Let K be the splitting field of the polynomial $x^{3}+3$ over \mathbb{Q}.
(1) Prove that $K=\mathbb{Q}(\sqrt[3]{3}, \omega)$, where $\omega^{3}=1$ and $\omega \neq 1$.

Since $(-\sqrt[3]{3})^{3}=(-\omega \sqrt[3]{3})^{3}=\left(-\omega^{2} \sqrt[3]{3}\right)^{3}=-3$, these elements are the roots of $x^{3}+3$ and the field K is generated by these elements. Obviously, it contains both $\sqrt[3]{3}$ and ω, and in $\mathbb{Q}(\sqrt[3]{3}, \omega)$ the polynomial $x^{3}+3$ splits into linear factors. Therefore, $\mathbb{Q}(\sqrt[3]{3}, \omega)$ is the splitting field of this polynomial.
(2) Prove that $[K: \mathbb{Q}]=6$.

We have the chain of extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{3}) \subset \mathbb{Q}(\sqrt[3]{3}, \omega)=$ K, so $[K: \mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{3}): \mathbb{Q}][\mathbb{Q}(\sqrt[3]{3}, \omega): \mathbb{Q}(\sqrt[3]{3})]$. Since $\sqrt[3]{3}$ is a root of the irreducible polynomial $x^{2}-3 \in \mathbb{Q}[x],[\mathbb{Q}(\sqrt[3]{3}): \mathbb{Q}]=$ 3. Now ω is a root of the polynomial $x^{2}+x+1 \in \mathbb{Q}(\sqrt[3]{3})[x]$. This polynomial has no real roots, hence no roots in $\mathbb{Q}(\sqrt[3]{3})$, therefore is irreducible, thus $[\mathbb{Q}(\sqrt[3]{3}, \omega): \mathbb{Q}(\sqrt[3]{3})]=2$ and $[K: \mathbb{Q}]=6$.
(3) Find all automorphims of K over \mathbb{Q}.

Since K is a splitting field, it is normal and separable (char $\mathbb{Q}=$ $0)$ over \mathbb{Q}. Therefore, its Galois group G contains $6=[K: \mathbb{Q}]$ elements. If $\sigma \in G$, it moves $\sqrt[3]{3}$ to a root of the same polynomial $x^{2}-3$ and ω to a root of $x^{2}+x+1$, that is

$$
\begin{aligned}
\sigma(\sqrt[3]{3}) & \in\left\{\sqrt[3]{3}, \omega \sqrt[3]{3}, \omega^{2} \sqrt[3]{3}\right\}, \\
\sigma(\omega) & \in\left\{\omega, \omega^{2}\right\}
\end{aligned}
$$

and all these possibilities must occur, since $\#(G)=6$. Thus G consists of the following 6 automorphisms:

$$
\begin{gathered}
\sigma_{1}=\iota \text { (identity map) } \\
\sigma_{2}: \sqrt[3]{3} \mapsto \sqrt[3]{3}, \omega \mapsto \omega^{2} \\
\sigma_{3}: \sqrt[3]{3} \mapsto \omega \sqrt[3]{3}, \omega \mapsto \omega \\
\sigma_{4}: \sqrt[3]{3} \mapsto \omega \sqrt[3]{3}, \omega \mapsto \omega^{2} \\
\sigma_{5}: \sqrt[3]{3} \mapsto \omega^{2} \sqrt[3]{3}, \omega \mapsto \omega \\
\sigma_{6}: \sqrt[3]{3} \mapsto \omega^{2} \sqrt[3]{3}, \omega \mapsto \omega^{2}
\end{gathered}
$$

(4) Find an element θ such that $K=\mathbb{Q}(\theta)$ and all elements $\sigma(\theta)$, where σ runs through $\mathrm{Gal}_{\mathbb{Q}} K$.

According to the proof of Theorem 10.18, we have to find $c \in \mathbb{Q}$ such that

$$
c \neq \frac{\alpha-\sqrt[3]{3}}{\omega^{2}-\omega}, \quad \text { where } \alpha \in\left\{\sqrt[3]{3}, \omega \sqrt[3]{3}, \omega^{2} \sqrt[3]{3}\right\}
$$

It is easy to see that $c=1$ fits. Therefore, for instance, $K=$ $\mathbb{Q}(\theta)$, where $\theta=\sqrt[3]{3}-\omega$. Then

$$
\begin{aligned}
\sigma_{1}(\theta) & =\theta \\
\sigma_{2}(\theta) & =\sqrt[3]{3}-\omega^{2} \\
\sigma_{3}(\theta) & =\omega \sqrt[3]{3}-\omega \\
\sigma_{2}(\theta) & =\omega \sqrt[3]{3}-\omega^{2} \\
\sigma_{2}(\theta) & =\omega^{2} \sqrt[3]{3}-\omega \\
\sigma_{2}(\theta) & =\omega^{2} \sqrt[3]{3}-\omega^{2} .
\end{aligned}
$$

