(1) Find an irreducible polynomial $p(x)$ of degree 2 over Z_{5}.

The polynomial $x^{2}-2$ has no roots in Z_{5} (verify!) and is of degree 2 , so it is irreducible.
(2) Construct a field K with 25 elements.

Let $K=Z_{5}(\theta)$, where θ is a root of $p(x)=x^{2}-2$. Then $\left[K: Z_{5}\right]=\operatorname{deg} p(x)=2$, therefore $\#(K)=5^{2}=25$.
(3) Find a primitive element β of the field K, that is an element $\beta \in K$ such that $K=\left\{0,1, \beta, \beta^{2}, \ldots, \beta^{23}\right\}$.

Try $\beta=\theta+2$. Find $\operatorname{ord}(\beta)$:

$$
\begin{aligned}
& \beta^{2}=\theta^{2}+4 \theta+4=-\theta+1\left(\text { since } \theta^{2}=2\right) \\
& \beta^{3}=-\theta \\
& \beta^{5}=\theta^{5}+2^{5}=4 \theta+2=-\theta+2(\text { since char } K=5) \\
& \beta^{8}=2-2 \theta \neq 1 \\
& \beta^{10}=\theta+1 \\
& \beta^{12}=-1
\end{aligned}
$$

Since $\beta^{8} \neq 1, \beta^{12} \neq 1$, the only possibility is that $\operatorname{ord}(\beta)=$ 24. Then all elements $\left\{1, \beta, \beta^{2}, \ldots, \beta^{23}\right\}$ are different, therefore $K=\left\{0,1, \beta, \beta^{2}, \ldots, \beta^{23}\right\}$.
(Note that $\theta+1$ does not match, since $(\theta+1)^{3}=2$ and $\left.(\theta+1)^{12}=2^{4}=1\right)$.
(4) Find an irreducible polynomial of degree 2 over K.

Let $f(x)=x^{2}-\beta$. We verify that it has no roots in K. Indeed, every nonzero element $\gamma \in K$ equals β^{k} for some $0 \leq$ $k<24$. Then $\gamma^{2}=\beta^{2 k}$. If $\beta^{2 k}=\beta$, then $\beta^{2 k-1}=1$, hence $24 \mid 2 k-1$, which is impossible, since $2 k-1$ is odd and 24 are even. Therefore $f(x)$ has no roots in K, so it is irreducible.

Note that the answers are NOT unique!

