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Abstract

In this article we classify indecomposable objects of the derived categories of finitely-generated
modules over certain infinite-dimensional algebras. The considered class of algebras (which we call
nodal algebras) contains such well-known algebras as the complete ring of a double nodal point
k[[x, y]1/(xy) and the completed path algebra of the Gelfand quiver. As a corollary we obtain
a description of the derived category of Harish-Chandra modules SivgiR). We also give an
algorithm, which allows to construct projective resolutions of indecomposable complexes. In the
appendix we prove the Krull-Schmidt theorem for homotopy categories.
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1. Introduction
Let A be apure noetherian complete algebhiize., an associativie-algebra such that:

(1) Its centerC is a complete local noetherig&nmalgebra.
(2) A is finitely generated’-module without minimal submodules.

Denote byr the radical ofA. It was shown in [14] tha#t is tame if and only if it satisfies
the following conditions:
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(1) The algebrai = Endy (r) is hereditary.

(2) radA) =r.

(3) For any simple lefd-moduleU the length of the lefd-moduleA ®4 U is at most 2
and for any simple righ#-moduleV the length of the righ-moduleV ®4 A is at
most 2.

We call algebras satisfying these conditionslalalgebras.

Our description of the derived category of a nodal algebra shows that it is tame at least
in “pragmatic” sense, i.e., one can obtain a list of its indecomposable objects as a union of
one-dimensional families and some discrete set of objects staying apart. Unfortunately, the
definition of derived tameness proposed in [21] can be only applied to finite-dimensional
algebras of finite global dimension and nodal algebras usually satisfy neither of these
conditions.

The methods developed in this article can be also applied to finite-dimensional gentle
and skew-gentle algebras considered in [3,4,20,27,28], as well as to some other algebras [9]
and to some derived categories of coherent sheaves [10]. An advantage of these methods
is that they also work in cases, when an algebra has infinite homological dimension
and describe the derived category of bounded fronritdji® complexes. The developed
technique allows to write down projective resolutions of indecomposable complexes.

For the sake of simplicity we suppose that the fiklés algebraically closed. Let us
rewrite the definition of nodal algebras in a more transparent formlLée a simple
A-module,P —> U its projective covering. Then we have an exact sequence

O—rP—P—U—70.
Apply the functorA® 4 to this sequence. We get
A~®A}’P—>A~®AP—>A®AU—>O.

Butr =rad(A), hence IMA @4 rP —> A®4 P)=r®4 P =rad A ® 4 P). So we have
an exact sequence

O—>rad(A®AP)—>A®AP—>A®AU—>O.

ThereforeA ®4 U is a direct sum of simpld-modules. Lety, Ua, ..., U,, be the set of

all non-isomorphic simplei-modules Vi, V>, ..., V, the set of all non-isomorphic simple
A-modules. Consider the graghwith verticesU;, Vi,i=1...,m,j=1,...,n. There

is an arrow fronU; to V; if and only if V; is a direct summand of ®4 U;. Then, as it was
shown in [14], the last condition in the criteria of tameness is equivalent to the following
condition: all connected componentsiofare of the form:

1) V' «—U— V",
() U — V «—U".
B)U—V.
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Let us consider some examples.

Example 1.1. Let A = K[[x, y]l/(xy), m = (x,y) be its maximal ideal. Them =
Ends (m) = K[[x]] x K[[y]]. Let U be the unique simpld-module,V1, V> be simpleA-
modules. Then the graph has the form

Vi<— U — V5.

Example 1.2. Let

A= { <f11 tf12>
fa1 f22
As one can easily observa, is just the algebr& (x, y)/(x2, y2) (k{x, y) is the algebra

of formal power series in two non-commutative variables). The endomorphism algebra of
its radical is just

{(fll tf12>
fa1 f22

Itis easy to see that it is just the completed path algebra of the quiver

fij €Kl 1<i, j <2 f11(0) = f22(0)} € Matp(K[[11]).-

fij €kl 1<, j < 2} < Matp(K[[1]).

X

1 e

y

Indeed, an isomorphism is given by

. 0 ¢ . 00
o o)r Y7 \1 o)
The graphl™ again has the form

Vi<—U— Vo.

Here and further on we consider the natural completion of path algebras, namely, the
adic one, wherd is the ideal generated by all arrows.

Example 1.3. Let A be the completed path algebra of the Gelfand quiver

[ +
ST wath

o B
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As one can easily see,

fi1 tfiz tfiz
A= {(le fo2 tf23>
fa1 tfzz  fa3

fij €kl 1<, j < 3} C Matg(k([[21])-

An isomorphism is given by

0 0O 0 0O
a++—><l 0 0>, ,3+|—><O 0 0>,
0 0O 1 00
0+ O 0 0 ¢
a_|—>(0 0 O), ﬂ_|—><0 0 0).
0 0O 0 0O

The endomorphism algebria: EndradA)) is

5 fi tho tfis
A= {(le f22 f23>
f31 fa2 fa3

and is Morita equivalent to

{(fll tf12>
fa1 f22

which is the completed path algebra of the quiver

fij €K, 1<i, j < 3} < Mata(K[[11).

fij ekl 1<, j < 2} < Maty(k[[111),

Note thatA is isomorphic to the completed path algebra of the following (non-basic) quiver

Oy

& o B
M, (K) o B. o= B o
B

Let U1, Uz, U3 be simpleA-modules,V, W simpIeA-moduIes. Our grapli” has the
form

Ui — V «— Uy, U3 — W.
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2. Themain construction

Let A be a semi-perfect associatikealgebra (not necessarily finite-dimensional),
A C A be an embedding such that rad(A) = rad(A). Let I C A be a two-sidedi-ideal
containing. It meansthat C I = IA = AI, thusA/I andA/I are semi-simple algebras.
Let A® 4 be the derived functor of the tensor product. We want to describe the fibers of
the map

Ob(D~ (A-mod)) —> Ob(D~ (A-mod)).

Remark 2.1. A-mod denotes the category fifiitely-generatedd-modules. We always
consider objects of derived categories as complexes of projective modules.

Definition 2.2. Consider the following category of triples of complexes,TC

(1) Objects are triglesﬁ., Ma,, i), where
Po € D~ (A-mod),
M, € D™ (A/I-mod), o
i:Ms — A/l ®; Ps @ morphism inD~(A/I-mod), such thati: A/l ®4
M. — A/I ®; P, is an isomorphism iD= (A/I-mod.

(2) Morphisms(P,,, M1, i1) —> (P.,. M2, i2) are pairg@, ¢),

Py 2 Poye My -5 Mo,

such that

is commutative.
Remark 2.3. If an algebraA has infinite homological dimension, then we are forced to deal
with the derived category of right bounded complexes (in order to define the left derived
functor of the tensor product). In cadehas finite homological dimension we can suppose
that all complexes above abeundedrom both sides.

Theorem 2.4. The functor

D™ (A-mod) LN TCy,



I. Burban, Yu. Drozd / Journal of Algebra 272 (2004) 46-94 51

Po —> (A @4 Po, AJI @4 Po,i:AJI @4 Po —> A/I @4 P.) has the following
properties

(1) Fis densei.e., every triple(P,, M,, i) is isomorphic to SOmE(P,)).

(2) F(Ps) =F(Qs) <= Ps = Q.

(3) F(P,) is indecomposable if and only if so 73, (note that this property is an easy
formal consequence of the previous two propejties

(4) Fis full.

Remark 2.5. F is not faithful. So it is not an equivalence of categories. A funétor
satisfying the properties (1)—(4) is callddtecting functofsee [2]).

Proof. The main point to be clarified is: having a tripe = (P,, M., i) how can we
reconstruc,? The exact sequence

00— [Py —> Py —> A/I ®; Po —> 0

of complexes iM-mod gives a distinguished triangle

in D~ (A-mod. The properties of triangulated categories imply that there is a morphism
of triangles

Py — Py — A/ ®; Pe — IP,[1]

[

1P, P. M, IP[-1],

whereP, = coné M, — 173.[—1])[1]. SetG(7) = P,. Taking a cone is not a functorial
operation. It gives an intuitive explanation why the fundtois not an equivalence. The
properties of triangulated categories immediately imply that the constructed map (not a
functor!)

G:0Ob(TC4) —> Ob(D~ (A-mod))

sends isomorphic objects into isomorphic ones @fdP,) = P.. Now we have to show
thatFG(P,, M,,i) = (Pe, M,,i). O
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Lemma 2.6. In the above notations, leP be a projectiveA-module, M be anA/I-
module,i: M — P/IP be anA/I-module monomorphism such that the induced map
iA/l ®a/1 M — P/IP is an isomorphism. Consider the pull-back diagram

0 1P P M 0
P
~ ~ T ~ ~

0 IpP P P/IP 0.

ThenP is a projectiveA-module andA ® 4 P —> Pisan isomorphism.

Consider the imagé of the ideall in A/r. SinceA/r is semi-simple, we can find an
ideal J in A/r such thatl + J = A/r, I N J = 0. By the Chinese remainder theorem we
haveA/r = A/I x A/J.

Let P=P/rP. ThenP = Pl &) Pz, WherePl is an A/I -module ansz an A/J-
module. But therP also decomposes into a direct sufh= P; & P>, whereP; = P;/r P;,

i = 1,2 (we use the fact that there is a bijection between projective and semi-simple
modules:P < P/rP).

Then we have:

Iﬁlzrﬁl, Iﬁz:ﬁz.

Ingeed,f_’l/rﬁl is an A/I-module, sol Py C rP1. But r C I, hencerPy C I1Py. So,
1P1=rP1. AnalogouslyJ P, C rPs. Butl +J = A, so

132=1132+J132§1172+r132g1'52.

Hence, by Nakayama’s lemnid@, = P,.
Our diagram has now the form:

0——= P,®rp; P M 0

T

0—— ﬁz@rﬁl —— ﬁl@ﬁz L> ﬁl/rﬁ1*> 0.

SinceP — P1@ Py is a monomorphlssz is a direct summand of. Moreover, Pz
is a projectiveA-module. Indeed, IeQ be any projectived-module sat|sfy|nng 0.
Without loss of generality suppose thatis a direct summand of. Then

O=I10CIACACA.

But if the embeddingDd —> A splits, thenQ —> A splits too. Hence( is a projective
A-module.
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Note that the canonical map®4 P» —> P is an isomorphism. Indeed,
ARAPr=AQ@s1P,=Al @4 Po=1®4 P>.
But P, is a flatA-module, hence

I ®4 ﬁz:]ﬁz:ﬁz.

So we get
0 rPy Py M 0
-
0 rﬁl ﬁl il ﬁl/rﬁl — 0.

We know thati: A/l ®a;; M —> P1/IPy is an isomorphism. But thed /r @4,
M —> P1/r Py is an isomorphism, too. Indeeti = O, since M is a submodule of
P1/IP,.Butl +J=A,henceJM =M andA/J @4, M =0. Therefore

AT @ayrM=A/1@p MZ(AJT®A)T) @asr MZA/r Qe M

Now we have to show that; is projective andl @4 P — Fl is an isomorphism. Let
P (M) be a projective covering o¥/.

P(M)
>
0 rPy P M 0
\le l l/l
0 rﬁl ﬁl ﬁl/rﬁl — 0.

Apply the functorA /r® 4 to the first row of this diagram. We gef:: P(M)/r P(M) —>
P/rP is an isomorphism. Hence by Nakayama’s lemgné an epimorphism. Consider
the composition mapP (M) —> P;. The induced mapﬁ Q4 P(M) — P, is an iso-
morphism modulo-. Since both modules are projective, it is indeed an isomorphism. We
get: P(M) — A® P(M) — Piis a monomorphism. But theyi: P(M) — Py is a
monomorphism too. So it is an isomorphism. And we have shown alsd RatP —> Py
is an isomorphism.

We finish now the proof of the theorem. L&P,, M., i) be a triple. Without loss
of generality, suppose tha®, is a minimal complex and\, a complex with zero
differentials. TherP, /rP is a complex with zero differentials too and the niapt, —

P, /IP has the property thai: A/l Qayr Mo —> P, /IP. is an isomorphism of
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complexesConsider now the pull-back diagram in the abelian category of complexes of
A-modules.

0 P, Po —2 o M, 0
l id i ] l/ i
0 P, P, —= P.JIP. —= 0

From Lemma 2.6 follows that:

(1) P. is a complex of projectivel-modules; 5 _
(2) ((dR®,IdRY): (ARAP., A/IRAPe, A/IRAPe —> A/IRAPs) —> (Po, Ma, i)
is an isomorphism in the category of triples.

It remains to show thég is full.

Let (@, 9) 1 (Pa1, Mat,i1) —> (Pa2, Ma2,i2) be a morphism in TG, where Mq1
and M,» are complexes with zero differentials. Since we are dealing with complexes
of projective objects@ and¢ can be represented by morphisms of complexes. Let us
moreover suppoSE.l andP.z to be minimal. Them/l ®; P.l, i =1, 2, are complexes
with zero differentials, too.

M.]_ M.Z

L]

~ ~ D ~ ~
Pol/lpol — P.Z/IP.Z

is commutativein the category of complexe3he properties of pull-back imply the
existence of a morphism of complexBs; — P,2 such that

PQZ Moz
Pol M.l

ﬁoZ - ﬁ.Z/lﬁ.Z
R
Pol Pol/lpol

is commutative. Hence it gives a lift of a morphig@, ¢) we are looking for. So the
functorF is full, which accomplishes the proof of the theorem.
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3. Thecaseof D~ (k{x, y)/x2, y2))

Consider the embedding of completed path algeliras> A:

OOyl >

=0 y?=0 y

Takel = (x, y), thenA/I =k, A/I =k x k andA/I — A/I is just the diagonal map.

As we have seen in the previous section, a comphxof the derived category
D~ (A-mod) is defined by some tripléﬁ., Ma,, ). SinceA/I-mod can be identified with
the category ok-vector spaces, the mapM, — 75./173. is given by a collection of
linear maps

Hie(i): He(Ma) —> Hi(Pu/IP,).

The mapH; (i) is ak-linear map of &-module into & x k-module. Hence it is given by
two matricesHy (i|1) and Hy(i|2). From the non-degeneracy condition of the category of
triples it follows that both of these matrices are invertible.

The algebrad has homological dimension 1. Moreover, it is an order. By a theorem of
Dold (see [13]), an indecomposable complex frém (A-mod) is isomorphic to

iio—>0— M —0— .-,
—

i

whereM is an indecomposablé-module. ButA i~s a hereditary order ovdsi[¢]]. Hence
(see [15]) an indecomposable finitely-generatedhodule is isomorphic in the derived
category to a shift oP;,i =1, 2, orto

PSP ,j=12),

where P, = Ae¢; (e; is the idempotent corresponding to the painif the graph)y is a
morphism given by a path going froynto i and Im(e) < r P;, thus

A1®; (P -5 P))=ki —>k;.

Let
P.=D7

be a decomposition oP, into a direct sum of indecomposables. This decomposition
implies a division of matrice#l; (i|1) and Hy (i|2) into horizontal stripes.

The next question is: which transformations can we perform with the matlgg$l)
andHy(i|2)?
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We can do simultaneously any elementary transformation of columiig @f1) and
Hi(i]2) (they correspond to the automorphisms .bt,). From the definition of the
category of triples it follows that row transformations are induced by morphisms in
D~ (A-mod).

Let us now describe the morphisms between indecomposable complexes from
D~ (A-mod), which are non-zero after applyinty I. Due to [15] they are just

X Y
P, —— P Pp—— P
o .
yx yx
Pp——P Pp—— P
X -y
XYX yxy
P, —— P Pp—— P
oy .
yxXyx yXyx
Pp——P Pp—— P
Y X
Pp—— P P, —— P
X -y
Xy Y
P, —— P P, —— P
oy .
yxy Y
Pp—— P P, —— P
X -y
Xyxy Xyxy
P, —— P> Pr—— P>
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Moreover, we always have a morphism

O——= P ——= P

ey

Pph—— P ——0

Now note that we have the following cases:

(1) A morphism
0——=F ——=Fj
e
Ph—— P ——0
induces
0—— ki L kj
A
K 0. ki——0
(2) A morphism

P, —— P

wherey € rad(A), induces

57
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(3) Analogously we have that

whereg € radA), induces

(4) In the same way

induces
0——=Kk;
L)
Kji 2o k;
and
P, Y- p
lkid l
Pi——0
induces
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(5) And finally an endomorphism

induces

x
E
~

-
>
-
>

0
;—

=~
=~
<.

and the same foP;, i =1, 2.
From what has been said we observe that the matrix problem describing the derived
categoryD~ (A-mod) is given by the following partially ordered set (bunch of chains,

see [5] or Appendix B [16]).

= T — T — U == e
= = = a o o
= = = = = =
= ==} = = j==] =

In this picture we assume that complexes are shifted in such a way thét@jl= 0
fori < 0. Small circles correspond to the horizontal stripes, small rectangles correspond to
the vertical stripes, dotted lines between circles show the related stripes (i.e., those which
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come from the same object of the derived category), vertical arrows describe the possible
transformations between different horizontal stripes:
Explicitly saying, we can do the following transformations with our matridg&):

(1) We can do any simultaneous elementary transformations of the columns of the matrices
Hi(i|11) andHy (i]2), k € Z.

(2) We can do any simultaneous transformations of rows inside conjugated blocks.

(3) We can add a scalar multiple of any row from a block with lower weight to any row
of a block of a higher weight (inside the big matrix, of course). These transformations
can be proceeded independently insifigi|1) and H (i|2), k € Z.

This matrix problem belongs to the well-known representations of bunches of chains
(see [5,7,26] and Appendix). From here we conclude that there are three types of
indecomposable objects: bands, finite strings (both correspond to complexes of finite
projective dimension) and infinite strings (which correspond to complexes of infinite
projective dimension). In Section 6 we shall explain, how the combinatoric of band
and string representations can be used to write down explicit projective resolutions of
complexes.

4. Gelfand quiver

In this section we shall see that our technique allows us to describe the derived category
of representations of the completed path algebra of the quiver

0L X
o_o,=p.B.

o B

The classification of indecomposable representations of this quiver can be reduced to
representations of bunchess#mi-chainssee [5]. It is not surprising that the description
of the derived category is reduced to the problem of the same type. Consider the embedding
given in Example 1.3. In this case we have'l =k x k, A/I = M»(k) andA/I — A/I
the diagonal mapping. Now we have to answer the following:

Question 4.1. Let M be ak x k-module,M’ be aM2(k)-module,p : M — M’ a map of

k x k-modules (1’ is supplied withk x k-module structure using the diagonal embedding).
The map ofk x k-modules is given by two matrices(1) and ¢(2). Which conditions
should satisfyp(1) andg(2) in orderi : Ma(K) ®kxk M —> M’ to be an isomorphism?

Let M = (v1, vz, ..., Up; w1, w2, ..., w,) = K(D)™ & k(2)". There is only one inde-
composablé/,(k)-module:k?. So,

M = (u'l Uy uy, Uy .. uly, u}(,) = (kZ)N,
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where the action of matrix units are:
e1u; = uj, exu; =uj, e1ou; =0, exou; =0,
and, analogously,
14 14 14 / 14 14
e1u; =0, eoqu; =0, e1ou; =1u;, exou; =u; .

Let

N N
o) =Y + Y o,
j=1 j=1
Sincey is ak x k-module homomorphism,

0= gp(e22vi) = €220 (v;).
So alla}i = 0. Analogously,
N
p(wi) =Y Bjiu}.
j=1

On the other hand, any/>(k) homomorphismy : (k%" — (k?)" is given by an

m x n matrix («;;) with the entries fromk (see [17, Theorem 1.7.5]). Namely, if

i 2
(e, e],eh. e, ..., ey, ep) and (f], 1, fo. 5, fms [ry) @re canonical bases ok<)"

and(k?)” then
I/I(e;)zzaijﬁ/, 1//(6,;,/) :Zaijf[//'
j:l j:l

Consider now a/2(k)-moduleM2(K) Qkxk M. It is generated by
€11 Qv1, €21QV1; €11 Q V2, e21Q V2; ...; €118 Uy, €21 Q Upy;
e12 Q@ w1, e22Q@ w1; e12Q w2, €22Q W2, ...; €12Q Wy, €22 Wy.

Sinceg(e ® v) = ep(v), it is easy to see that is given by N x (n + m)-matrix (¢(1) |
©(2). So,¢ is an isomorphism ifp (1) | ¢(2)) is square and invertible.
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Now let us return to the Gelfand quiver. The morphisms)'rn(fi-moa) were discussed
in the previous subsection. We are able to write Bondarenko’s partially ordered set:

This picture shows the division of matricé (i), k € Z, into horizontal and vertical
stripes. Each of these matrices is divided into two vertical bldgk§|1) and Hi(i|2)
(which correspond to the fact that we have an embedkling —> M2(k)) and horizontal
blocks that correspond to indecomposablesDof(A-mod). In the same way as in the
previous section we have an ordering on the horizontal stripes.

We can perform the following transformations with matri¢ési):

(1) We can do independently elementary transformations of columnd,¢fil) and
Hi(i]2).

(2) We can do any simultaneous transformations of rows inside conjugated blocks.

(3) We can add a scalar multiple of any row from a block with lower weight to any row of
a block of a higher weight.

This problem belongs to the class of representations of bunchesnaitchainsThe
description of indecomposable objects was obtained in [5,11] and later elaborated in [12].
Since we get in this case infinitely many matrices, certain modifications should be done,
see [7] and Appendix. Namely, there are the following types of indecomposable objects:
bands, bispecial strings, finite and infinite special strings, finite and infinite strings. We
shall give more details in the over-next section.

Remark 4.2. In fact we have shown (see [22]) that the derived category of the Harish-
Chandra modules ov&ly(R) is tame.
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5. Matrix problem for a general nodal algebra

Let A be anodal algebra, which is supposed to be basits centerA = Endy (rad(A)).
Recall that we have 3 types of simpdemodules (see [14]):

(1) Such simple leftd-modulesU thatl, (A ®4 U) = 1.
(2) A(A®AU)=2,1;(A®AU)=2.
(3) 1a(A®AU)=2,1;(ARsU)=1.

It follows from the definition of a nodal algebra that and A have the common
radical: r = radA) = rad(A). Hence we have an embedding of semi-simple algebras
A/r — A/r. SinceA is basic andk algebraically closedd4 /r is isomorphic to a product
of several copies df.

The conditions (1)—(3) above imply that each simple component/efis isomorphic
either tok or to M2 (k) and the induced map/r —> A/r acts as follows:

(1) A simple component ofi/r is mapped isomorphically onto a simple component of
Alr.

(2) A simple component ofi/r is embedded diagonally into a product of two simple
components ofi/r, both isomorphic td.

(3) A product of two simple components of/r is mapped isomorphically onto the
diagonal subalgebra of a simple componentgf isomorphic toM2(k).

Let 7 be an ideal inA generated by the radical and idempotents of the first type. Then
I is an ideal in4, too. Moreover, the factor-algebrag andA/I are semi-simple in this
case. So, the conditions of the main theorem are fulfilled.

Let A =[]"_; A,, where allA, are hereditary orders;(A,) be the basic algebra
corresponding tod,,. Since it is a hereditary order ovkf[¢]] (by Noether normalization
there is a finite ring extensidd[¢]] —> T), it is isomorphic to the completed path algebra
of some cycle of lengtld, (it follows from the classification of hereditary orders over a
complete discrete valuation ring, see [8,23] or [18]). Let us introduce some numbering of
the vertices of the cycle@(fin). For the sake of convenience we number the vertices of
C(A,) by element§1], (2], ..., [d,] of Z/d,Z. So each simplel-moduleU correspond
to a pair(n,v), wheren € 1,..., N, v € Z/d,Z. Namely,n denotes the number of the
componentd,, that acts non-trivially orU, v is the number of the vertex from the cycle
C(A,) corresponding td/.

In order to consider the category of triples f @e have to consider morphisms in the
derived categoryp~ (A-mod). From what we have seen above it follows that it is enough
to consider morphisms iD~(C(A,)-mod),nel,...,N.

Let C be a cycle of lengthw. Then the category of finitely generated |€ftmodules
is hereditary. Hence any indecomposable objecbof(C-mod) is isomorphic to 0—>
M — 0, whereM is an indecomposablé-module. Moreover, eithe¥ is projective or

it has a resolutio® —2> Q, whereP andQ are indecomposable projecticemodulesgp
a morphism, given by some path on the quigefl15]; denote (¢) = length(cokeryp).
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The morphisms ofd-modules (which are non-zero modulo the radical) are of the
following form (see [15]):

¢1 V1

Pv+1*>PU P, —— P,_1
Cu+1 Cv-1
Pz 2> P, PP,
Cy42 Cy-2
Piyz —> P, P, b, g
Cv+3 Cy-3

wherec,4; : Py+i+1 —> Py+; IS the map given by an arrow going from the vertex i
to v +i + 1. There are also morphisms in the derived category, which correspondtto Ext
groups:

|
|

|
|

<—0O0<—0
N<— U <— "

.
g

Let us now construct the partially ordered set, which describes the matrix problem
corresponding to the category of triples  @r a given nodal algebra.

Let C(A,) be a basic algebra (which is a cycle) correspondingifo Consider a
complex

(Pv—i-l(ga) i) P\))[f]s

wherev € Z/d,Z, ¢ a morphism of projective modules given by the path of the length
(@), f € Z the shift of the complexes.

DenoteJ(C(A,)) the set of simplel,,-modules, which correspond to direct summands
of A®4 U, whereU is a simpleA-module of second or third type.

Let v, v + I(¢) € J(C(A,)). Then we associate to this complex two symbols
a(n,v,l(p), f) and B(n,v + (), l(¢), f + 1). In case onlyv (respectivelyv + /()
or neither of both) belongs td(C(A,)) we associate with it only(n, v, 1(¢), f)
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(respectivel\8(n, v + I(p), l(¢), f + 1) or nothing). In the same way a symhalz, v, f)
corresponds to the object

O— P, — O)[f].
We are ready now to introduce our partially ordered set.

Definition 5.1. We introduce a Bondarenko’s partially ordered set together with equiva-
lence relation in several steps.

(1) Letl<n < N,veZ/d,Z,veIC(A)).

E ) =, v,i, £), Bn,v,i, )i =1} U{pm,v, )}, feL.

N
@) Exm=JE m. Em= |J E.m. E=JEm.
fez ved(A,) n=1
(3) We can introduce a partial order an equivalence relatio.on
(a) First of all

a(n,v,i1, f) 2 a@,v, iz ), Bn,v,i1, )< B, v, iz, f)

foriy > io.
(b) Furthermore,

am,v,i, f)=pn,v, )20, ], f)

foralli,j>1, feZ. 5
(c) Ifi eNandv € J(C(A,)) are such that+ v € J(C(A,)), then

a(m,v,i, fy~Bm,v+i,i, f+1), f[feZ.

(4) Letl<n<N,veZ/d,Z,v € J(C(Ap)). The setF(n, v, f), f € Z consists either
from one or two elements.
(a) If U is a simple module of a second tyfe, v), (m, 1) corresponding simplé-
modules, then the se&n, v, ) = {g, v, )} andF@m, u, f) = {gn, u, )}
are the sets consisting from one element. Moregverv, ) ~ g(m, i, f).
(b) In casel is anA-module of the third typep, v) corresponds t® ®4 U, then

F(Vl, v, f) = {g'(n, v, f)v g/'(n, v, f)}

It is however convenientto assume thét, v, ) = {g(n, v, f)}andg(n, v, f) ~
g, v, f).
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Let us point out that we are interested in onloiounded from the right representations
of the constructed bunch of semi-chains (since we want to describe the derived category
of bounded from the right complexes). Moreover, the non-degeneracy condition from the
definition of the category of triples implies certain non-degeneracy restrictions on our
matrices. However they concern only the discrete series of representations, for continuous
series they are automatically satisfied (see [5]).

To sum everything up we formulate the main result of this article:

Theorem 5.2. Let A be a nodal algebra. The description of indecomposable objects of
D~ (A-mod) can be reduced to the description of indecomposable representations of a
bunch of semi-chains, described in the previous definition. In particular, therd gees

of indecomposable objects in~ (A-mod):

(1) BandsB(w, m, A).

(2) strings(which can be usual, special and bispetial

(3) ComplexesP; and P; AN Pj, wherei and j correspond to simplel-modules of the
first type.

In particular, a nodal algebra is derived-tame in “pragmatic sense”.

Remark 5.3. For the ringA = K[[x, y]]/(xy) it was shown in [10], how to describe
complexes, corresponding to objectsAsod with respect to the canonical inclusion

A-mod— D~ (A-mod).

6. Description of indecomposable complexesvia gluing diagrams

In this section we want to show, how the combinatoric of bands and strings can be
applied to write down explicit projective resolutions of indecomposable complexes. We
shall consider two “typical examples”: the casedt= k(x, y)/(x2, y) and the case of
the completed path algebra of the Gelfand quiver.

6.1. The case ab~ (K (x, y)/(x2, y2)-mod)

Let A = k(x, y)/(x2, y?), r its radical, A = Ends (). As we have seen in previous
sections, the description of indecomposable objects of the derived catBggry-mod)
can be reduced to a matrix problem of type “representations of bunches of chains.” There
are two types of indecomposable complexes in this case: baadsm, 1) and strings
Uw).

Let us rewrite the corresponding partially ordered sets in this special case. We have a
family of sets

Flo={g(L.k),82 b}, keZ gk ~g2k),
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which correspond to columns of the matricEgs(i|1) and Hy(i|2); and two families of
setsEq (k) = {a(1,i, k), B(L, i, k) |i > 1 U{p@ k)} andEx(k) = {a(2,i,k), B(2,i,k) |
i >1}U{p(2 k)}, which label horizontal blocks of matricé%, (i|1) and Hy(i|2), k € Z.

The symbolgp (1, k)} and{p(2, k)} correspond to théth shift of projectiveA-modules
Py andP;. The elemenB(1+1i,i, k + 1) is conjugated te(1, i, k) andg(2+1i,i,k + 1)
is conjugated ta(2, i, k), where 1+ i and 2+ i have to be taken modulo 2.

Let w be some word containing a subwgsdlL + i, i, k) ~ (1, i, k). If i is even, then it
comes from the compleiP; LN P1)[k], where cokely) is an indecomposablé—module
of the lengthi. In what follows we shall say that has length cokép). If i is odd, then
this subword corresponds (- LN P1)[k].

As we shall see, an indecomposable complex from the derived catégot-mod)
can be viewed as a gluing of complexes

P, P, PSP, P-lp PL-Sp PPy
Suppose we have a subword
BA+i,i,k+1) ~a,ik)—gL,k)~g2k)—a2,j,k)~B2+j,j,k+1).
It can be interpreted as a gluing of complexes

91
Piy1 —— P,

$2
Pito ——= P

shown by the dotted line. Here the indiges 1 and;j 4+ 2 must be taken modulo 23 and
@2 have the lengtth and j respectively.
The subword

corresponds to the gluing of the type

1
Py — P

¢2
Pjiyo —— P

and so on.
It is convenient to describe gluing of the complexes by a gluing diagram.
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Example 6.1. Consider the band daté(w, m, 1), wherew = «(2,2,0) ~ (2,2,1) —
g(1,1)~g(2,)) —a(2,1,1) ~ B(1,1,0) — g(1,0) ~ g(2,0).
Then it corresponds to the following gluing diagram:

xyx Iy
m m
P2 ’ Pl

m
P2 2

m m
P2 ’ Pl

m m
Pl Pl
yxInm

This gluing diagram gives the complex

A
xyxIy \ylm
AM AM
xm A(A)
AM

or, the same,

( xyx,lll )
yxIn xyIn(A) xJm (X))
A™ A2Zm Am,

Example 6.2. Consider the string datdé/(w), wherew = --- — g(2,1) ~ g(1,1) —
ﬁ(la 17 1)/\,(1(2’ 1, 0) _g(27 O) Ng(lﬂ 0) —(1(1, 1, 0) NIB(27 1, 1) _g(27 1) Ng(]-’ 1) -
(1,1, 1)~ p2,1,2)—---.
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The gluing diagram is

P24X>P]_ P24X>P1
x x
P,—— P P, —— P
y y
PL—— P Pp—— P

Pp—>p p—=p

This string complex is the minimal resolution of the simple module

(5%)  (53)

. ‘>A2 A2 A.

There are also finite strings.
Example 6.3. Consider the string/(w) given by

Py

yxy
P, —— P

P>

It corresponds to the complex

yxy
A—— A

6.2. The case of the Gelfand quiver
Let A be the completed path algebra of the Gelfand quiveits radical andA =

Enda(r). Let P1, P, P3, be indecomposable projectisemodules,P, Q indecomposable
projectiveA-modules and suppose thatR 4 P1 = A ®4 Po= P andA ®4 P3= Q.
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We have seen that the description of indecomposable objects of the derived category
D~ (A-mod) can be reduced to a matrix problem of the type “representations of bunches
of semi-chains.”

The combinatorics of indecomposable objects is similar to the case of bunches of chains.
Continuous series of representations are still bdas m, 1), but the structure of discrete
series is much more complicated. There are bispecial sttit{gs m, 31, 82), finite and
infinite special stringé/(w, §) and finite and infinite usual strin@&(w). In this case there
are also complexes (certain discrete series) which do not come from the matrix problem.

Let us rewrite the partially ordered set in this case. We have a family ofFgejs=
{g(k)} with equivalence relatiog(k) ~ g(k). The set

E(k) = {a(i, k), BG.k) |i € N} U{p(k)}
is a chain with the total order
B2, k) =2 B(j1.k) = p(k) > a(iz, k) > aiz, k)

for all natural numberg > i> and j; > j> andk € Z.
If i = 2! is even then we have conjugate poiat&/, k) and 8(2/,k + 1), and the

subworda(2/, k) ~ (2L, k + 1) corresponds to the compl&¥ N P)[k], whereg is
the unique path frond to itself of the length 2 If i =2/ + 1 is even, then elements
a2l +1,k) andB(2 + 1, k) correspond to complexes

P % )kl and (Q -5 Pk —1]
respectively, where has the length/2+ 1.
As in the case of dihedral algebra, the combinatorics of bands and strings can be
simplified.
BQik+1) ~aik)—gk) ~gk)—aj,k)~BRj,k+1)

codes the gluing

P —2i— P

P —2j> P

etc. There is an algorithm which associates to a band or string data the corresponding
complex of projective modules. A complex of projectivemodules is obtained as a gluing

of the complexes ofi-modulesP “ p, 0 N P, P N Q andP. In order to keep the
notation simpler we shall write instead of the mapnly its length/(¢) (which definesp
uniquely).
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Example 6.4. Consider the band dataw, 1, A), where

w=0a(2,00~(2,1) —g1) ~g) —a6,1)
~p6,2) —g(2)~g(2) - B4 2)~a4 1D —g@)
~g()— B4 1 ~a(40 —g0) ~g).

It gives the following gluing diagram

p—2>p
A
Y
P —4> P
A
A
P—6>p
A
pP—4>p

Dotted lines here are directed: the direction of the arrow shows that there is a map
of complexes which induces a non-zero map modulo the radical in the corresponding
component of the complex.

Now we introduce the rule “of moving of an arrow”:

(1) Any time we have the situation

o —a—> @

Y
°

we move the arrow (preserving its sign):

(2) Any time we have the situation

e —Hh)— @
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we can move the arrow taking the opposite sign:

(3) If we have the situation

e —a—> @

<

we move the arrow (preserving its sign):

Applying this rule to the band data above we get the following picture

p—2=p
e
/6/v
P—6>P
A
N
|\
P —4% P
VN
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Now we can insert instead @f one of the symbols?; or P> following the rule that
every dotted line has to connect symbols with different subscripts.

Py —2—=> P

&\

P —4% P
\—4 \4
N AN
Py, —4—> P>
It corresponds to the compléx,

vs O

vs O

P4 ¢4 (wz szO)
—¢Qa —@a A2 —A@2 Q4 ¢a

PPbeP ——PLOPOPLOP ——— P1® P2,

wheregy; always denotes the mapy : P, — P; of the length 2. Let us compute the
triple (ﬁ., M., i). Observe that after applying~®A to P; LN P; (i,j €1{1,2}) we get
P -2 p.itholds:

(%3 8

b o (f2 520 9)
~ - —94 —pa AQ2 —AQ2 @4 @4
Poe=ARQs4Pe=|POP ——POPHPHP —— > PP

DenoteM = Ma(k). The map : A/I @4 Po —> A/I @ P is

0
ko@dky ————ki@oko@d ki d ko ki kz

R

MM —— MOMOMDOM MeM
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whereig, i1 andiz are given by matrices

1
1 1
1 1
1
I I Iy
We have the following chain equivalence:
vs O
9s O
4 @a ((ﬂz g2 0 0)
—Q4 Qa4 A2 —hp2 @4 ¢4
PO P PO POPDP PoP
1-100
(10) (0100) (10)
11 0010 a1
0011
00
((/66 y 000
0’0 %zoom)
POP POPOPOP POP

This map transforms the matricgs i1 andi; to the form
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Doing the allowed transformations of rows and columns we transform them into the
canonical form (see [5]).

1 51 Iy

Suppose that a dotted line joins two points with equal weights. How to choose the
direction of this line? We can do it by means of the following rule. Let us suppose that a
gluing diagram has a subpart

We have to find first pair of point&, b) which are non-symmetric with respect to
the axe of symmetry. In our case it holds< b. The arrow looks in the direction of the
smaller point (see [5]). In case when there are many dotted arrows joining points with equal
weights, we have to consider for each pair its own axe of symmetry.
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Example 6.5. Consider the following gluing diagram (band):

e —2—> o

\
e —6—=> 0

If a word w is symmetric, then we set directions of both dotted arrows intersecting the
symmetry axe simultaneously clockwise or anticlockwise.

Let us now consider the case of discrete series. The first type of them are bispecial
stringst (w, m, 81, 82). They are given by some wornd, by a natural number. and by
two symbolssy, 82 € {—, +}. Consider the following example:

Example6.6. Lets1 =+, 82 = —, m =5 andw = (+)g(1) —a(4,1) ~ f(4,2) — g(2) ~
g(2) —B(6,2) ~a(6,1) — g(1) ~g() — B(2,1) ~ a(2,0) — g(0)(—). Then we get the
following gluing diagram

4
5P —— 5P(+)
6

5p ——= 5P

5p — 2o 5P(—)
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It correspond to the complex:

r+
W415

5P 3PL®2P;
y
I
5P, e 5P,
%
—gl5 ‘ﬂz‘]srf

5P —————=2P1 &3P

WhereIS’Jr andJ; ™ are the following matrices:

1 0000 01100
0 01 0O 0 00 11
Ing: 0 00 0 1}, JiT=11 10 0 0
01 0 0O 0 01 10
0 00 10 0 00 0 1

The matrixJ5 ™ is obtained by the following rule: we take the<s matrix

1100
01100

Js=]0 0 1 1 O
0 00 11
0 00O

and permute rows putting rows with even and odd numbers in separate horizontal blocks.
The superscript “~" means that the block with even rows comes first. The same rule applied
to the identity matrixis gives; ™.

The triple corresponding to this complex is isomorphicﬁ), M,, i) where

Is O

0 Is
~ 00 (00 I5)
Pe=| 5P 5P —— 5P 5P 5P —— 5P |,
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M=K ks -2 k3o k2@ kS e kS - kS @ k) andio, iz, iz are given by matrices

000 10
I I A1 00
000 01
001 0.0
IS _______ Is
TO[100
10[010
I, | R 01fo10
o1foo1

In the last example both special ends were sinks. In the case when one of the special
end is source we have to modify our rule a little bit.

Example 6.7. Consider the following bispecial stringz = 4, §1 =+, §2 =+, w =
(H)g@2) - B(2,2) ~a(2,1) — g(1) ~g(1) — B(2,1) ~a(2,0) — g(O)(+).

(H)P —2—= P
A

P —4= P(+)

It corresponds to the complex

+
w214

2P1®2P> 4P

+
\ %
_ c+
P21y oad;t

4Pp ———— = 2P1 & 2P,

where
1 0|0 O 11 00
0O 0|1 O 0 01 1
c+ __ r+ __
Li"=10 1]/0 of a9 Ja =771 0
0O 0|0 1 0 0 0 1

The matrixlfr can be computed by the following rule: we take the matrix

[eoNeN
[N e
= OO

Ip=

[oNe]

0 0O

and group odd and even columns into separate blocks.
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The last remark concern the case when a bispecial string is given by a “short” diagram.
Example6.8. Letm =5, 81 =+, §2 = — andw is just
(+HP % P

Then the corresponding complex is

92C
3P1® 2P, —— 2P1 ® 3P
whereC =I¢T - (J27)7L
There are also special and usual strings, which can be finite and infinite.

Example6.9.Letw = B(1,1) — g(1) ~ g(1) — a(1, 1). Then the string{/(w) corresponds
to the gluing diagram

P—1=0

v
Q—1—>7p

It defines the complex

P1
P —— P3

P3 LN P

One can recognize in this complex a projective resolution of the sipteoduleU;.

Example 6.10. Let§ =+, w = (+)g(0) — «(2,0) ~ 8(2,1) — g(1) ~ g(}) —a(4,1) ~
B(4,2) —g(2) ~g(2 —a(2,2) ~ B(2,3) — g(3) ~ g(3) — ---. The infinite special string
U(w, §) is given by the gluing diagram

pP—2—=P P ——2> P(4)

o P —4— P P —4—= P
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It corresponds to the complex

P24>P1 P24>P1

Y

P RAEN P P> A P

This complex belongs t®~ (A-mod) and does not belong tB? (A-mod).

Example6.11. Let w = p(1,0) — g(0) ~ g(0) — (1, 0). The the string compled (w) is
given by the gluing diagram

V
1
P3 —— P

This complex is isomorphic to a projective resolution of a module which is finitely
generated but not finite-dimensional.

There are finally complexes which are not coming from the matrix problem. They are

just complexes of the forn®s —2 P3, which come from triple$0 —- 0, 0, 0).

The description of complexes for a general nodal algebra can be obtained by combining
the combinatorics of complexes of the derived category of the dihedral algebra and of the
Gelfand quiver.

7. Derived categoriesand Harish-Chandra modules

In [24] it was proven that there are only two cases of compact Lie groups, for which
the category of Harish-Chandra modules is taBle(R) andSQ(1, n). As a corollary of
the theorem we obtain that the derived category of Harish-Chandra modules is also tame
in both of these cases. We have already seen BIp(R).

Let SQy(1, n) be the connected component®N(1, ).
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(1) Let n = 21. Then the category of Harish-Chandra modules dv€y(1,n) at a
singular point is equivalent to the category of finite-dimensional representations of the
completed path algebra of the following quiver (see [24]):

where we have the relations:

y = btat=b"a",

andy is nilpotent,
atdy =0, c1b™ =0,
civici=0, didiz1=0, i=1,...,1-2
Moreover, all
Vi =dic;, i=1...,1-1,

are nilpotent.
This algebra can be embedded into

I, c
1 1L 27 8 3 Ho
1 2 dI—l

(this algebra is the endomorphism algebra of the radicak oHowever, it is not so
important).

The simpleA-module, corresponding to the vertiex 1 is of the first type. Those, which
correspond to 12, ...,/ — 1 are of the second typefare of the third type.

(2) If n =21 4+ 1. Then the category of Harish-Chandra modules &@j(1, n) is
described by the completed path algebra of the following quiver:
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with relations:
ad, =0, c1a =0, dia =0, ac1 =0,
a is nilpotent,
ci+1¢i =0, didiy1=0, i=1,...,1—1,
and all
Y =dici, i=1,...,1,

are nilpotent.
It can be embedded into

¥ G 2y [v) ’ C 1+1
(= "
d, d, d,

The simple module, corresponding to the verteis of the first type, all other simple
modules are of the second type.

Let us consider two more examples (see [5] for a description of indecomposable
modules over these algebras).

Example 7.1. Consider the completed path algebra of the following quiver:

(m+1)

aW? =0, i=12 onoze(~ "+,

cidi=0, dic;=0, 1<i<m-1,
and finally

y =bjyafcm_1cm—2---c1ibjafdids - -dy_1
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is nilpotent.
As one easily observes, we can embed this algebra into

g 2 o 3 Cn-1 m*

d] 2 d2 3- dpym”

The simpleA-modules, corresponding to vertices?]...,m are of the second type,
0F, (m + 1)* are of the third type.

Example 7.2. Consider the completed path algebra of quiver:

m>1

andy;, i =1, 2, are nilpotent,
alidl =0, clbli =0, azicm,1 =0, dm,1bZi =0,
ci+1¢i =0, didiy1=0, i=1,...,m—2.
Moreover, all
Y =dic;, i=1...,m—1,

are nilpotent.
We can embed this algebra into:
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The simpleA-modules, corresponding to vertices?l...,m are of the second type,
0%, (m + 1)T are of the third type.

Remark 7.3. It can be checked that all algebras from this section are nodal and every
embedding is embedding into the endomorphism algebra of the radical.
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Appendix A. Krull-Schmidt theorem for homotopy categories

Let € be an additive category. We denote 6y¢) the category of chain complexes
with entries from¢ and by K (¢) the factorcategory of (€) modulo homotopy. If¢ is
abelian, we denote bl (<) thederived categorpf €, that is the category of quotients of
K (€) with respect to the set of morphisms inducing isomorphism of homologies. We fix a
commutative ringS and considef-categories namely, suppose that all sef¢A, B) are
modules oves and the multiplication of morphisms &hbilinear.

Definition A.1. An additive category is called:

e local if every objectA € € decomposes into a finite direct sum of objects with local
endomorphism rings;

e w-local if every objectA € € decomposes into a finite of countable direct sum of
objects with local endomorphism rings;

o fully additiveif any idempotent morphism ig splits, that is defines a decomposition
into a direct sum;

e locally finite (overS) if it is fully additive and all morphism spac@% A, B) are finitely
generate@-modules. Especially ibis a field, a locally finite category is calléocally
finite-dimensional

Evidently, every locally finite category is local; moreover, an endomorphism algebra
€(A, A) in a locally finite category is dinite S-algebra i.e., such that the underlying
S-module is finitely generated. It is known that any local gtocal) category is fully
additive; moreover, a decomposition into a direct sum of objects with local endomorphism
rings is always unique; in other words, any local ¢gtocal) category is a Krull-Schmidt
one, cf. [1, Theorem 3.6].

For a local categorg denote by rad its radical, that is the set of all morphisms
f:A — B, whereA, B € Ob¢, such that no component of the matrix presentation of
f with respect to some (hence any) decompositiordoénd B into a direct sum of
indecomposable objects is invertible. Note that i rad¢, there is a morphisg: B — A
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such thatfgf = f andgfg = g. Hence bothgf and fg are nonzero idempotents, which
define decomposition$ = A1 @ Ao andB = B1 @ By such that the matrix presentation of
f with respect to these decompositions is diagoﬁ@l:?z), and i is invertible. Obviously,

if ¢ is locally finite-dimensional, then ra{A, B) coincide with the set of all morphisms
f:A— Bsuchthalgf (or fg) is nilpotent for any morphismng : B — A.

Proposition A.2. Suppose thabis a complete local noetherian ring with maximal ideal
If € is a locally finite category ovefS, the categoriesC(¢) and K (¢) are w-local
(in particular, Krull-Schmidt. Moreover, a morphisny,: A, — B, from one of these
categories belongs to the radical if and only if all componefjtg, (or g, f,,) are nilpotent
modulom for any morphisng, : B, — A,.

Proof. Denote byk = S/m the residue field of. We use the following simple statement
from linear algebra. O

Lemma A.3. Let A be a finite-dimensionat-algebra anda be and element fromt.
There is a polynomialf (x) € k[x] such thatf(a) is an idempotent and (e) = e for
any idempoten¢ from anyk-algebra. Moreover,f (a) is nilpotent(or invertible) if and
only if so isa.

Proof. Suppose that a polynomigl(x) satisfies the conditiorf (0) =0, f(1) = 1. Then
f(e) = e for any idempotent from any finite-dimensional algebra.

We can embedi in an endomorphism algebra of some finite-dimensional vector space
V, so we suppose that = EndV. Decomposé’ = Vp @ V1 so that the restriction|y,
is nilpotent andz|y, is invertible. Replacing: by «* for somek, one can suppose that
alv, = 0. Indeed, if we have found a polynomiélx) such thatf (a*) is idempotent, then
fk(a) = f(a®) hencefk(x) is the polynomial fora* we are looking for. In particular,
if a¥ =0, then we can takef (x) = x*. Setb = aly, Sinceb is invertible, there is
a polynomialg(x) such thatg(b) =1 andg(0) = 0. If 1 is an eigenvalue ob, then
g(1) = 1, whenceg(e) = e for every idempotent. If 1 is not an eigenvalue ob,
then (xi(x), x° — x) = x, whereh(x) is the minimal polynomial of, hence there is
a polynomial f (x) such thatf(x) = g(x) (mod xA(x)) and f(x) = x (mod x2 — x).
Therefore,f (b) = 1 and f (e) = e for every idempoten¢, which accomplishes the proof
of the lemma. O

Recall also a known result, which can be easily deduced, for instance, from [25, Section
11.8].

Lemma A .4. There are polynomial&, (x) € Z[x] with G, (0) = 0 and such that for every
ring A, any ideall € A and any element € A such thata®? =a mod I, G,(a)? =
G,(a) modI"tt anda = G, (a) mod1.

(For instanceG1(x) = 3x2 — 2x3.)
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Corollary A.5. Let A be a finite algebra over a local noetherian riggvith maximal ideal
m anda € A. For everyn € N there is a polynomiag (x) € S[x] such that

g(@)? = g(a) modm™*1;

g(e) = e mod m" for every element of an arbitrary finite S-algebra such that
e? = e modm”;

g(a) =1 modm if and only ifa is invertible

g(a) =0 modm if and only ifa is nilpotent modulan.

Proof. Find a polynomialf (x) overk = S/m such thatf (a) is idempotent inA/mA,
wherea = a + mA € A/mA and f(e) = e for any idempotent of any k-algebra;
especially £ (0) = 0. Lift f(x) to a polynomialF(x) € S[x] such thatF(0) = 0. Then
F(a) is idempotent modulan and if 2 = ¢ mod m”, then F(e) = ¢ mod m (by the
construction of F(x)) andeF(e) = F(e) mod m” (it is true for any polynomialF (x)
satisfying F (0) = 0). Setg(x) = G, (F(x)). Theng(a) is idempotent modulen” 1, just
as g(e) for everye that is idempotent modulen. If, moreover,e2 = ¢ mod m”, then
gle) =e modm andeg(e) = g(e) modm”. Let g(e) = e + r; thenr = g(e) — e and
er = re = r. Therefore it holdSe + r)2 = e + 2r + r2 = ¢ + r mod m”, wherefrom
r = —r2modm”. Butthenr = —r2= —r4=... modm”, sor = 0 modm”.

Let nowa, be an endomorphism of a compldx from C(€). Consider the sets, C Z
defined as followsig = {0}, Iy ={l € Z | -k <l <k} andly_1={ € Z | —k <l < k}.
Obviously,|J, In = Z, I, C I,4+1 and I,41 \ I, consists of a unique elemeht Using
Corollary A.5, we can construct a sequence of endomorpmé'i‘ﬁsuch that

o (@")?2=a" modm”;
modm”;

o ai(n+l) = ai(n)
™) is invertible or nilpotent modulen if and only if so isa;.

° al.
Then one easily sees that setting=lim,— al.(”), we get an idempotent endomorphism
u, Of A,, such thair; = 0 modm (u; = 1 modm) if and only if a; is nilpotent modulan
(respectively; is invertible).

Especially, if either one of; is neither nilpotent nor invertible moduia or one of
a; is nilpotent modulom while another one is invertible, thew, is neither zero nor
identity. Hence the complex, decomposes. Thud, is indecomposable if and only if,
for any endomorphism, of A,, eithera, is invertible or all components, are nilpotent
modulom. Since all algebras Entl,/m EndA,, are finite-dimensional, neither produ@,
wherea, B € EndA, and one of them is nilpotent moduteo, can be invertible. Therefore,
the set of endomorphisnag of an indecomposable comple such that all components
a, are nilpotent modulen form an idealk of EndA, and End4, /R is a skew field. Hence
R =radEndA,) and End4, is local.

Now we want to show that any complex fro6\(¢) has an indecomposable direct
summand. Consider an arbitrary complexand suppose thatg # 0. For any idempotent
endomorphisna, of A, at least one of the complexegA,) or (1 — ¢)(A,) has a nonzero
component at the zero place. On the set of all endomorphisms afe can introduce
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a partial ordering by writinge, > e, if and only if e, = e.e,e, and botheg and ¢
are non-zero. Le¢, > ¢, > ¢, > --- be a chain of idempotent endomorphismsAf.
As all endomorphism algebras EnAd are finitely generate@-modules, the sequences
er,e;, e/, ... € EndA; stabilize for alll, so this chain has a lower bound (formed by the
limit values of components). By Zorn’s lemma, there is a minimal non-zero idempotent
of A,, which defines an indecomposable direct summand.

Again, since all Endi; are finitely generated, for eveny there is a decomposition
A, = BV @ @, Bino Where alB;,, are indecomposable anﬂl(”) =0 forl e I,.
Moreover, one may suppose that< r,,, form > n andB;,,, = Bin., fori <r,. Evidently,
it implies thatA, = €!_; Bi, Wherer = sup,r, and B;, = Bj,, for i < r,, which
accomplishes the proof of the Proposition A.2 €0€).

Note now that the endomorphism ring of each compgy in the categoryK (€) is
a factor-ring of its endomorphism ring i6(¢). Hence it is either local or zero; in the
latter case the image d&;, in K (€) is a zero object. Therefore, the claim is also valid for
K(©). O

Corollary A.6. Let S be local, complete and noetherian, aAdbe anS-algebra finitely
generated aS-module. Then the derived categadpy (A-mod), whereA-moddenotes the
category of finitely generatel-modules, igo-local, in particular, Krull-Schmidt category.

Proof. Indeed,D~ (A-mod) coincide with the categori ~ (A-pro), whereA-pro denotes
the category of finitely generated projectikemodules. O

Remark A.7. The conditions of Proposition A.2 are essential indeed, and Krull-Schmidt
theorem can fail even for the category of bounded compléXegg) over a local category
¢ as the following example shows.

Let R be the localization of the polynomial ringix, y] at the maximal idealx, y),
¢ = R-pro be the category of freR-modules of finite rank. Obviously, it is local. The
categoryK —(€) is equivalent to the categor®~ (R-mod) and contains the category
R-mod as a full subcategory. Denote Bythe factor-ringR/(x2y — y3 + x%). It is a
local domain, but its completio® is not a domain: its normalization decomposes as
S x S x Sz, where eacls; = K[[x]]. In particular,§ has three torsion-free modules
such that each; has a composition series with the fact8fs S, where{i, j, k} = {1, 2, 3}
(it is the projection ofSontoS; x S;). It implies thatS has torsion-free indecomposable
modulesMy, M>, N1, N2, N3 with the following completions:

Mi=S1®$6&S; Ma=L1®L®L3;
Ni=S@®L (=1223).

(cf. [29]). ThenM1 ® M2 = N1 & N2 @ N3, hence the categois-mod, thus alsdr-mod
and D’ (R-mod) are not local.
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Appendix B. Bunches of chains

We summarize the results of [5,6], changing both the definition and the presentation of
the answer to equivalent ones, which seem more convenient for our purpose. Moreover we
add a description of some infinite-dimensional representations that occur in dealing with
derived categories, together with a sketch of a proof. As V.M. Bondarenko has informed us,
he has submitted a paper containing more details on infinite case [7]. Note that Bondarenko
calls “bunch of semichained sets” what we call “bunch of chains”. The reason can be seen
if one compares our definitions.

Definition B.1. A bunch of chain& consists of:

e Anindex set/, which we suppose finite or countable.

e Foreach e I, two chains (linearly ordered set8) andsg;.
We set€ = J;.; &, §=U;; S and|X|=C U .

e A symmetric relation~ (not an equivalence!) of¥| such that for every there is at
most oney with x ~ y (maybex = y).

We define an equivalence relatienon |X| such thatt ~ y means eithex =y or x ~ y,
and set¥ = |X|/ ~. We write x — y if there is an index € I such thatx € &;,y € §;
or vice versa. For each € |X| such thatx ~ x we introduce two new elemenis, x”
and setX* = (|X|\ {x | x ~x}) U {x", x” | x ~ x}. We subdivideX* into ¢* = J; ¢} and
§* =J; 87, which are the images @; andg;; for instancex” andx” are in€; if x € ;.
We consider the ordering on |X]|, which is just the union of orderings on &} andg;,
and extend it, as well as the relatienontoX* so that each “new” element or x” inherits
all relations that the elementhas. For instance;’ < y with y € |X| means thak < y;
x” — 7/ means that — z, etc. Note that the elements$, x” are always non-comparable.
On the other hand, we extend the equivalewde X* trivially (each new element’ or x”
is unique in its~-class), and SEE* = Xt/ ~.

A bunch of chainsX gives rise to a bimodule problem. Namely, we fix a fi&lénd
define &k-categoryA = A(X) and anA-bimoduleU = U(X) as follows:

e ObA =X".

e If a, b are two equivalence classes, a basis of the morphism gp@cé) consists of
elementg,, with x e a, y € b, x <y and, ifa = b, the identity morphism 1

¢ The multiplication is given by the rulep,y pyx = p.x if z <y < x, while all other
possible products are zeros.

e A basis ofU(a, b) consists of elements,, withyebN&*, x eang*, x —y.

e The action ofA on U is given by the rulep yuyx = uzy if ¥y <z, tyxpxr = uy; if
x < t, while all other possible products are zeros.
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The category ofepresentations of the buncéh over the fieldk is then defined as the
category HU) of the elements of this bimodule. In other words, a representation is a set
M of block matrices

Mi=| ..My ...|, i€l, xe€&, yeF, My €Mat(ng xny, k)

such thatc ~ y impliesn, = n,. Two representations are isomorphic if and only if they can
be obtained from one another by a sequence of the folloelimmentary transformations

e elementary transformations of rows (columns) in each horizontal (vertical) stripe;
it means that they are performed simultaneously in all matridgs with fixed x
(respectivelyy); moreover, ifx =~ z, the transformations of the-stripe must be the
same as those efstripe (certainly, if one of them is horizontal and the other is vertical,
“the same” means “contragradient”);

e if x < y, then scalar multiples of rows (columns) of thestripe can be added to rows
(columns) of they-stripe.

One easily sees that this definition coincides with that of [5,6].

The description of indecomposable representations from [5,6] rests upon a combina-
torics, which we expound in terms efrings and bandalike to their use in the represen-
tation theory.

Definition B.2. Let X = {I, &;, §;, ~} be a bunch of chains.
(1) An X-word is a sequencey = x1r1x2r2x3...rm—1xm, Wherex; € |X| andry €
{~, —}, such that for all possible values bf

(@) xprrxeyain | X].
(0) 7k # riqa.

We callm thelengthof the wordw. Possiblym =1, i.e.,w = x for somex € |X|. The
elementsc; andx,, are called thendsof the wordw.

(2) We call anx-word full if, wheneverx; is not a unique element in its-class, then
r1 = ~, and whenevet,, is not a unique element in its-class, them,,_1 = ~.

(3) We denote byw™* the inverse wordx;,;r,;—1xm—1...r1x1 and call anX-word
symmetricif w = w*. We call w quasisymmetridf it can be presented in the form
v~v* ~v~v*~...~yforashorter word.

(4) We call the endy (x,,) of the wordw specialif x; ~ x1 andr; = — (respectively
Xm ~ X @andr,—1 = —). We call the wordw

(1) usualif neither of its ends is special,
(2) specialif one of its ends is special;
(3) bispecialif both its ends are special.
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Note that a special word is never symmetric, while a bispecial word is always full;
a quasisymmetric word is always bispecial.

(5) If 1 =ry—1 =~ andx,, — x1 in X, we call the wordwv an X-cycle Note that in this
casem is always even. For a cycle we setr,, = — andxgu4x = Xk, rgm+k = 1 for all
integersy, k.

(6) We call anX-cycle w = xirixoraxs...ru—1x, hon-periodicif the sequence
X1rixorz ... X,y cannot be written as a multipte . . . v of a shorter sequence

(7) A shiftof a cyclew is defined as the cycle! = x;  1rv41x142. . . rk—1x% for some
even integer & k < m. We call a non-periodic cycle symmetridf w* = w!*! for somek.
(Note thatw®! = wl'l with k 1 is impossible ifw is non-periodic.)

(8) For a cyclew and an even integerQ k < m we definev(k, w) as the number of
even integers & i < k such that bothy;_1 andx; belong either ta® orto 3.

Definition B.3. (1) A usual stringdatum is a non-symmetric full usual word.
(2) A special stringdatum is a paiftw, §), wherew is a special full word and € {+, —}.
(3) A bispecial stringdatum is a quadruplev, m, 81, 82), wherew is a bispecial word,
which is neither symmetric nor quasisymmetrice N ands; € {+, —}.
(4) A banddatum is a paiw, f), wherew is a non-periodic cycle and € k[¢] is
a primary polynomialover the fieldk, i.e., a degree of an irreducible polynomial with
leading coefficient 1, such thgt(0) # 0 and ifw is symmetric alsof (1) # 0. If the field
k is algebraically closed anfl = (r — 1)¢, we write (w, d, 1) instead of(w, f).
(5) The following string data are callegjuivalent

(a) usual string datas andw*;
(b) special string datéw, §) and(w*, §);
(c) bispecial string datéw, m, §1, §2) and(w*, m, 82, §1).

(6) Two band data are callegfjuivalentf they can be obtained from one another by a
sequence of the following transformations:

(@) replacgw, f) by (w, £) if v(k, w) is even;

(b) replace(w, f) by (w*, a=14 £(1/1)), whered = degf anda = f(0) if v(k, w) is
odd;

(c) replacew, f) by (w*, f).

Note that if f (r) = (r — 1)¢, thena =4 £ (1/1) = (t — A7 1)4.
Then the main result of the papers [5,6] (see also [11]) can be reformulated as follows.

Theorem B.4. There is one-to-one correspondence between isomorphism classes of
indecomposable representations of a bunch of chains and equivalence classes of string
and band data.
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We call indecomposable representations corresponding to usual string data (special
string data, bispecial string data, band datadal strings(respectivelyspecial strings
bispecial stringsbands.

Appendix C. Infinite chains

For our purpose we have to consider some infinite representations of a bunch of chains.
We suppose now thdt= N and for every index € I the set

{jEI|(3xE@iU{S’,’) (EIyeQS.,'U{S’j)x~y}

is finite. Namely, we define the category°HU) just in the same way as &)), but
allowing infinitely many elements o€* to occur in every representation. On the contrary,
we always suppose that for everg / the sum of all dimensions, with x € &7 U g} is
finite. The last condition looks indispensable, since even when one considers the simplest
case # =1, ¢ = {x},§ = {y},x ~ y (which means square matrices under conjugation),
the classification of representations of infinite dimension is a wild problem.

To deal with such infinite representations we first establish a general result concerning
infinite matrices over bimodules.

Definition C.1. Let A be a locally finite-dimensional categofy,be its full subcategory
and U be an A-bimodule. We say thatJ is triangular with respect toB if, for
every indecomposable objects B, C, whereB,C e B andA ¢ B, A(C, A)U(B,C) =
U(B, C)A(A, B) =0.

The following lemma is obvious.

Lemma C.2. Let U be triangular with respect t@B. For any objectA € A choose a
decompositionA = A; @ Ay, where A1 € B and A, has no direct summands froB.
For a morphisma € A(A, A’) or an elementz € U(A, A") denote, respectively, iy or
uy its component fromh (A, A7) or U(Ay, A}). If a € A(A, A') is @ morphism irEl(U)
fromu € U(A, A) tov € U(A', A') (i.e.,au = va), thenay is a morphism fromu1 to vs.
Especially ifa is an isomorphisne — v, thenas is an isomorphisn; — v1.

Lemma C.3. Let A be a locally finite-dimensional category that is a union of a chain
A1 C A C Az C --- of full subcategories. Suppose thdtis an A-bimodule that is
triangular with respect to eacld;. Denote byA*> the category of infinite direct sums
A =@;2; Ai, whereA; is an object fromA; with no direct summands frol;_1, and by
U the natural extension dff onto A*°. For each element from U*°(A, A) denote by

up its restriction ontod’_; a;. If u, v are two elements such tha} = v, for all n, then
u="nu.

Proof. First suppose the fiekluncountableConsider the sets of isomorphisms(sg, v,,)
and the natural mappings,,, : 1so(u,, vy,) — 1S0(u,, v,) (m > n) arising from the tri-
angularity condition. These sets can be considered as algebraic (even affine) varieties,
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thenm,,, are open morphisms of these varieties. In particular, the images,inform
a decreasing chain of non-empty open subsets iuis@;). Hence their intersection is
also non-empty (cf., for instance, [19]). Take an elema&nfrom this intersection and
setX, = ”n_ll(al) (n > 2). Again they are algebraic varieties ai¢) = n,2(X,) are non-
empty open subsets &f, thus there is an elemem € (2, X,,. Continuing this process,
we get a sequengs, of elements from Is6y,, v,) such thatr,,, (a,,) = a, for all m > n.
This sequence defines an isomorphism — v.

If k is arbitrary, take its uncountable extensiomnd consider extensions &f andU
to k. It is easy to see that = v if and only if their extensions are isomorphic, which
accomplishes the proof.O

Note that using Lemma A.3 one can obtain the following analogue of Proposition A.2
(with almost the same proof).

Proposition C.4. We use the suppositions and notations of Lerin3alf A = 2, A; €
A% anda € EndA, denote by; the component af belongings taendA;. The category
EI(U) is w-local (in particular, Krull-Schmidt. Moreover, ifu € U*(A, A) is an
indecomposable element fragh(U>°) anda € Endu, then either alla; are invertible or
all of them are nilpotent.

Now we defindnfinite X-wordsas sequences =...x1r1x2r2x3. . .7y—1Xm - . ., Which
are one-side or two-side infinite, subject to conditions (a) and (b) of Definition B.2(1)
and such that for eachthe set{k | x; € &; U §;} is finite. We apply to such words all
terminology from Definitions B.2(2)—(4) and B.3(1), (2), (5)(a)(b). Then we can extend
Theorem B.4 to infinite representations.

Theorem C.5. Isomorphism classes of indecomposable infinite representations of a bunch
of chains are in one-to-one correspondence with equivalence classes of infinite string
data. Moreover, every infinite representation uniquely decomposes into a direct sum of
indecomposable ones.

Sketch of the proof (more details will appear in [7]). LeX,, be the bunch of chains
with the index setl,, = {1, 2, ..., m}, the same chaing;, §; and the same relatior,
A, = A(X,). Then we are in the situation of Lemma C.3. We define representations
corresponding to infinite string data just as it has been done in [5,6] for finite case. One can
show that all of them are indecomposable and their endomorphism rings are local. So we
only have to prove that there are no more indecomposable infinite representations.

For each representatianl € EI*°(U) we denote by, the restriction of\f onto X,,,
given by all matrices\/,, with x, y € X};,. Lemma C.3 implies that/ = N if and only
if M,, = N,, for everym. Suppose thaM is infinite and indecomposable and consider
an indecomposable direct summahddf a representation,,,. The reduction procedure
and the explicit description of strings and bands from [6] immediately imply the following
facts.

(1) L cannot be a band or a bispecial string.
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(2) If L is a usual or a special string, there is an integés m and an indecomposable
direct summand.’ of M, such that the wora from the string datum corresponding
to L is a part of the wordv” from the string datum correspondingo.

(3) If K is another indecomposable direct summanadfgf, the numberm’ > m and the
representatio’ from (2) can be chosen common fbrandK .

It implies the first statement of the theorem. The Krull-Schmidt property follows from
Proposition C.4. O
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