T, where L(m,\) = Or/m}y (my is the mazimal ideal
corresponding to the point X € T).

Proof. Consider the family of vector bundles over E: G= D,_, sO; ®
Or. Define G(d) as the preimage in G of the sub-bundle in G/JG

generated by the elements €] + e}, | for i # rs and the elements e, +
te!, where ¢t denotes the coordinate on 7" and e, e/ are defined as on
page 5, after Theorem 2.1. It is easy to see that G(d) ®e, L(m,\) ~
G(d,m, ). Corollaries 2.4 and 2.5 show that such a family satisfies
the conditions of Proposition 3.7 and H°(E,G(E)) ~ n(d)Or. Hence

G(d)®n(d)Opxr can be lifted to a full family of vector bundles F over

X such that (F ®o, L(m,\)) ®o, Op ~ mn(d)Og ® G(d, m\), where
n(d) = >7° (d; — b; + 1) — 6(d — b"). Therefore, we obtain a family
M(d) of Cohen—-Macaulay A-modules just as we need. O
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Note that among M(d) ®e,. L(m, A) one obtains all indecomposable
Cohen—Macaulay A-modules except A and M (b, m,1).

4. COHEN—MACAULAY TAME AND WILD SINGULARITIES

We provide now some formal definitions of “tame” and “wild” singu-
larities (with respect to the classification of Cohen—Macaulay modules),
analogous to the usual ones from the representation theory of algebras.
Again we consider the case of k-algebras.

Definition 4.1. (1) We call a surface singularity X = Spec A Cohen—
Macaulay tame if it is not Cohen-Macaulay finite and there is
a set M = { M*} of families of Cohen—-Macaulay A-modules
such that

e Each M is based on a smooth connected curve C.

e The set M, = { M| tk M = r } is finite; we denote the
number of elements in it by d(9,r).

e Almost all indecomposable Cohen—Macaulay A-modules of
rank 7 (i.e. all except finitely many isomorphism classes)
are isomorphic to M%(c) for some M* € M, and some
closed point ¢ € C“.

We call a set 9 with these properties a parametrizing set for
Cohen-Macaulay A-modules. We also denote by d(r, X) =
min { d(9,r) }, where 9 runs through all parametrizing sets
for Cohen—-Macaulay A-modules.

(2) We call a tame surface singularity bounded (or of polynomial
growth) if there is a polynomial ¢(r) such that d(r, X) < o(r)
for all r, and unbounded otherwise. We say that this singularity
is of exponential growth if d(r, X) growths exponentially when
r— 00.

Example 4.2. (1) Corollary 3.9 shows immediately that every cusp
singularity is Cohen—Macaulay tame. Moreover, it follows from

[10] that it is of exponential growth.
(2) Just in the same way, the results of [19] show that every simple
elliptic singularity is also Cohen—Macaulay tame, bounded (the
corresponding families are based either on Pic® E or on Pic® E'\

{0}).

Remark 4.3. Denote by Pic” E the subgroup of the Picard group of a
(singular) curve E consisting of the classes of all line bundles £ such
that the degree of the restriction of £ onto every irreducible component
of E equals 0. One can easily see that Pic® E ~ k* for every cusp
singularity. Since the parametrizing families for cusp singularities are
based either on k* or on k*\ {1}, both examples above have a lot of
common features.
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Definition 4.4. (1) A family M of Cohen-Macaulay A-modules
based on an algebra A is called strict if for every finite dimen-
sional A-modules L, L/
e M(L)~ M(L) if and only if L ~ L/,
e M(L) is indecomposable if and only if so is L.
(2) We call a surface singularity X = Spec A Cohen—Macaulay wild
if for every finitely generated (not necessarily commutative) k-
algebra A there is a strict family of Cohen—Macaulay A-modules
based on A.

Remark 4.5. Tt is well known (cf. [8]) that to prove that X is Cohen—
Macaulay wild one only has to find a strict family for one of the fol-
lowing algebras A:

(i) k(x,y), the free non-commutative algebra with 2 generators;
(ii) k[z,y], the polynomial algebra with 2 generators;

(iii) k[[x,y]], the power series algebra with 2 generators.

(iv) kI's, the path algebra of the graph

FBI .%.

It is the 5-dimensional algebra with a basis { ey, e, a1, as,a3 }

and the multiplication: e? = e¢;, a;e; = esa; = a;, all other

products are zero (cf. for instance [11]).
Cases (i) and (iv) are the most appropriate for our purpose since they
are hereditary (and (iv) is even finite dimensional), so we can use all
results on families from the preceding section. Since we do not know
whether those results do also hold for non-hereditary algebras, for in-
stance, for k[z,y] (although it may be conjectured), the proof of our
main results rests indeed upon using families with non-commutative
bases.

Obviously, if X is Cohen—Macaulay wild it has families M of Cohen—
Macaulay modules based on any given algebraic variety T, such that
all modules M(t) with ¢ € T are indecomposable and pairwise non-
isomorphic.

Theorem 4.6. Suppose that a minimally elliptic singularity X is nei-
ther simple elliptic nor cusp. Then it is Cohen—Macaulay wild.

Proof. Recall [10] that E is vector bundle wild if £ is neither a smooth
rational or elliptic curve, nor a cyclic or linear configuration, where
a linear configuration is a curve F such that all its components Ej;
(¢ =1,...,s) are smooth rational, E;NE; = 0if j # i+ 1, while E; and
E; 11 intersect transversally in exactly one point for i = 1,...,s—1 (in
other words, its dual graph is of type A,,). The latter case is impossible
since X is not rational. So, if X is neither simple elliptic nor a cusp,
the fundamental cycle Z is vector bundle wild, i.e. there is a strict
family of vector bundles G over Z based on kI's. By Serre’s Theorems
[16, Theorems I11.5.17 and II1.5.2], there is an integer n such that G(n)
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is generated by global sections and H'(E,G(n)) = 0. Since G(n) is
obviously also strict, one can suppose that G itself has these properties.
By Proposition 3.7, there is a full family F of vector bundles over X
based on kT'y such that F®o_ Oz ~ G&Oz®p,G. Let F = (7" M),
where M is a family of Cohen—Macaulay modules. Since G is strict,
Kahn’s theorem (Theorem 1.3) implies that M is also strict, hence X
is Cohen—Macaulay wild. O

Consider the following procedure that allows to obtain new Cohen—
Macaulay tame singularities.

Let B be a local noetherian ring with maximal ideal m, A O B
be a finite B-algebra. We call this extension (or the corresponding
morphism Spec A — Spec B) split if the embedding B — A splits as
monomorphism of B-modules, i.e. A~ B® (A/B). It is called unram-
ified if A/mA is a separable B/m-algebra, or, equivalently, the natural
epimorphism ¢ : A ®p A — A of A-bimodules splits [5]. A is called
unramified in codimension 1 if the extension B, C A, is unramified
for every prime ideal p C B of height 1. We also denote by A X M,
where M is a B-module, the second dual (A®p M)" of the A-module
A®p M.

Lemma 4.7. Let B C A be a finite extension of normal rings. This

extension is unramified in codimension 1 if and only if the epimorphism
of A-bimodules ¥V : AR A — A splits.

Proof. If €'V splits, €;" also splits for every prime p. If htp = 1, ¢/
coincides with ¢y, thus the extension B, C A, is unramified. Suppose
now that B C A is unramified in codimension 1. Then the extension
K C L is separable, hence the exact sequence

0—J Lol -1 —0

splits and L ®p L is a semi-simple ring, so L ®x L = J & J', where
J' = Annpg,.rJ, ¢(J') = L, and the restriction of ¢ onto J' is an
isomorphism. Obviously, AKX A is a B-subalgebra in L ®x L and ¥V is
the restriction of ¢ onto AKA. Set [ = JN(AKA), I' = JN(AKA).
Then ¢ induces an epimorphism of L-bimodules ¢, : Hom- (L, L ®
L) — Homy- (L, L). Since L ~ (L ®k L)/J, ¢, can be identified with
a mapping J' — L, so it is an isomorphism. Moreover, ¢.(I;) = A, for
every prime ideal p of height 1, as the extension B, C A, is unramified.
But obviously I" = (-, I, and A = Npyp=14y, so ¢.(I') = A and
AKX A — A splits. O

Proposition 4.8. Let X = Spec A, Y = Spec B be normal surface
singularities and X — Y be a finite surjective morphism given by an
extension B — A.

(1) If X — Y s split and X is Cohen—Macaulay tame, so is also
Y ; moreover, if X is bounded, so isY .
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(2) If X — Y is unramified in codimension 1 and Y is Cohen—
Macaulay tame, so is also X; moreover, if Y is bounded, so is
X.

Proof. (1) Suppose that this extension is split and rkg A = m. If N
is a Cohen—Macaulay B-module of rank r, it is a direct summand of
A ®p N, hence of AKX N as B-module. Note that tky AXN = r
too, so tky A N = mr. Suppose that A is Cohen—Macaulay tame.
For every family M® from Definition 4.1 let ¢* be the general point of
the curve C* and M?(t*) = Py N @8 where N are indecomposable
B ® k(t*)-modules. There is an open subset U* C C* and a decompo-
sition M®|pa ~ @4 N (as family of B-modules) such that N*%(c) is
indecomposable for all ¢ € U®. Denote by 0N, the set of all N*% such
that tk N? = r, while r/m < rk M < r. It is a finite set having
at most > 7, 1[mj/rld(M, j) elements. We also denote by M, the
set of indecomposable Cohen—Macaulay A-modules of rank s that are
not of the form M*(¢) (¢ € U,) and by ' the set of indecomposable
B-modules of rank r that are direct summands (over B) of modules
M € M with r/m < s < r. Certainly M and N are both finite.

Let N be any indecomposable Cohen—Macaulay B-module of rank
r. It is a direct summand of an indecomposable Cohen—Macaulay A-
module M of rank s with r/m < s <r. If rk M = s, either M € M*
or M ~ M%(c) for some M, € M, and some ¢ € C*. In the former
case N € 0¥, while in the latter case N ~ N*?(c) for some N € N,
and some ¢ € U®. Therefore Y is Cohen-Macaulay tame. Moreover,
d(r,Y) < Z;:Wm] [mj/r|d(j, X), hence if X is bounded, so is Y.

(2) Suppose that this extension is unramified in codimension 1. If M
is any Cohen—Macaulay A-module, one easily verifies that (AKX M)Y ~
(AX A) ®4 M)Y. Hence MV is isomorphic to a direct summand of
(AX M)Y and M is isomorphic to a direct summand of AX M. So,
there is an indecomposable Cohen-Macaulay B-module N such that
M is isomorphic to a direct summand of AKIN and rkg N <rky M <
mrkg N. Now the same considerations as above show that if B is
Cohen-Macaulay tame (bounded), so is A. O

Remark 4.9. Suppose that X — Y is both split and unramified in
codimension 1. Then the proof of proposition 4.8 implies that if X is
of exponential growth, so is Y.

Important examples arise from group actions.

Proposition 4.10. Let G be a finite group of automorphisms of a
normal surface singularity A, and let B = A% be the subalgebra of
G-invariants. For a prime ideal p C A set

Gy ={g€G|gp=p and g acts trivially on A/p}.
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(1) If chark does not divide n = card G, the extension B C A
splits.

(2) If G, = {1} for every prime ideal p C A of height 1, this
extension is unramified in codimension 1.
In the latter case we say that G acts freely in codimension 1.

Proof. (1) The mapping A — B, a — % ZgGG ga, splits this extension.

(2) Let ¢ C B be any prime ideal of height 1, py,po, ..., ps be all
minimal prime ideals of A containing q. All of them are of height 1,
and G acts transitively on the set {p1,pa,...,ps} [25, Section IIL.3].
Denote K = By/qBy, L = Ay/qA, and L; = Ay, /p;A,,. Since tky A =
card G = n, L is an n-dimensional K-algebra, and [];_, L; is a factor-
algebra of L. Set G; = {g€ G|gp=p}. These subgroups are all
of the same cardinality m and ms = n. The subgroup G; acts as a
group of automorphisms of L; over K, so m < dimg L; and n = ms <
dimg [[;_, L;. Hence, L = [];_, L; and m = dimg L;, so L; is a Galois
extension of K and L is separable over K. Il

Corollary 4.11. We keep the notations of the preceding proposition.

(1) If chark does not divide card G and A is Cohen—Macaulay tame
(bounded), so is B.

(2) If G acts freely in codimension 1 and B is tame (bounded), so
is A.

(3) If both conditions hold, A is of exponential growth if and only
if so is B.

Call a surface singularity Y a simple elliptic-quotient (respectively a
cusp-quotient) if it is a quotient of a simple elliptic singularity (respec-
tively of a cusp) by a finite group G such that chark does not divide
card G. Both simple elliptic-quotient and cusp-quotient singularities
will be called elliptic-quotient singularities. If chark = 0, elliptic-
quotient singularities coincide with those log-canonical ones which are
not quotient singularities (cf. [21]).

Corollary 4.12. Fwvery elliptic-quotient surface singularity is Cohen—
Macaulay tame. Among them, simple elliptic-quotient are bounded,
while cusp-quotient are of exponential growth.

A special case is that of Q)-Gorenstein singularities and their Goren-
stein coverings defined as follows.

Definition 4.13. Let w = wp be a dualizing ideal of a normal sin-
gularity B. Denote by wll = ,, =1 wy (k € Z) (note that each w,
is a principal ideal, since B, is a discrete valuation ring). Call B @-
Gorenstein if there is n > 0, prime to chark, such that the ideal w™
is principal.

Proposition 4.14. Suppose that B is @-Gorenstein. Let n be the
smallest positive integer such that w™ is principal, W™ = 6B. Denote
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A= @Z;S W and consider it as B-algebra by setting a - b = ab/0 for
k+1>n,acw® bewl. Then A is a normal Gorenstein singularity
and B = A%, where G is a cyclic group of order n that acts on A freely
in codimension 1. We call A the Gorenstein covering of B.

Proof. If p C B is a prime ideal of height 1, w, = vB, for some v and
6 = ~"( for an invertible element ¢ € B,. Then A, ~ B,[t]/(t" — (),
so it is unramified in codimension 1, especially A, is normal. Since A
is Cohen-Macaulay, A = (), p=1 Ap, s0 A is normal itself. Moreover,
Homp(w* w) ~ wl=* 50 wy ~ Homp(A,wp) ~ A, thus A is Goren-
stein. If K is the field of fractions of B, L is the field of fractions of A,
then L ~ K[t]/(t" — () is a Galois extension of K with cyclic Galois
group of order n. Therefore B = A% and G acts freely in codimension
1. O

Proposition 4.15. Let B be a Q-Gorenstein surface singularity, A be
its Gorenstein covering. If A is Cohen—Macaulay tame (bounded, of
exponential growth), so is B and vice versa.

Remark. 1f char k = 0, the log-canonical singularities are just those Q-
Gorenstein that their Gorenstein coverings are either rational double
points (in the case of quotient singularities), or simple elliptic, or cusp
singularities.

We call a normal surface singularity Q-elliptic if it is Q-Gorenstein
and its Gorenstein covering is minimally elliptic.

Corollary 4.16. A Q-elliptic singularity is Cohen—Macaulay tame if
and only if it is elliptic-quotient; otherwise it is Cohen—Macaulay wild.

5. CURVE SINGULARITIES T}

Important examples of cusp singularities for chark = 0 are the “se-
rial” unimodal singularities [1] T,y A = K[z, y, 2]]/ (2P + y? + 2" +
azyz), wherer <p < gand 1/p+1/g+1/r < 1, o € k* (in this case all
values of « lead to isomorphic algebras). Note that if 1/p+1/q+1/r =
1, the corresponding singularity is simple elliptic except for finitely
many special values of a. If r = 2, Cohen-Macaulay modules over
this singularity are closely related to those over the curve singularity
T, Indeed, in this case the singularity T, can be rewritten in the
form: A =k[[z,v, 2]]/(2* + 2P +y? + Bz*y?) for f = —a?/4. Therefore,
one can use the Kndrrer’s correspondence (cf. [22, 27]) described in the
following proposition to relate Cohen—Macaulay modules over A and
over the curve singularity A/(2%) = k[[z, y]] /(2P + 39+ Bz*y?), denoted
Tpq.

Proposition 5.1. Let f € k[[xy,2o,...,2,]] be a non-invertible ele-
ment, A =X|[[xg,z1,...,x,]]/ (2% + [) and A" = k[[z1, 79, ..., 2,]]/(f).
For every Cohen—Macaulay module M over A let rest M = M/xoM
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and M? be the A-module that coincide with M as a group, while the
action of the elements of A is given by the rule: a -y v = a% 31 v,
where g(xg, 1, ...,2,)° = g(—xo, 1, T2, ..., x,). Then:

e cvery indecomposable Cohen—Macaulay A’-module is a direct
summand of rest M for an indecomposable Cohen—Macaulay A-
module M and M ~ A if and only if rest M ~ A’;

e if M is an indecomposable Cohen—Macaulay A-module such that
M % M?, rest M is also indecomposable;

o if M % A is an indecomposable Cohen—Macaulay A-module
such that M ~ M?, then rest M is a direct sum of two non-
isomorphic indecomposable Cohen—Macaulay A’ -modules, which
we denote by resty M and resto M.

o if M, N are non-isomorphic indecomposable Cohen—Macaulay
A-modules and M % N¢, then the indecomposable A'-modules
obtained from M and from N as described above are also non-
1somorphic.

Obviously, always rest M ~ rest(M?) and A7 ~ A.

So, to describe the Cohen—Macaulay modules over the curve singular-
ity T,, we have to know when M7 ~ M for a Cohen-Macaulay module
M over the surface singularity T,,,.. The automorphism g — ¢ induces

an automorphism of the minimal resolution X, hence an automorphism
of the exceptional curve E and of the category of vector bundles over
E. We denote all these automorphisms by ¢ too. The following result
is immediate (cf. the definition of Rg from Theorem 1.2).

Proposition 5.2. RgM? ~ (RgM)? for every Cohen—Macaulay A-
module M.

From the description of the minimal resolutions of T, given, for
instance, in [20, 23], one can deduce the following shape of the excep-
tional curve E for the minimal resolution of T, and for the action of
the automorphism o on it.

Proposition 5.3. (We use the notations from Section 2.)

(1) If p = 3 (hence ¢ > 7), then s = q—6. If ¢ > 7, E has
1 component E, with self-intersection —3 and s — 1 compo-
nents Es, ..., Es with self-intersection —2; EY = E; and Ef =
Esio ;. If q =7, E is irreducible with one node and E-FE = —1.
In both cases o(p) = p.

(2) If p=4 (hence ¢ >5), then s=q—4. If ¢ > 5, E has 1 com-
ponent Ey with Fy - E1 = —4 and s — 1 components Es, ..., E,
with E; - E; = —2. If ¢ =5, E is irreducible with one node and
E - FE = —2. The action of o is the same as in the previous
case.

(3) If p > 5, then s =p+q—8. Putt =p—3. E has 2 components
Ey and E, with E;- E; = —3 and s—2 components with E;- E; =
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—2 (noone ifp =q=25). Ef = Eq; if1 <s <t and
Ef = Egpppa— ift <i < s;o(p) = p.

(2

Given an s-sequence d = (dy,ds, . .., d,s), denote by d” the sequence
(dy,dy, ..., d.,) obtained from d by the following procedure (we keep

»rs

the notations of Proposition 5.3):
e if p=3orp=4, then d| =d; and d; = d,540; for 1 <i <rs;
o if p>5 then d, = dyy1; for 1 <i <tandd, = dysi441-; for
t<i1<rs.
We call an s-sequence d o-symmetric if d” = d*, where d* is an s-shift
of d (cf. page 5). Then the description of Cohen-Macaulay modules
from Section 2 implies the following results.

Corollary 5.4. Let M = M(d,m,\) be an indecomposable Cohen—
Macaulay module over the surface singularity Ty (cf. Corollary 2.5).
Then M? ~ M(d?, m,1/\). In particular, M ~ M if and only if the
sequence d s o-symmetric and A = +1.

Corollary 5.5. The indecomposable Cohen—Macaulay modules over
the curve singularity A" = k|[[z, y]]/ (2P + y? + Bx?y?) of type Ty, (q >
p, 1/p+1/q < 1/2) are the following:
e N(d,m,\) = rest M(d,m,\), where either the sequence d is
not o-symmetric or X # £1;
e N;(d,m,+1) = rest; M(d,m,£1) (i = 1,2), where d is o-
symmetric;
e the reqular module A’.

The only isomorphisms between so defined Cohen—Macaulay modules

are N(d,m,\) ~ N(d?,m,1/)\).

Note that the modules N(d, m,A) with A # £1 form rational fami-
lies based on (k*\ {1,—1})/Zs, where the cyclic group Zy acts on k

mapping A to 1/\. One easily sees that this factor is isomorphic to
k*\ {1,—1} itself.

6. HYPERSURFACE SINGULARITIES

We also can use the previous results and Knorrer’s correspondence
to describe Cohen—Macaulay modules on hypersurface singularities of
type T, in any dimension. Such a hypersurface is given by the equa-

tion 2P + y? + 2" + axyz + Zle v? for some k (maybe, 0). Recall the
main results concerning Knérrer’s correspondence [22, 27].
Proposition 6.1. Let f € k[[.%'l,.flfg,.;. ,xn]] be a non-invertible ele-
ment, A = k|[[x1,2o,...,2,]]/(f) and A = K[|z, z1, ..., z.]]/(f + 22).
For every Cohen-Macaulay module M over A let syz M denote the
first syzygy module of M considered as A-module via the natural epi-
morphism A — A ~ A/(x¢). If M has no free direct summands, let
QM denote its first syzygy as A-module. Then:
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o cvery indecomposable Cohen—Macaulay A-module is a direct sum-
mand of syz M for an indecomposable Cohen—Macaulay A-module
M and M ~ A if and only if syz M ~ A;

e if M is an indecomposable Cohen—Macaulay A-module such that
M £ QM , syz M is also indecomposable;

o if M % A is an indecomposable Cohen—Macaulay A-module
such that M ~ QM, then syz M is a direct sum of two non-
isomorphic indecomposable Cohen—Macaulay A-modules, which
we denote by syz, M and syz, M.

e if M,N are non-isomorphic indecomposable Cohen—Macaulay
A-modules and M % QN, then the indecomposable A-modules
obtained from M and from N as described above are also non-
1somorphic.

e if M has no free direct summands, then syz(QQM) ~ syz M.

Obviously, this proposition implies immediately that if A is Cohen—
Macaulay tame, so is A (and vice versa in view of Proposition 5.1),
just as in Proposition 4.8. In particular, as we have already mentioned,
for k = 0, the (surface) singularity of type T,, is simple elliptic for
1/p+1/¢g+1/r =1 and a cusp for 1/p+1/g+ 1/r < 1 [23]. Hence
the results of Section 3 imply

Corollary 6.2. Every hypersurface singularity of type Ty, s Cohen—
Macaulay tame.

7. AUSLANDER—REITEN QUIVERS

In this section we calculate Auslander—Reiten quivers for Cohen—
Macaulay modules and related vector bundles. Recall (cf. e.g. [4,
6]) that an Auslander—Reiten sequence in a category of modules or of
vector bundles is a non-split exact sequence

0—M 2N Lom—o,

where M, M’ are indecomposable, such that any homomorphism N’ —
M that is not a split epimorphism factors through f (equivalently, any
homomorphism M’ — N’ that is not a split monomorphism factors
through g). Each of the modules M, M’ uniquely defines the second
one. Usually M’ is denoted by 7M and called the Auslander—Reiten
translate of M. In [6] it was proved that for any indecomposable vector
bundle G on a projective curve F there is an Auslander—Reiten sequence

0 — wp ®op G — € — G — 0.

In particular, if F is a cyclic configuration, then, using the notation
of Section 2, wg ~ O ~ G(0,1,1) and if G = G(d, m, \), there is an
exact sequence

0—G—&—G—0,
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where

I [CERY ifom =1,
1 gd,m+ 1N eG(d,m—1,)) if m>1,

that is easily recognized as Auslander—Reiten sequence (if chark = 0
it follows immediately from [6], and the combinatoric description of
VB(X) in [10] does not depend on the characteristic). In particular,
the Auslander—Reiten quiver of the category of vector bundles over a
cyclic configuration is a disjoint union of homogeneous tubes

T(d,N): G(d,1,\)SG(d,2,)) SG(d,3,\) S ...

with 7G = G for every indecomposable vector bundle G. Here d runs
through aperiodic s-sequences and A\ € k*.

Passing from vector bundles to Cohen-Macaulay modules, we use
the following result of Kahn:

Proposition 7.1. [19, Theorem 3.1] If X is a minimally elliptic sin-
gularity, Z its fundamental cycle and 0 — M — N — M — 0 an
Auslander—Reiten sequence in CM(X), then the exact sequence 0 —
R;M — Rz;N — RzM — 0 is the direct sum of an Auslander—Reiten
sequence 0 — G — F — G — 0 and a split sequence 0 — nQOy; —
QHOZ — ’N,OZ — 0.

(Note that, as a minimally elliptic singularity is Gorenstein, any Aus-
lander—Reiten sequence in CM(X) is of the form 0 — M — N — M —
0, cf. [6, Theorem 1.3.1].)

Corollary 7.2. All Auslander—Reiten sequences of Cohen—Macaulay
modules over a cusp singularity are the following:

0— M(d,1,\) — M(d,2,\) = M(d,1,\) =0 if d#b or N\#1;
0— M(b,1,1) = Ad M(b,2,1) - M(b,1,1) — 0;

0— M(d,mA) - Md,m+1,A\)@&Mdm-1,)) — Md,m,A) —0
if m>1.

In particular, the Auslander—Reiten quiver of the category CM(X),
where X is a cusp singularity, is a disjoint union of homogeneous tubes
T(d,N): M(d,1,\) S M(d,2,\) S M(d,3,)\) S ...

where d # b or A # 1, and one “special” tube

T(b,1): AsS M(b,1,1) S M(b,2,1) S M(b,3,1) = ...
enlarged by the regular module A that is both projective and ext-
injective in this category (the latter means that Extly (M, A) = 0 for any

Cohen—Macaulay module M). Again 7M = M for all indecomposable
modules M % A (obviously, 7A does not exist).

Passing from the singularities T2 to T,,, one only has to note that
Knorrer’s correspondence maps an Auslander—Reiten sequence 0 —
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M — N — M — 0 either to an Auslander—Reiten sequence 0 —
rest M — rest N — rest M — 0 (if M7 % M) or to the direct sum of
Auslander—Reiten sequences 0 — resto M — N’ — resty M — 0 and
0 — resty; M — N” — resto M — 0 if M ~ M (cf. [22, Corollary
2.10]). In particular, considering the Auslander—Reiten sequence 0 —
M(b,1,1) - A M(b,2,1) — M(b,1,1) — 0, we see that A" must be
in the middle term of the Auslander—Reiten sequence starting either
from Ny(b,1,1) or from Ny(b,1,1). We choose the second possibility
(it only depends on the notation). We also choose the notations in such
a way that N;(d,m+1,+£1) is a direct summand of the middle term of
the Auslander—Reiten sequence starting from N;(d,m,£1) (i = 1,2).
Then the Auslander—Reiten quiver is in this case a disjoint union of
homogeneous tubes

T(d,\): N(d,1,A) S N(d,2,0) S N3\ S ...

for non-o-symmetric d or for A # 1; regular tubes ¥(d, £1) of period
2 for o-symmetricd (d # b or A = —1):

Ni(d,1,£1) — Ny(d,2,+£1) — Ny(d,3,+1) —= ---

X X X

Ny(d,1,£1) = Ny(d,2,+£1) = Ny(d,3,+1) — ...

and one “special” tube ¥(b, 1) of period 2 enlarged by the regular mod-
ule A’

/Nl(b,l,l) - Nl(b,Q,l) - Nl(b,3,1> -
/

“ X X X

Ng(b,l,l) - NQ(b,Q,l) - Ng(b,3,1) -

A

The action of the Auslander—Reiten translate 7 is trivial in homoge-
neous tubes and coincides with the obvious axis symmetry in those of
period 2.

The procedure is quite the same when passing to hypersurface sin-
gularities T, of higher dimensions. Namely, again the mapping syz
transforms an Auslander—Reiten sequence 0 — M — N — M —
0 either to an Auslander—Reiten sequence 0 — syzM — syzN —
syzM — 0 (if M % QM) or to the direct sum of Auslander—Reiten
sequences 0 — syzo, M — N’ — syz; M — 0 and 0 — syz; M — N" —
syzo M — 0.

For a hypersurface singularity of type Ty, (1/p+1/¢+1/r < 1), one
can use Knorrer’s periodicity [22, 27] to describe the part of the Aus-
lander—Reiten quiver not containing the free module and the result of
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Selberg [26] on the position of the free module in an Auslander—Reiten
sequence. Then one obtains that if the dimension n = k-3 is even, the
Auslander—Reiten sequence is the same as for the corresponding surface
singularity, with the only exception that the tube containing the free
module begins not from two arrows but from 2"/2 ones (half of them
starting and half of them ending at A). If n is odd, the Auslander—
Reiten sequence looks like that for the curve case, except of the tube
containing the free module, where to each arrow starting or ending at
A should be added 2"z} ones such that each next arrow goes to the
opposite direction with respect to the preceding one.

8. SUMMARY AND CONJECTURES

We can now summarize the known results on Cohen-Macaulay types
of isolated Cohen-Macaulay singularities. This is done in Table 1. To
make it more uniform, we call a curve singularity of type T, simple
elliptic if 1/p+1/q=1/2 and a cusp if 1/p+1/q < 1/2. In the same
way, we call a hypersurface singularity of type T,, simple elliptic if
1/p+1/q+1/r=1and a cusp if 1/p+1/q+1/r < 1, though it seems
not to be the usual practice.

Moreover, there is some evidence that these results are complete, that
is, all the remaining singularities are Cohen—Macaulay wild. We formu-
late the corresponding conjectures as well as one related to non-isolated
singularities. Here (X, z) denotes any Cohen—Macaulay singularity of
an algebraic variety over a field of characteristic 0 and Cohen—Macaulay
type refers to its complete local ring A.

Conjecture 8.1. In the following cases the ring A = Ox. is Cohen—
Macaulay wild:

(1) (X, z) is a surface singularity which is neither a quotient nor
an elliptic-quotient.

(2) (X, z) is a hypersurface singularity, which is neither a simple
one nor of type Tpyr.

(3) (X, z) is a non-isolated singularity with the dimension of the
singular locus greater than 1.

If this conjecture is true, it yields a complete description of isolated
Cohen-Macaulay tame surface and hypersurface singularities together
with a classification of their indecomposable Cohen—Macaulay modules.
At the moment we have neither further conjectures, nor even examples
concerning Cohen—Macaulay types of non-isolated singularities, even in
hypersurface case, though it seems that very few of them can be tame.

Remark 8.2. All known examples of Cohen—Macaulay tame unbounded
singularities, in particular those from Table are actually of exponential
growth. It seems very plausible that it is always so. Nevertheless, just
as in the case of finite dimensional algebras, it can only be shown a
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Table 1.

Cohen—Macaulay types of singularities

CM type curves surfaces | hypersurfaces
finite dominate | quotient simple
simple
tame dominate simple simple
bounded simple elliptic- elliptic
elliptic quotient (no other ?)
(no other ?)
tame dominate cusp- cusp
unbounded cusp quotient (no other ?)
(no other ?)
wild all other | all other? all other ?

posteriori, when one has a description of modules. We do not see any
“natural” way to prove this conjecture without such calculations.

Remark 8.3. In the complex analytic case, Artin’s Approximation The-
orem [2] implies that the list of Cohen—Macaulay modules (Corol-
lary 2.5) remains the same if A denotes the ring of germs of analytic
functions on a cusp singularity. The lifting of families (Propositions 3.6
and 3.7) is more cumbersome. We do only claim that, for each point
t € T, alifting is possible over a neighbourhood U of ¢ in T'. Combined
with the uniqueness assertion, just as in Remark 3.8, it gives a lifting
of an appropriate family to the universal covering 7" of T. If T'is a
smooth curve, so is T', therefore the results on tameness from Section 4
remain valid. On the other hand, in the case of cusps it seems credible
that the families G(d) from the proof of Corollary 3.9 can actually be
lifted over T', just as in [19] for simple elliptic case. Moreover, in the
case (iv) of Remark 4.5, where the base is a finite dimensional algebra,
Artin’s Approximation Theorem can also be applied, so Theorem 4.6
remains valid in the analytic case too.
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