MATH 4576 RINGS AND FIELDS Prof. I. Drozd

Let K be the splitting field of the polynomial $x^3 + 3$ over \mathbb{Q} .

(1) Prove that $K = \mathbb{Q}(\sqrt[3]{3}, \omega)$, where $\omega^3 = 1$ and $\omega \neq 1$.

Since $(-\sqrt[3]{3})^3 = (-\omega\sqrt[3]{3})^3 = (-\omega^2\sqrt[3]{3})^3 = -3$, these elements are the roots of $x^3 + 3$ and the field K is generated by these elements. Obviously, it contains both $\sqrt[3]{3}$ and ω , and in $\mathbb{Q}(\sqrt[3]{3},\omega)$ the polynomial x^3+3 splits into linear factors. Therefore, $\mathbb{Q}(\sqrt[3]{3},\omega)$ is the splitting field of this polynomial.

(2) Prove that $[K : \mathbb{Q}] = 6$.

We have the chain of extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{3}) \subset \mathbb{Q}(\sqrt[3]{3}, \omega) = K$, so $[K : \mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}][\mathbb{Q}(\sqrt[3]{3}, \omega) : \mathbb{Q}(\sqrt[3]{3})]$. Since $\sqrt[3]{3}$ is a root of the irreducible polynomial $x^2 - 3 \in \mathbb{Q}[x]$, $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 3$. Now ω is a root of the polynomial $x^2 + x + 1 \in \mathbb{Q}(\sqrt[3]{3})[x]$. This polynomial has no real roots, hence no roots in $\mathbb{Q}(\sqrt[3]{3})$, therefore is irreducible, thus $[\mathbb{Q}(\sqrt[3]{3}, \omega) : \mathbb{Q}(\sqrt[3]{3})] = 2$ and $[K : \mathbb{Q}] = 6$.

(3) Find all automorphims of K over \mathbb{Q} .

Since K is a splitting field, it is normal and separable (char $\mathbb{Q} = 0$) over \mathbb{Q} . Therefore, its Galois group G contains $6 = [K : \mathbb{Q}]$ elements. If $\sigma \in G$, it moves $\sqrt[3]{3}$ to a root of the same polynomial $x^2 - 3$ and ω to a root of $x^2 + x + 1$, that is

$$\sigma(\sqrt[3]{3}) \in \left\{ \sqrt[3]{3}, \omega\sqrt[3]{3}, \omega^2\sqrt[3]{3} \right\}, \\ \sigma(\omega) \in \left\{ \omega, \omega^2 \right\}$$

and all these possibilities must occur, since #(G) = 6. Thus G consists of the following 6 automorphisms:

```
\sigma_{1} = \iota \quad \text{(identity map)},

\sigma_{2} : \sqrt[3]{3} \mapsto \sqrt[3]{3}, \ \omega \mapsto \omega^{2},

\sigma_{3} : \sqrt[3]{3} \mapsto \omega \sqrt[3]{3}, \ \omega \mapsto \omega,

\sigma_{4} : \sqrt[3]{3} \mapsto \omega \sqrt[3]{3}, \ \omega \mapsto \omega^{2},

\sigma_{5} : \sqrt[3]{3} \mapsto \omega^{2} \sqrt[3]{3}, \ \omega \mapsto \omega,

\sigma_{6} : \sqrt[3]{3} \mapsto \omega^{2} \sqrt[3]{3}, \ \omega \mapsto \omega^{2}.
```

(4) Find an element θ such that $K = \mathbb{Q}(\theta)$ and all elements $\sigma(\theta)$, where σ runs through $\operatorname{Gal}_{\mathbb{Q}} K$.

According to the proof of Theorem 10.18, we have to find $c \in \mathbb{Q}$ such that

$$c \neq \frac{\alpha - \sqrt[3]{3}}{\omega^2 - \omega}$$
, where $\alpha \in \left\{ \sqrt[3]{3}, \omega \sqrt[3]{3}, \omega^2 \sqrt[3]{3} \right\}$.

It is easy to see that c = 1 fits. Therefore, for instance, $K = \mathbb{Q}(\theta)$, where $\theta = \sqrt[3]{3} - \omega$. Then

$$\sigma_{1}(\theta) = \theta,$$

$$\sigma_{2}(\theta) = \sqrt[3]{3} - \omega^{2},$$

$$\sigma_{3}(\theta) = \omega\sqrt[3]{3} - \omega,$$

$$\sigma_{2}(\theta) = \omega\sqrt[3]{3} - \omega^{2},$$

$$\sigma_{2}(\theta) = \omega^{2}\sqrt[3]{3} - \omega,$$

$$\sigma_{2}(\theta) = \omega^{2}\sqrt[3]{3} - \omega^{2}.$$