(1) List all irreducible monic polynomials of degree 2 over Z_{3}.

Irreducible polynomials of degree 2 are just those having no roots. List all monic polynomial of degree 2 with nonzero constsnt term (that is such that 0 is not a root) and try:

- $x^{2}+1$ has no roots.
- $x^{2}+2$ has a root 1 .
- $x^{2}+x+1$ has a root 1 .
- $x^{2}+x+2$ has no roots.
- $x^{2}+2 x+x$ has a root 2 .
- $x^{2}+2 x+2$ has no roots.

Therefore, monic irreducible polynomials of degree 2 over Z_{3} are:

$$
x^{2}+1, x^{2}+x+2, x^{2}+2 x+2
$$

(2) The polynomial $f(x)=2 x^{5}-5 x^{3}+8 x^{2}+2 x-4$ has a complex root $1-i$. Decompose $f(x)$ into a product of irreducible polynomials in $\mathbb{Q}[x]$, in $\mathbb{R}[x]$ and in $\mathbb{C}[x]$.

If $f(x)$ has a root $1-i$ and its coeficients are real numbers, it also has the conjugate root $1+i$. Hence, it is divisible by the product $(x-1+i)(x-1-i)=x^{2}-2 x+2$. We get

$$
f(x)=\left(x^{2}-2 x+2\right)\left(2 x^{3}+4 x^{2}-x-2\right) .
$$

The first factor is irreducible in $\mathbb{R}[x]$, since it has no real roots. Check whether the second one is irreducible in $\mathbb{Q}[x]$, that is has no roots (since it is of degree 3). Possible rational roots are $\pm 1, \pm 2, \pm \frac{1}{2}$ (the numerator must divide the constant term -2 , the denominator must divide the leading coefficient 2). One easily checks that -2 is a root, and we get

$$
2 x^{3}+4 x^{2}-x-2=(x+2)\left(2 x^{2}-1\right)
$$

The second factor here has no rational roots, so is irreducible in $\mathbb{Q}[x]$. Hence, the decomposition in $\mathbb{Q}[x]$ is

$$
f(x)=\left(x^{2}-2 x+2\right)(x+2)\left(2 x^{2}-1\right)
$$

In $\mathbb{R}[x], 2 x^{2}-1=(\sqrt{2} x-1)(\sqrt{2} x+1)$, so the decomposition in $\mathbb{R}[x]$ is

$$
f(x)=\left(x^{2}-2 x+2\right)(x+2)(\sqrt{2} x-1)(\sqrt{2} x+1)
$$

Finally the decomposition in $\mathbb{C}[x]$ is

$$
f(x)=(x-1+i)(x-1-i)(x+2)(\sqrt{2} x-1)(\sqrt{2} x+1) .
$$

(3) Find a polynomial $f(x) \in \mathbb{R}[x]$ having roots $-1,2, i$.

Since $f(x) \in \mathbb{R}[x]$ and has a root i, it also has a root $-i$. Therefore, we have the following possibility:

$$
f(x)=(x+1)(x-2)(x-i)(x+i)=x^{4}-x^{3}-x^{2}-x-2 .
$$

(All other polynomials from $\mathbb{R}[x]$ having these roots are divisible by $f(x)$.)
(4) Prove that the following poloynomials are irreducible in $\mathbb{Q}[x]$:
(a) $3 x^{5}+21 x^{3}-98 x^{2}+35 x-21$.

All coefficients of this polynomial, except the leading one, are divisible by 7 and the constant term is not divisible by $7^{2}=49$. Therefore this polynomial is irreducible by the Eisenstein criterion.
(b) $x^{4}+8 x^{3}-6 x^{2}+6 x+8$. Is it possible to apply the Eisenstein criterion to this polynomial?
The only prime number dividing all coefficients, except the leading one, is 2 , but $2^{2}=4$ divides the constant term. Therefore, we cannot apply the Eisenstrein criterion.
Modulo 2 this polynomial is x^{4}, reducible. Try 3. Modulo 3 we get $\bar{f}(x)=x^{4}+2 x^{3}+2$. One easily verifies that it has no roots in Z_{3}. Therefore, if $\bar{f}(x)$ is reducible, it has a qudratic factor. We have found all monic irreducible quadratic polynomial over Z_{3} in the problem 1. Now we check that $\bar{f}(x)$ is divisible neither by $x^{2}+1$, nor by $x^{2}+$ $x+2$, nor by $x^{2}+2 x+2$. Therefore $\bar{f}(x)$ is irreducible, hence $f(x)$ is irreducible as well.

