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Introduction

“Algebraic families” of modules and algebras play an important role in several ques-
tions of representation theory. It is often especially useful to know that some “dis-
crete invariants” are constant or, at least, are semi–continuous in such families, that
is they can change only in “exceptional points” which form a family of smaller di-
mension. Perhaps the best known results in this direction are those of Gabriel [Gab]
and Knörrer [Kn]. Gabriel proved that finite representation type is an open condi-
tion for finite dimensional algebras (“fat points”), while Knörrer showed that the
number of parameters for modules of prescribed rank is semi–continuous in families
of commutative Cohen–Macaulay rings of Krull dimension 1 (“curve singularities”).
In [DG 2] Knörrer’s theorem was used to show that the unimodal singularities of
type Tpq are of tame Cohen–Macaulay type.

Unfortunately, the arguments of [Kn] do not work in the non–commutative case.
The aim of this paper is to refine them in such a way that they could be applied
to non–commutative Cohen–Macaulay algebras, too. For this purpose we introduce
the notion of “dense subrings” which seems rather technical but, nevertheless, use-
ful. It enables the construction of “almost versal” families of modules for a given
algebra (cf. Theorem 3.5) and the definition of the “number of parameters”. Just
as in the commutative case, it is important that the bases of these “almost versal”
families are projective varieties. Once having this, we are able to prove an analogue
of Knörrer’s theorem (cf. Theorem 4.9) and a certain variant (cf. Theorem 4.11)
which turns out to be useful, for instance, to extend the tameness criterion for com-
mutative algebras [DG 2] to the case of characteristic 2. The semicontinuity implies,
in particular, that the set of so–called “wild algebras” in any family is a countable
union of closed subsets. A very exciting problem is whether it is actually closed,
hence whether the set of tame algebras is open. However, Theorem 4.9, together
with the results of [DG 2], imply that tame is indeed an open property for curve
singularities (commutative one-dimensional Cohen–Macaulay rings).

An analogous procedure leads to the semicontinuity of the number of parameters in
other cases, like representations of finite dimensional algebras or elements of finite
dimensional bimodules.

Though we do not consider here the problem of constructing moduli spaces for
Cohen-Macaulay modules (cf. [GP]), we may rephrase the semicontinuity theorem
by saying that the dimension of the moduli space for such modules of prescribed rank
varies upper semicontinuosly in flat families of Cohen-Macaulay algebras. Likewise,
the semicontinuity in other cases (finite-dimensional algebras or bimodules) may
be also understood as semicontinuity of the dimension of the corresponding moduli
spaces of representations under deformations of the algebra or bimodule.

Unfortunately, our results are, just as all known results till now, not sufficient to
prove the “tame is open condition”–conjecture. Nevertheless, the semicontinuity
theorem as well as the construction of “almost versal” families of modules are not
restricted to tame algebras. They have a potentially broader field of applications to
classification problems in representation theory. They are a particularly powerful
tool if, for a given algebra, the deformation theory of this algebra is sufficiently
known and the classification problem for the deformed algebras is easier to solve or
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even known. The great success of this approach in the commutative case is, of course,
also due to the fact that the deformation theory of singularities is a highly developed
field. We hope that this paper stimulates further research in the deformation theory
for non–commutative Cohen–Macaulay algebras.
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1 Dense subalgebras

Definition 1.1 Let B be a subring of a ring A. Call B dense in A if any simple
A–module U is also simple as B–EndAU–bimodule.

Examples:

1. If A is commutative, then EndAU = A/Ann U , so any subring B is dense in
A.

2. We can take A = M2(R) the ring of 2 × 2 real matrices and B = C (or
even B = Q(i)), naturally embedded in is A. More generally, let k be some
field, L, K and B be its extensions such that L = KB (a composite) and
(L : K) = n. Then we have a natural embedding L → A = Mn(K), thus also
B is a subalgebra of A and B is dense in A.

Lemma 1.2 Let D be a division algebra over an infinite field k, A = Mn(D) and
B ⊂ A a dense subalgebra. Consider W = Mn×m(D) as A–module and let V ⊂ W
be a B–submodule such that AV = W . Suppose that m = nq + r with 0 ≤ r < n.
Then there exists an automorphism σ of W such that σ(V ) contains the matrices

E1 = (I 0 . . . 0 0′), E2 = (0 I . . . 0 0′), . . . ,

Eq = (0 0 . . . 0 I 0′)

and a matrix of the form (Y1 Y2 . . . Yq Y ′).

Here I denotes the n × n unit matrix,
0 denotes the n × n zero matrix,
0′ denotes the n × r zero matrix,

Y1, Y2, . . . , Yq are some n × n matrices and Y ′ is an n × r matrix of rank r (of
course, if r = 0, then 0′ and Y ′ are empty, so in this case V contains an A–basis of
W ' qA).

Proof: Use induction on m. First prove the claim in the case m ≤ n. Choose
a matrix X ∈ V of maximal possible rank, say d. Then we must show that d =
m. Suppose that d < m. Denote by X̄1, X̄2, . . . , X̄m the columns of X and let
X̄1, X̄2, . . . , X̄d be linear independent. Then there exists an automorphism σ of W
such that the last (m − d) columns of σ(X) are zero. So we may suppose that
X̄d+1 = . . . = X̄m = 0̄. Note that W ' mU where U = nD is the only simple
A–module. As d < n, X̄1, X̄2, . . . , X̄d do not span U over D. Denote by V ′ the
projection of V onto the (d+1)–st component of W (i.e. V ′ ⊂ U consists of the first
d + 1 columns of the matrix from V ). As AV = W , we have AV ′ = U , so V ′ 6= 0.
But as U is a simple B–D–bimodule, V ′D = U . Therefore, V contains a matrix Y
such that its (d + 1)–st column Ȳd+1 does not lie in 〈X̄1, X̄2, . . . , X̄d〉D. Choose a
D–basis of U of the form {X̄1, X̄2, . . . , X̄d, Ȳd+1, Z̄d+2, . . . , Z̄n} and let

Ȳi =
d∑

j=1

X̄iλij + Ȳd+1λi,d+1 +
n∑

j=d+2

Z̄jλij .
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Again, using an automorphism of W , we may suppose that λi,d+1 = 0 for i 6= d + 1.
But then rank(γX + Y ) ≥ d + 1 for some γ ∈ k, which is a contradiction. Hence,
d = m. In particular, if m = n, there exists an automorphism σ of W , such that
σ(X) = I. Thus, our claim is proved for m ≤ n.

Suppose now that m > n and consider the projection V ′ of V onto W ′ = nU , the
first n components of W (that is the first n columns of each matrix X ∈ W ). As
we have proved, there exists an automorphism σ′ of W ′ such that σ′(V ′) 3 I. We
can extend σ′ to W and thus suppose that V contains a matrix X of the form
(IX ′). Again using an automorphism, we obtain that X ′ = 0, that is X = E1. Now
consider the projection V ′′ of V onto W ′′ = (m − n)U , the last components of W .
Using induction, we may also suppose that the claim is valid for V ′′, thus V contains
the matrices of the form:

(X2 I 0 . . . 0 0′), (X3 0 I . . . 0 0′), . . . ,
(Xq 0 . . . 0 I 0′), (Y1 Y2 . . . Yq Y ′)

with rank(Y ′) = r. But then, again using an automorphism of W , we can make
X2 = X3 = . . . = Xq = 0, q.e.d.

Corollary 1.3 Let B ⊂ A be a dense subring. Suppose that A/rad A is an artinian
ring containing an infinite field k in its centre and, moreover, k ⊂ B/(B ∩ rad A)
(for example B and A are k–algebras). Let V ⊂ nA be a B–submodule such that
AV = nA. Then V contains an A–basis of nA.

Proof: Of course, we may replace A by A/rad A, so suppose that A =
∏s

i=1 Ai with
Ai simple artinian. Put Bi = pri B, Vi = pri V , pri being the projection from A onto
Ai. Then Bi is dense in Ai and AiVi = nAi. Lemma 1.2 implies that each Vi contains
an Ai–basis {ēij |j = 1, . . . , n} of nAi. Let eij ∈ V be such elements that prieij =
ēij (j = 1, . . . , n; i = 1, . . . , s). Consider in V the elements ej(λ1, . . . , λs) =∑s

i=1 λieij where λ1, . . . , λs ∈ k. The sets Ti = {(λ1, . . . , λs)|priej(λ1, . . . , λs) form
a basis of nAi}, are Zariski–open in ks and non–empty. As k is infinite, their
intersection is also non–empty.

But if (λ1, . . . , λs) lies in this intersection, then {ej(λ1, . . . , λs)|j = 1, 2, . . . , n} is a
basis of nA, q.e.d.

Definition 1.4 Let D be a skewfield, A = Mn(D), U = nD the simple A–module
and

F : U = U0 ⊃ U1 ⊃ . . . ⊃ Us = {0}

a flag of D–subspaces in U . Put A(F) = {a ∈ A | aUi ⊂ Ui for all i = 0, 1, . . . , m}
and call A(F) a flag subalgebra in A. If A =

∏
i Ai with Ai simple artinian, call

a flag subalgebra of A any subalgebra A′ of the form A′ = ΠiA
′
i where A′

i is a flag
subalgebra in Ai for each i.

Lemma 1.5 Let A be a semi–simple artinian ring, A(F) a flag subalgebra in A and
B a subring of A(F). Then there exists a flag subalgebra A′ such that B ⊂ A′ ⊂
A(F) and B is dense in A′.
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Proof: Obviously, we may suppose A to be simple. Then take a maximal B–
invariant flag F ′ ⊃ F and put A′ = A(F ′).

Proposition 1.6 Let A be an algebra over a separably closed field k, such that
A/rad A is finite–dimensional over k, B a dense subalgebra of A and K a separably
generated extension of k. Then B ⊗k K is also dense in A ⊗k K.

Proof: Of course, we may suppose A to be simple finite–dimensional, that is A =
Mn(F ) for some skewfield F . As k has no separable extensions, F is really a field
[DK], so it is a pure inseparable extension of k. But then F ⊗k K is again a field,
hence A ⊗k K is simple. Its only simple module is U ⊗k K, where U is the simple
A–module and F ⊗k K is its endormorphism ring. But the same observation shows
that for any simple B–F–bimodule V (e.g. for U) the tensor product V ⊗kK remains
simple, q.e.d.
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2 Cohen–Macaulay Algebras

We consider here one–dimensional Cohen–Macaulay algebras (not necessarily com-
mutative), also known as orders in semi–simple algebras.

Definition 2.1 Call a ring Λ a CM–algebra (more precisely, 1–dimensional,
analytically reduced Cohen–Macaulay algebra) if it satisfies the following
conditions:

(1) Λ is an algebra over a one–dimensional local, commutative, noetherian ring
R, which is a finitely generated and torsion–free R–module.

(2) The completion Λ̂ of Λ in the m–adic topology, where m is the maximal ideal
of R, contains no nilpotent ideals.

It follows from (2) that, in this case, R is a Cohen–Macaulay ring and Λ is a maximal
Cohen–Macaulay R–module.

In particular, the m–adic completion R̂ of R has no nilpotent elements. Denote by
Q (respectively Q̂) the total ring of fractions of R (respectively R̂). Then both Q

and Q̂ are finite products of fields and QΛ = Q ⊗R Λ (Q̂Λ = Q̂ ⊗R Λ = Q̂ ⊗R̂ Λ̂)

is a semi–simple artinian Q–algebra (respectively Q̂–algebra). If Γ is a subring of
QΛ, containing Λ and being finitely generated as Λ–module (or, equivalently, as
R–module), call it an overring of Λ. Of course, any such overring is also a CM–
algebra. If Λ has no proper overrings, call it a maximal CM–algebra. It is known
(cf., e.g., [D1]) that, under condition (1), condition (2) is equivalent to the existence
of maximal overrings of Λ. More precisely, under conditions (1) and (2), the overrings
of Λ satisfy the ascending chain conditions and any two maximal overrings of Λ are
conjugate in QΛ.

Let Λ be a CM–algebra. We call a Λ–module M a Λ–lattice (or a Cohen–
MacaulayΛ–module) provided it is a maximal Cohen–Macaulay R–module. De-
note by CM(Λ) the category of all Λ–lattices. Any such lattice M embeds naturally
into the finitely generated QΛ–module QM = Q⊗R M . So, if Γ is an overring of Λ,
the Γ–module ΓM ⊂ QM is well–defined.

The following assertions are rather well–known (for the case when R is a discrete
valuation ring, cf. [Rog]; the proofs in the general situation are the same).

Proposition 2.2 (a) Any maximal CM–algebra Λ is hereditary (that is
gl.dim Λ = 1 or, equivalently, any Λ–lattice is projective).

(b) Let Λ be a maximal CM–algebra and A any flag subalgebra of Λ/rad Λ (cf.
Definition 1.4). Then the preimage of A in Λ is hereditary and any hereditary
CM–algebra can be obtained in this way.

Corollary 2.3 Let Ω be a hereditary (e.g. maximal) overring of a CM–algebra Λ.
Then there exists a hereditary overring Ω′ such that Λ ⊂ Ω′ ⊂ Ω and Λ is dense in
Ω′.
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Proposition 2.4 Suppose that the residue field k = R/m is infinite. Let Γ be an
overring of Λ such that Λ is dense in Γ and M be a Cohen–Macaulay Λ–module such
that ΓM ' nΓ. Then M is isomorphic to a module M ′ such that nΛ ⊂ M ′ ⊂ nΓ.

Proof: We may suppose that M ⊂ nΓ. By Corollary 1.3 it contains a basis
of nΓ. Then there exists an automorphism σ of nΓ which maps this basis to
the standard one, namely (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Therefore,
M ′ = σ(M) ⊃ nΛ.

Proposition 2.5 If M, M ′ ⊂ nΓ are Λ–submodules such that ΓM = ΓM ′ = nΓ
(e.g. M and M ′ contain nΛ), then M ' M ′ if and only if there exists an automor-
phism σ ∈ Aut(nΓ) such that σ(M) = M ′.

The proof is evident.

Definition 2.6 For any Cohen–Macaulay Λ–module M denote `(M) the length of
the QΛ–module QM and call it the rational length of M .

Remark: If Γ is an overring of Λ and M is a Cohen–Macaulay Γ–module, the
rational length of M does not depend on whether we consider M as a Λ– or as
a Γ–module. On the other hand, we have to distinguish between `(M) and `(M̂)

where M̂ is the m–adic completion of M .

Recall some connections between Cohen–Macaulay modules and their completions.
The proofs can be found in [CR] or [Rog] for the case when R is a discrete valuation
ring, and they are also valid in the general situation.

Proposition 2.7 (a) M ' N if and only if M̂ ' N̂ .

(b) If N is a Cohen–Macaulay Λ̂–module such that QN ' QN̂ ′ for some Cohen–
Macaulay Λ–module N ′, then there exists a Cohen–Macaulay Λ–module N ′′

such that N ' N̂ ′′.

(c) If N̂ is isomorphic to a direct summand of M̂ , then N is isomorphic to a direct
summand of M .

In the next section we shall use the following simple result.

Proposition 2.8 Let P be a projective Λ–module. Then there exists a projective
Λ–module P ′ such that P ⊕ P ′ is free of rank r ≤ dimk(P/rad P ) where k = R/m.

Proof: Due to Proposition 2.7, we may suppose that R is complete, thus the
Krull–Schmidt theorem holds for modules. Let Λ ' ⊕s

i=1niPi, where all Pi are
indecomposable and pairwise non–isomorphic. Then P ' ⊕s

i=1miPi for some mi.

Take r the least integer such that rni ≥ mi for all i. Then rΛ ' P ⊕ P ′ for
P ′ = ⊕s

i=1(rni − mi)Pi. As dimk(P/rad P ) =
∑s

i=1 mi dimk(Pi/rad Pi) ≥ mi, one
obtains r ≤ dimk(P/rad P ), q.e.d.

Remark: Obviously, dimk(P/rad P ) ≤ `(P̂ ), so the last number can also serve as
an upper bound for r.
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3 Families of Modules

From now on we suppose that our rings are algebras over the field k = R/m, where
R is, as in the preceding paragraph, a Cohen-Macaulay ring.

Definition 3.1 Let X be a k–scheme, OX = O its structure sheaf, Λ a CM–algebra
(1–dimensional and analytically reduced) and M a coherent sheaf on X of Λ⊗k O–
modules. Call M a family of Cohen–Macaulay Λ–modules on X if the following
conditions hold:

(1) M is R–torsion free.

(2) M is O–flat.

(3) For each point x ∈ X, M(x) = M⊗Ok(x) is a Cohen–Macaulay Λ(x)–module,
where Λ(x) = Λ ⊗k k(x).

It is easy to see that, under conditions (1) and (2), condition (3) is equivalent to:

(3’) For every non–zero divisor a ∈ R, the sheaf M/aM is also O–flat.

We are going to construct some “almost universal” families. Let Γ be an overring
of Λ (cf. §2) and fix some positive integers n and d. Put Φ = Γ/Λ and consider
the Grassmannian Gr = Gr(nΦ, d), that is the variety of subspaces of codimension
d in nΦ. Recall that for every k–scheme X the morphisms X → Gr are in 1–1
correspondence with O–factormodules of nΦ⊗k OX which are locally free of rank d
[Mum]. Consider the subvariety B = B(n, d; Λ, Γ) of Gr(nΦ, d) consisting of all Λ–
submodules of nΦ. In other words, the morphisms X → B are in 1–1 correspondence
with Λ⊗k OX–factormodules of nΦ⊗k OX which are locally free over OX of rank d.
Evidently it is a closed subscheme of Gr. Denote by F = F(n, d; Λ, Γ) the preimage
in nΓ⊗k OB of the canonical locally free sheaf of corank d on B. As (nΓ⊗k OB)/F
is flat over OB, one can see that F is really a family of Cohen–Macaulay Λ–modules
on B having the following universal property (cf. [GP]).

Proposition 3.2 For any family of Cohen–Macaulay Λ–modules M on a scheme
X such that nΛ ⊗k OX ⊂ M ⊂ nΓ ⊗k OX and (nΓ ⊗k OX)/M is locally free over
OX of rank d, there exists a unique morphism ϕ : X → B such that M = ϕ∗(F).

Definition 3.3 Call the families satisfying the conditions of Proposition 3.2 sand-
wiched families with respect to Γ of rank n and codimension d. In particular, when
X = Spec k, we have sandwiched modules (with respect to Γ).

From now on we suppose the ground field k to be algebraically closed. We are going
to show that the sandwiched families are, in some sense “almost versal”, that is any
other families can be stably glued from finitely many sandwiched families. Taking
into account Corollary 2.3, this follows from the following result.
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Theorem 3.4 Let Γ be a hereditary overring of Λ such that Λ is dense in Γ. Then,
given a family M of Cohen–Macaulay Λ–modules on a reduced k–scheme X, there
exists a descending chain of closed subschemes X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xm = ∅,
a set of morphisms {ϕi : Yi −→ B(ni, di; Λ, Γ) | i = 1, . . . , m} and a set of projective
Γ–modules {Pi | i = 1, . . . , m} such that MYi

⊕(Pi⊗kOYi
) ' ϕ∗

iF(ni, di; ∆, Γ) where

Yi = Xi−1\Xi and ni ≤ ˆ̀(M) = `(M̂(x)) for an arbitrary closed point x ∈ X.

Indeed, we shall establish a more general result, when Γ is not necessarily hered-
itary, but ΓM is flat over Γ ⊗k OX . If Γ is hereditary, the last condition be-
comes superfluous. Since ΓM/M is OX–coherent, there exists an open dense sub-
set U ⊆ X, on which ΓM/M is flat over O. Then, as Γ is hereditary, it follows
from [CE] (Theorem 2.8) that ΓM is also Γ ⊗k O–flat. Moreover, the function
x 7→ dimk(x) ΓM(x)/radΓM(x) takes its maximum in some closed point of X and

it does not exceed ˆ̀(M). Hence, we need only to establish the following fact:

Proposition 3.5 Let Γ be an overring of Λ such that Λ is dense in Γ. Let M be
a family of Cohen–Macaulay Λ–modules on a reduced k–scheme X such that ΓM
is flat over Γ ⊗k O. Then there exists an open subscheme Y ⊂ X, a projective Γ–
module P and a morphism ϕ : Y → B(n, d; Λ, Γ) for some integers n and d such that
the restriction on Y of the family M⊕ (P ⊗k O) is isomorphic to ϕ∗F(n, d; Λ, Γ).
Moreover, we can choose n ≤ maxg `(M(g)) where g runs through minimal points
of X (that is generic points of its irreducible components).

Proof: Of course, we may suppose that X is irreducible. Let g ∈ X be its generic
point. Consider the Γ–module ΓM(g). It is finitely generated and flat over Γ(g),
hence projective [Bou], (Ch. I, §2, Ex. 15). By Proposition 2.8, there exists a
projective Γ(g)–module P ′ such that ΓM(g) ⊕ P ′ ' nΓ(g) and we can choose
n ≤ dimk(g)(ΓM(g)/rad ΓM(g)). If we move to the completions, there is a 1–

1–correspondence between projective and semi–simple Γ̂–modules and the same is
valid for Γ̂(g)–modules. But as k is separably closed and k(g) separably generated

over k, we have seen in the proof of Proposition 1.6 that any simple Γ̂(g)–module

is of the form U ⊗k k(g) for some simple Γ̂–module U . Hence, the same is true for

projectives, so P̂ ′ ' P̂ ⊗k k(g) for some projective Γ̂–module P̂ . But Proposition 2.7

implies then that P̂ is really a completion of some projective Γ–module P , whence
P ′ ' P ⊗k k(g).

Replacing M by M⊕ (P ⊗k O), we may now suppose that ΓM(g) ' nΓ(g). But
Λ(g) is dense in Γ(g) by Proposition 1.6, so we may suppose, using Corollary 1.3,
that M(g) contains a basis of nΓ(g). By Proposition 2.4, M(g) is isomorphic to
a submodule of nΓ(g) containing nΛ(g). So let nΛ(g) ⊂ M(g) ⊂ nΓ(g). Then
the same is true on an open subset Y ⊂ X, that is nΛ ⊗ OY ⊂ MY ⊂ nΓ ⊗ OY .
Shrinking Y , we may also suppose that (nΓ⊗OY )/MY is locally free of some rank
d (over OY ) and it remains to use Proposition 3.2.

An obvious iteration gives us the necessary generalization of Theorem 3.4:

Corollary 3.6 Under the conditions of Proposition 3.5 there exists a descending
chain of closed subschemes X = X0 ⊃ X1 ⊃ X2 ⊃ . . . ⊃ Xn = ∅, a set of morphisms
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{ϕi : Yi → B(ni, di, Λ, Γ)|i = 1, 2, . . . , n} and a set of projective Γ–modules {Pi|i =
1, 2, . . . , n} such that MYi

⊕ (Pi ⊗k OYi
) ' ϕ∗

iF(ni, di; Λ, Γ) where Yi = Xi−1\Xi

and ni ≤ max{dimk(x)(ΓM(x)/rad ΓM(x))|x ∈ X}.

Fix now a CM–algebra Λ and an overring Γ. Let B = B(n, d; Λ, Γ) and F =
F(n, d; Λ, Γ). Choose a two–sided Γ–ideal I ⊂ rad Λ of finite codimension (over k)
and put F = Γ/I; Λ̄ = Λ/I. We can identify Gr(nΦ, d) with the closed subscheme
of Gr(nF, d) consisting of all subspaces V containing nΛ̄. Then B also becomes
a closed subvariety of Gr(nF, d). We shall consider the elements of nF as rows
of length n with entries from F and identify Aut(nF ) with the full linear group
GL(n, F ) = G acting on nF according to the rule g · v = vg−1. Then Proposition
2.5 implies that two subspaces V, V ′ ∈ B correspond to isomorphic sandwiched
modules if and only if there exists an element g ∈ G such that g · V = V ′.

Considering the elements of nF as the rows of n × n matrices, we can identify nV
with a subspace in Mn(F ). Then we obtain the following:

Proposition 3.7 Let V ∈ B, g ∈ G. Then g · V ∈ B if and only if g ∈ G ∩ nV .
Hence, G · V ∩B = (G∩ nV ) · V ' (G∩ nV )/StV , where StV = {g ∈ G|gV = V }.

As G is open in Mn(F ), G ∩ nV is open in nV , hence dim(G ∩ nV ) = dim nV =
n(γn − d) where γ = dim F . Therefore, dim(G · V ∩ B) = n(γn − d) − dim StV ,
whence:

Corollary 3.8 For each integer i the set Bi = {V ∈ B| dim(G · V ∩ B) ≤ i} is
closed in B.

Put
par(n, d; Λ, Γ) = max

i
(dim Bi − i)

and
par(n; Λ, Γ) = max

d
par(n, d; Λ, Γ).

Intuitively, par(n, d; Λ, Γ) is the number of independent parameters defining the
isomorphism classes of sandwiched Λ–modules of rank n and codimension d with
respect to Γ. Corollary 3.6 evidently implies the following result.

Corollary 3.9 Under the conditions of Proposition 3.5, for any closed point x ∈ X
the set {y ∈ X | M(y) ' M(x) ⊗k k(y)} is constructible (that is a finite union
of locally closed subsets of X) and its dimension is bigger or equal to dimX−

par(̂̀(M); ∆, Γ).

In particular, this assertion is true for any family of Cohen–Macaulay Λ–modules if
we take for Γ an hereditary overring of Λ such that Λ is dense in Γ (which always
exists, cf. Corollary 2.3).

Corollary 3.10 Let Γ be any overring of Λ and Ω a hereditary overring of Λ such
that Λ is dense in Ω. Put `0 = `(Λ̂). Then par(n, Γ) ≤ par(`0n, Ω) for all n.
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Of course, if Γ ⊂ Γ′ are two overrings of Λ and dimk(Γ
′/Γ) = c, then par(n, d; Λ, Γ) ≤

par(n, c + d; Λ, Γ′), whence par(n; Λ, Γ) ≤ par(n; Λ, Γ′). Put

b(n, Λ) = max{par(n; Λ, Γ)}

where Γ runs through all overrings of Λ (we have actually to look only for maximal
ones). Let also p(n, Λ) denote the maximal value of dim X − dim{y ∈ X | M(y) '
M(x)⊗k k(y)} taken for all families M with all possible bases X and for all closed
points x ∈ X.

Corollary 3.11 Let `0 = `(Λ̂). Then

b(n, Λ) ≤ p(n, Λ) ≤ b(n`0, Λ).
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4 Families of algebras

Now we formulate and prove the semicontinuity statements in two variants: for
“familes of algebras” (Theorems 4.7 and 4.9) and for “families of generators” (The-
orem 4.11).

Again k denotes an algebraically closed field.

Definition 4.1 Let C be a reduced algebraic curve over k, Λ a coherent sheaf of OC–
algebras, containing no nilpotent ideals and such that for every point p ∈ C, Λp is
maximal Cohen–Macaulay OC,p–module. Then we call Λ a sheaf of CM–algebras
or just a CM–algebra on C.

If Γ ⊃ Λ is another CM–algebra on C and, for each p ∈ C, Γp is overring of Λp, call
Γ an overring of Λ.

Proposition 4.2 If Λ is a CM–algebra on a curve C, then, for every point p ∈ C,
Λp is a CM–algebra (in the sense of Definition 2.1) and, moreover, for almost all
points Λp is maximal.

Proof: We only need to prove that Λ̂p contains no nilpotent ideal. According to
[D1], this is equivalent to the existence of a maximal overring of Λp. Denote by
Z the centre of Λp. It is a localization of a finitely generated k–algbra, hence, its
algebraic closure Z̄ in the total quotient ring Q is a finitely generated Z–module
(cf. [Bou], Ch.V. §3.2). As before, we consider Λp embedded in QΛp = Q ⊗Z Λp.
Therefore, Z̄Λp ⊂ QΛp is well–defined. But now QΛp is a central, semi–simple,
hence, separable QZ–algebra, so Z̄Λp has a maximal overring (cf. [CR]). Moreover,
as Z̄p = Zp for almost all p ∈ C and Z̄Λp is maximal for almost all p, the same is
true also for Λp, q.e.d.

Call Λ hereditary if all Λp are hereditary (note that, for a general point g ∈ C,
Λg ' QΛ is semi–simple). It is well–known (cf. [CR]) that one–dimensional CM–
algebras can be defined locally:

Proposition 4.3 Let Λ be a CM–algebra on a curve C and suppose that for each
closed point p ∈ C an overring Γ(p) ⊃ Λp is given such that Γ(p) = Λp for almost
all p. Then there exists an overring Γ ⊃ Λ such that Γp = Γ(p) for all p.

Corollary 4.4 There exists a hereditary overring Ω ⊃ Λ such that Λp is dense in
Ωp for each p ∈ C.

Let now Γ be any overring of Λ. As Γp = Λp for almost all p, the sum

par(n; Λ, Γ) =
∑

p∈C

par(n; Λp, Γp)

is well–defined.
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Definition 4.5 Let f : Y → X be a morphism of k–schemes and L be a coherent
sheaf of OY –algebras. Call (L, f) = (L, f : Y → X) a family of CM–algebras
with the base X provided the following conditions hold:

(1) f is flat and f∗(L) is flat OX–module.

(2) Y (x) = f−1(x) is a reduced algebraic curve for each x ∈ X.

(3) L(x) is a CM–algebra on Y (x) for each x ∈ X.

Definition 4.6 Let (L, f : Y → X) be a family of CM–algebras with base X.
A family of overrings of (L, f) is a family (L′, f) (with the same f) such that
L′ ⊃ L, f∗(L′/L) is OX–flat and, for each x ∈ X, L′(x) is an overring of L(x).

Given a family of overrings L′ ⊃ L, we can define the functions on X:

par(x, n, d) := par(x, n, d;L,L′) = par(n, d;L(x),L′(x)),

par(x, n) := par(x, n;L,L′) = par(n;L(x),L′(x)).

Theorem 4.7 The functions par(x, n, d) and par(x, n) are upper-semicontinuous,
that is for each integer i and for any k–scheme X the sets Xi(d) = {x ∈
X|par(x, n, d) ≥ i} and Xi = {x ∈ X|par(x, n) ≥ i} are closed in X.

Proof: As Xi = ∪dXi(d) and since this union is finite, we only need to prove
that Xi(d) is closed. Moreover, we may suppose that X is a smooth curve. Let
N = L′/L. Consider the relative Grassmannian Gr(nN , d) → X and its closed
subscheme (over X) B(n, d) consisting of L–submodules. Let J be the biggest two–
sided L′–ideal contained in L. Then it is easy to see that L/J is torsion–free over
OX , hence, flat. Thus, L′/J is also flat over OX . As in the proof of Proposition 3.7,
identify Gr(nN , d) with the closed subscheme of Gr(nL̄′, d), where L̄′ = L′/J , and
consider the group scheme over X, GL(n, L̄′) acting on the last Grassmannian. The
same observations as in the proof of Proposition 3.7 shows that Bj = {v ∈ B(n, d) |
dim St v ≥ j} is closed in B. As B is proper over X, its projection Zj is also closed.
But, by definition Xi = ∪jXij, where Xij = {x ∈ Zj | dim Bj(x) ≥ i+ j} are closed,
q.e.d.

Remark: Suppose that the base of the family (L, f) is a smooth curve and both L
and L′ are Cohen–Macaulay OY –modules. Then (L′, f) is a family of overrings as it
follows from [BG] (Example 3.2.5). Moreover, in this case OY is Cohen–Macaulay
itself and dim Y = 2. Hence, we are able to construct Cohen–Macaulay OY –modules
locally as in the following lemma.

Lemma 4.8 Suppose that Y is a reduced 2–dimensional Cohen–Macaulay variety.
Let M be a Cohen–Macaulay OY –module, {y1, y2, . . . , ym} a set of points of Y
of codimension 1 and N(yi) a finitely generated OY,yi

–submodule in QM where Q
is the total quotient ring of O. Then there exists the Cohen–Macaulay submodule
N ⊂ QM such that Nyi

= N(yi) and Ny = My for all points y of codimension 1,
distinct from all yi.
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Proof: One can easily construct N with prescribed localizations as in [Bou] (VII
4.3). Moreover, we may suppose that N = ∩codim y=1Ny. But then N is Cohen–
Macaulay.

We can now prove the main result of this paper. Recall that

b(n, x) := b(n,L(x)) = max{par(n;L(x), Γ}

is the maximum number of independent parameters of isomorphism classes of sand-
wiched L(x)–modules of rank n, which can be thought of as the dimension of the
“moduli space” of L(x)–CM–modules of rank n.

Theorem 4.9 The function b(n, x) = b(n,L(x)) is upper semi–continuous.

Proof: Again we may suppose that X is a smooth curve. Let g ∈ X be the generic
point of X and Λ = L(g). Find an overring Ω ⊃ Λ such that b(n, Λ) = par(n, Λ, Ω).
Using Lemma 4.8, we can construct a family of overrings L′ ⊃ L with L′(g) = Ω.
As b(x) ≥ par(n,L(x),L′(x)) for every x ∈ X, it follows from Proposition 4.7 that
the set {x ∈ X | b(x) ≥ b(g)} is closed. This, of course, proves the theorem.

Corollary 4.10 For any family of CM–algebras (L, f : Y → X), the set W (L) =
{x ∈ X | L(x) is wild} is a countable union of closed subsets of X.

(For the definition of tame and wild CM–algebras cf. [DG 1]).

The proof of this corollary follows from Theorem 4.8 just in the same way as it
followed in the commutative case from Knörrer’s theorem (cf. [DG 2], Corollary
4.2).

Now we consider onother version of the semicontinuity theorem, where algebras are
given by parametrized families of generators. Namely, let X be an algebraic k–
scheme, L a family of CM–algebras with the base X and I an ideal of L such that
L/I is a locally free OX–module of finite rank, that is it corresponds to a vector
bundle π : F → X. The fibres F (x) of F are then finite–dimensional k(x)–algebras.
Suppose given an algebraic X–scheme f : Y → X and a set of X–morphisms
{γi : Y → F | i = 1, 2, . . . , m} (equivalently Y –sections of f ∗F ).

For each point y ∈ Y denote A(y) the subalgebra of F (f(y)) generated by
{γ1(y), γ2(y), . . . , γm(y)} and Λ(y) the preimage of A(y) in L(y) = L⊗OX

k(f(y)).
Then Λ(y) is a CM–algebra, thus, given a family of overrings L′ ⊃ L, we may
consider, as above, the functions on Y :

p(n, d; y) = par(n, d; Λ(y), L′(y));

p(n; y) = par(n; Λ(y), L′(y));

b(n, y) = b(n, Λ(y)).

Theorem 4.11 In the above situation, the functions p(n, d; y); p(n, y) and b(n, y)
are upper- semicontinuous on Y .

14



Proof: Replacing L by f ∗(L), which is a family of CM–algebras on Y , we may
suppose that X = Y and f is the identity map. Moreover, we may also suppose X
to be a smooth curve. As the function dim A(y) is obviously upper semi–continuous
on Y , there is an open subset U ⊂ Y such that dim A(y) is constant and maximal
possible on U . Put d = dim F (y) − dim A(y). Then we obtain a section ϕ : U →
Gr(d, F ) such that A(y) is the subspace of F (y) corresponding to ϕ(y) for each
y ∈ U . But as X is a smooth curve and Gr(d, F ) is projective over X, ϕ can
be prolonged to a section ϕ̄ : X → Gr(d, F ) (it follows, for example, from [Ha],
Proposition III.9.8).

Now ϕ̄ gives rise to a subbundle A′ ⊂ F of constant codimension d. Denote by Λ′

its preimage in L. Note that both conditions

“A′(x)is a subalgebra of F (x)” and “A′(x) ⊃ A(x)”

are evidently closed and hold on U . Thus they hold on X, that is Λ′(x) is a
subalgebra of L(x) containing Λ(x). As L/Λ′ is locally free of finite rank, Λ′ is
really a family of CM–algebras on X. Hence, the functions p′(n, d; x), p′(n; x)
and b′(n, x) defined just as p(n, d; x), p(n; x) and b(n, x) but using Λ′(x) in-
stead of Λ(x) are upper semicontinuous. On the other hand we have inequalitites
p(n, d; x) ≥ p′(n, d; x), p(n, x) ≥ p′(n, x), b(n, x) ≥ b′(n, x) on X and equality on
U . Therefore, p(n, d; x), p(n; x) and b(n; x) are also upper semicontinuous.

To show an application of Theorem 4.11, we extend the criteria of tameness, proved
in [DG 2] for the case char k 6= 2, to all characteristics. In order to do this, we must
first define the singularities Tpq in positive characteristic, which are defined for char
k = 0 as factorrings

(∗) k[[X, Y ]]/(Xp + Y q + λX2Y 2).

For our purpose it is more convenient to define them using their parametrization
given by Schappert [Sch]. Namely, let Λ be a local commutative CM–algebra, Λ0 its
maximal overring. Then Λ0 is a direct product of power series rings:

Λ0 ' k[[t1]] × k[[t2]] × · · · × k[[ts]]

(s is “the number of branches” of Λ). If a ∈ Λ, a = (a1, a2, . . . , as), with ai ∈ k[[ti]],
put v(a) = (v(a1), . . . , v(a2)), where v(ai) denotes the usual valuation on the power
series (in particular v(0) = ∞).

Call Λ a plane curve singularity if its maximal ideal M is generated by two elements:
M = (x, y). Define the (valuation) type of Λ as the pair (v(x), v(y)).

Definition 4.12 Let Λ be a plane curve singularity. We say that Λ is of type Tpq,
where p, q ∈ N, 1

p
+ 1

q
≤ 1

2
, if its valuation type is:

(2, p − 2), (q − 2, 2) for p, q both odd,
(1, 1, p − 2), (∞, q

2
− 1, 2) for p odd, q even,

(1, 1, p
2
− 1,∞), ( q

2
− 1,∞, 1, 1) for p, q both even.

By [Sch] this definition is equivalent to the equation (∗) if char k = 0.
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The following theorem was proved in [DG 2] for char k 6= 2.

Let Λ be a local commutative CM–algebra, Λ0 = k[[t1]] × · · · × k[[ts]] its maximal
overring, m = radΛ. Denote t = (t1, . . . , ts) ∈ Λ0; Λ′ = tΛ0+Λ, Λ′′ = tmΛ0+Λ and
Λ′

e = Λ′ +ke, where e ∈ Λ′ is an idempotent. For each overring Γ ⊃ Λ′, let Γ/mΓ =
L1 × · · ·×Lm, where Li are local algebras, di = dim Li, d(Γ) = (d1, d2, . . . , dm) and
d(Γ) = d1 + · · · + dm (the minimal number of generators of Γ as Λ–module).

Theorem 4.13 If Λ is of infinite Cohen–Macaulay type, the following conditions
are equivalent:

(1) Λ is tame.

(2) Λ dominates a plane curve singularity of type Tpq for some p, q (that is, Λ is
isomorphic to an overring of Tpq).

(3) The following restrictions hold:

(a) d(Λ0) ≤ 4 and d(Λ0) 6∈ {(4), (3, 1), (3)},

(b) d(Λ′) ≤ 3 and d(Λ′
e) 6= (3, 1) for any idempotent e,

(c) if d(Λ0) = 3, then d(Λ′′) ≤ 2.

Proof: (1) ⇒ (3) and (3) ⇒ (2) were proved in [DG 2] and their proofs did not use
the restriction char k 6= 2. In order to prove (2) ⇒ (1), again following [DG 2], note
that the singularity Λ of type Tpq contains the Λ0–ideal I = bΛ0, where

b = (tp+1
1 , tq+1

2 ) for p, q both odd;

b = (t
q/2+1
1 , t

q/2+1
2 , tp+1

3 ) for p odd, q even;

b = (t
q/2+1
1 , t

p/2+1
2 , t

q/2+1
3 , t

p/2+1
4 ) for p, q both even.

Consider now a new CM–algebra Λ(λ), λ ∈ k, containing I and generated modulo
I by the following 3 elements:

(λ, 1)x, (1, λ)y, xy for p, q both odd,
(1, 1, λ)x, (λ, λ, 1)y, xy for p odd, q even,
(1, λ, 1, λ)x, (λ, 1, λ, 1)y, xy for p, q both even.

If (p, q) 6∈ {(4, 4), (3, 6)}, one can easily check that Λ(λ) ' Λ for λ 6= 0, while Λ(0)
is a singularity of type Ppq in the terminology of [DG 2], that is generated modulo
I by the elements x0, yo such that v(x0),v(y0) are of the form:

(2,∞), (∞, 2) for p, q both odd,
(1, 1,∞), (∞,∞, 2) for p odd, q even,
(1, 1,∞,∞), (∞,∞, 1, 1) for p, q both even.

Again, the calculations for Ppq in [DG 2] did not use the condition char k 6= 2. Hence,
they are tame and Theorem 4.11 implies that Λ is also tame. The calculation of
Dieterich for the remaining case (p, q) = (3, 6) or (p, q) = (4, 4) (cf. [Di 1], [Di 2])
also did not use any conditions on characteristics. Thus, implication (2) ⇒ (1) is
completely proved.
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5 Some analogues

Here we give some examples of “almost versal families” and semicontinuity theorems
for other situations in representation theory. As all the proofs are quite similar (and
easier) to those of the preceding sections, we omit them and give only the final
formulations of the results analogous to Theorems 3.4, 4.7 and 4.11. Although
some of the corresponding semicontinuity theorems are known, we hope that the
“unification” will be useful for these cases too. At least we give new proofs for
them.

Finite-dimensional algebras

Here, let A be a finite–dimensional algebra over an algebraically closed field k. A
family of A-modules parametrized by a k–scheme X is a sheaf M of A ⊗k OX–
modules, which is coherent and flat over OX . To be in the frame of projective
varieties, we can consider first the subvariety B(P, I, d) ⊂ Gr(P, d), where P is a
projective module over a finite–dimensional algebra A, I an ideal of A contained in
the radical and B(P, I, d) consists of the A–submodules L ⊂ IP . Gr(P, d) denotes
the Grassmannian of d–codimensional subspaces of P . Then the canonical sheaf
F = F(P, I, d) on B(P, I, d) is a family of A–modules and the following result
holds.

Theorem 5.1 Let A be a finite-dimensional k-algebra, J = rad A and M a family
of A–modules parametrized by a reduced k–scheme X. Then there exists a descending
chain of closed subschemes X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xm = ∅ and a set of
morphisms {ϕi : Yi → B(Pi, J, di) | i = 1, . . . , m} for some projective A–modules Pi

such that MYi
' ϕ∗

iF(Pi, J, di), where Yi = Xi−1 \ Xi. Moreover, if r = rank M
(as a locally free sheaf over X), then dim Pi ≤ rp, where p is the maximal dimension
of indecomposable projective A–modules.

The group G = AutAP acts on B = B(P, I, d) and, as I ⊂ rad A, we conclude
that F(x) ' F(y) if and only if x and y belong to the same G–orbit. The subsets
Bi = {x ∈ B| dim(Gx) ≤ i} are obviously closed in B. Hence, we can define the
number of parameters:

par(P, I, d; A) = max
i

(dim Bi − i)

and
par(P, I; A) = max

d
par(P, I, d; , A).

In particular, put

par(n, d; A) = par(nA, radA, d; A) and par(n; A) = par(nA, radA; A).

Just as for Cohen-Macaulay algebras, these numbers give upper bounds for the
number of (independent) parameters of isomorphism classes of A–modules of rank
n in any family of A–modules.
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Consider now a family of algebras parametrized by a k–scheme X, that is a flat
coherent sheaf of OX-algebras A. Then we are able to define the following functions
on X:

par(x, n, d) = par(n, d;A(x)),

par(x, n) = par(n;A(x)).

Theorem 5.2 For each family of finite–dimensional k–algebras the functions
par(x, n, d) and par(x, n) are upper–semicontinuous.

A version of this theorem was proved by Geiß [Gei]. Note also that Theorem 5.2
provides a new proof of Gabriel’s theorem [Gab] that finite representation type is
an open condition. This follows since the Brauer–Thrall conjectures are known to
be true for finite dimensional algebras.

It is easy to generalize the last theorem to the situation where the algebras are given
by “generators and relations”. Namely, suppose we are given:

• a family A of finite–dimensional k-algebras over X;

• an algebraic X-scheme f : Y → X;

• two sets of X-morphisms {γi : Y → F | i = 1, . . . , m} and {ρj : Y → F | j =
1, . . . , r}, where F is the vector bundle on X corresponding to the locally free
sheaf A.

For any point y ∈ Y , denote by I(y) the ideal in F (f(y)) generated by the set
{ρj(y)|j = 1, . . . , r} and by A(y) the subalgebra of F (f(y))/I(y) generated by the
classes {γi(y) + I(y)|i = 1, . . . , m}. Then we can define the functions on Y :

p(y, n, d) = par(n, d; A(y)),

p(y, n) = par(n; A(y)).

Theorem 5.3 In the above situation the functions p(y, n, d) and p(y, n) are upper-
semicontinuous on Y .

Bimodules

Consider now the categories of elements of finite–dimensional bimodules (in the sense
of [D2], although we give here a somewhat different definition). Let A be a finite–
dimensional k–algebra, where k is again an algebraically closed field, and let V be a
finite–dimensional A–bimodule. The elements of V are, by definition, those of the
set El(V ) =

⊔
P V (P ), where P runs through all (finitely generated) projective A–

modules and V (P ) = HomA(P, V ⊗A P ). Two elements u ∈ V (P ) and u′ ∈ V (P ′)
are said to be isomorphic if there exists an isomorphism p : P → P ′ such that
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u′ = (1⊗ p)up−1. Indeed, in [D2] only so–called disjoint bimodules were considered.
The bimodule V is said to be disjoint if A = A1 × A2 and V A1 = A2V = 0. In
most applications in representations theory one needs only disjoint bimodules, but
non–disjoint ones appear in various “reduction processes”.

To remain in the category of projective varieties, it is convenient to change the
problem slightly. Namely, call elements u and u′ (projectively) equivalent, if u′

is isomorphic to λu for some non–zero λ ∈ k. Obviously, if the bimodule is disjoint,
then equivalent elements are isomorphic, but in the non–disjoint case it is not always
so.

Let X be a k–scheme and P a flat coherent sheaf of AX–modules, where AX =
A ⊗k OX . Put V (P) = HomAX

(P, V ⊗A P). It is a locally free coherent sheaf of
OX–modules. Hence, the corresponding projective bundle PP = PX(V (P)) over X
is defined (cf. [Ha]). A projective family (or simply family, as we do not consider
other families here) of elements of the bimodule V with base X is, by definition, a
section Φ : X → PP for some P. Note that using projective families we need to
consider projective equivalence instead of isomorphism and to exclude zero elements
of the bimodule. But this does not essentially differ from the classification problem
for the elements of bimodules up to isomorphism.

The “almost universal” families in this case are more or less evident. Indeed, put,
for any projective A–module P , B(P ) = Pk(V (P )) and P̃ = P ⊗k OB(P ). Then
PP̃ ' B × B, where B = B(P ) and the diagonal map ∆P : B → B × B defines a
family of elements of V with the base B. The following result is almost obvious.

Theorem 5.4 Let A be a finite–dimensional k–algebra, V a finite-dimensional A–
bimodule and and Φ : X → PP a (projective) family of elements of V . Then there
exists a descending chain of closed subschemes X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xm = ∅
and a set of morphisms {ϕi : Yi → B(Pi)|i = 1, . . . , m} for some projective A–
modules Pi such that PYi

' Pi⊗k OYi
. Hence, the restriction of PP on Yi = Xi−1\Xi

can be identified with Yi × B(Pi), and, under this identification, ΦYi
= 1 × ϕi.

Moreover, dim Pi = rankP for all i.

The group G = AutAP acts on B = B(P ) and its orbits are the classes of projective
equivalence. Hence, we are again able to define the closed subsets Bi = {x ∈
B| dim(Gx) ≤ i} and the number of parameters:

par(P ; A, V ) = max
i

(dim Bi − i),

in particular
par(n; A, V ) = par(nA; A, V ).

Now, given a family of algebras A with base X and a family of bimodules, that is a
coherent sheaf V of A–bimodules, flat over OX , we can define the function on X:

par(x, n) = par(n;A(x),V(x)).
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Theorem 5.5 For each family of finite–dimensional k–algebras and bimodules the
function par(x, n) is upper–semicontinuous.

Of course, one could easily give a version of the last theorem, where the algebras
and bimodules are defined by generators and relations, but we leave this obvious
generalization to the reader.

Remark

In particular, in both cases we can see that the set of wild algebras (or bimodules)
in some family is again a countable union of closed subsets. It looks very likely that
this set is even closed and, hence, that the set of tame algebras (or bimodules) is
open. In order to prove it, one only needs to show that the set of tame algebras
(bimodules) is really a countable union of constructible sets (cf. [Gab]).

If we consider families of commutative CM–algebras, then the set of tame algebras
is indeed open. This can be derived from [DG 2] in two ways. The first is to
apply the classification of [DG 2] and deformation theory of singularities: the set of
singularities which are of finite CM–representation type or which are tame is open in
any flat family of singularities. The second is to note that the strict respresentations
over the free algebra k〈x, y〉 constructed in [DG 2] are of bounded rank. Hence, we
can find a common constant n such that a commutative CM–algebra Λ is wild if
and only if p(n, Λ) > rn, where r is the rational length of Λ, which coincides in this
case with the number of branches. As r is obviously bounded in any family, we have
now only to apply Theorem 4.9.
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