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1 Introduction

This paper is a survey of some recent results on stable homotopy types of polyhedra.

The common feature of these results is that their proofs use the technique of the so called

matrix problems, which was mainly elaborated within framework of representation theory.

I think that this technique is essential in homotopy theory too, and perhaps even in much

more general setting of triangulated categories. I hope that the considerations of Section 3

are persuasive enough. Certainly, I could not cover all such results in an expository

work, thus I have restricted to the stable homotopy classification of polyhedra of small

dimensions obtained in [3, 5, 6, 7]. I tried to present these results in a homogeneous way

and also to replace references to rather sophisticated topological sources by simpler ones.

The latter mainly concerns with some basic facts about homotopy groups of spheres,

which can be found in [18] or [21]. I also used the book [20] as a standard source of

references; maybe some readers will prefer [19] or [10]. Most of these references are
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collected in Section 1. For the matrix problems I have chosen the language of bimodule

categories explained in Section 2, since it seems to be the simplest one as well as the most

appropriate for applications.

Note that almost the same arguments that are used in Sections 5 and 6 can be applied

to the classification of polyhedra with only 2 non-trivial homology groups [6], while the

dual arguments were applied to the spaces with only 2 non-trivial homotopy groups in [4].

Rather similar are also calculations in [17] (see also the Appendix by Baues and Henn

to [3]). I hope that any diligent reader of this survey will be able to comprehend the

arguments of these papers too.

I am extremely indebted to H.-J. Baues, who was my co-author and my guide to the

topological problems, and to C. M. Ringel, whose wonderful organising activity had made

such a pleasant and fruitful collaboration possible. H.-J. Baues and I obtained most of

our joint results during my visits to the Max-Plank-Institut für Mathematik, and I highly

acknowledge its support.

2 Generalities on stable homotopy types

All considered spaces are supposed pathwise connected and punctured ; we denote by

∗X (or by ∗ if there can be no ambiguity) the marked point of the space X. Bn and

Sn−1 denote respectively the n-dimensional ball {x ∈ R
n | ||x|| ≤ 1 } and the (n − 1)-

dimensional sphere {x ∈ R
n | ||x|| = 1 }, both with the marked point (1, 0, . . . , 0) . As

usually, we denote by X ∨Y the bouquet (or one point union) of X and Y , i.e. the factor

space X 
Y by the relation ∗X = ∗Y , and identify it with ∗X ×Y ∪X ×∗Y ⊂ X ×Y ; we
denote by X∧Y the factor space X×Y/X∨Y . In particular, we denote by ΣX = S1∧X
the suspension of X and by ΣnX = Σ . . .Σ︸ ︷︷ ︸

n times

X its n-th suspension. The word“polyhedron”

is used as a synonym of “finite CW-complex.” One can also consider bouquets of several

spaces
∨s

i=1Xi; if all of them are copies of a fixed space X, we denote such a bouquet by

sX.

We recall several facts on stable homotopy category of CW-complexes. We denote by

Hot(X,Y ) the set of homotopy classes of continuous maps X → Y and by CW the homo-

topy category of polyhedra, i.e. the category whose objects are polyhedra and morphisms

are homotopy classes of continuous maps. The suspension functor defines a natural map

Hot(X,Y ) → Hot(ΣX,ΣY ). Moreover, the Whitehead theorem [20, Theorem 10.28

and Corollary 10.29] shows that the suspension functor reflects isomorphisms of simply

connected polyhedra. It means that if f ∈ Hot(X,Y ), where X and Y are simply con-

nected, f is an isomorphism (i.e. a homotopy equivalence) if and only if so is Σf . We

set Hos(X,Y ) = lim−→n
Hot(ΣnX,ΣnY ). If α ∈ Hot(ΣnX,ΣnY ), β ∈ Hot(ΣmY,ΣmZ),

one can consider the class Σnβ ◦ Σmα ∈ Hot(Σm+nX,Σn+mZ), whose stabilization is,

by definition, the product βα of the classes of α and β in Hos(X,Z). Thus we obtain

the stable homotopy category of polyhedra CWS. Actually, if we only deal with finite

CW-complexes, we need not go too far, since the Freudenthal theorem [20, Theorem 6.26]
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implies the following fact.

Proposition 2.1. If X,Y are of dimensions at most d and (n − 1)-connected, where

d < 2n − 1, then the map Hot(X,Y ) → Hot(ΣX,ΣY ) is bijective. If d = 2n − 1, this

map is surjective. In particular, the map Hot(ΣmX,ΣmY ) → Hos(X,Y ) is bijective if

m > d− 2n+ 1 and surjective if m = d− 2n+ 1.

Here (n − 1)-connected means, as usually, that πk(X), the k-th homotopy group of

X, is trivial for k ≤ n − 1. Thus for all polyhedra of dimension at most d the map

Hot(ΣmX,ΣmY ) → Hos(X,Y ) is bijective if m ≥ d and surjective if m = d− 1.

Note also that the natural functor CW → CWS reflects isomorphisms of simply con-

nected polyhedra.

Since we are only interested in stable homotopy classification, we identify, in what

follows, polyhedra and continuous maps with their images in CWS. We denote by CWF

the full subcategory of CWS consisting of all spaces X with torsion free homology groups

Hi(X) = Hi(X,Z) for all i.

Recall that any suspension ΣnX is an H-cogroup [20, Chapter 2], commutative if

n ≥ 2, so the category CWS is an additive category. Moreover, one can deduce from

the Adams’ theorem [20, Theorem 9.21] that this category is actually fully additive, i.e.

every idempotent e ∈ Hos(X,X) splits. In our case it means that there is a decomposition

ΣmX � Y ∨ Z for some m, such that e comes from the map ε : Y ∨ Z → Y ∨ Z with

ε(y) = y for y ∈ Y and ε(z) = ∗Y ∨Z for z ∈ Z. We call a polyhedron X indecomposable

if X � Y ∨Z implies that either Y or Z are contractible (i.e. isomorphic in CW to the 1-

point space). Actually, the category CWS is a triangulated category [16]. The suspension

plays the role of shift, while the triangles are the cone sequences X
f−→ Y → Cf → ΣX

(and isomorphic ones), where Cf = CX ∪f Y is the cone of the map f , i.e the factor

space CX 
 Y by the relation (x, 0) ∼ f(x); CX = X × I/X × 1 is the cone over the

space X. Note that cone sequences coincide with cofibration sequences in the category

CWS [20, Proposition 8.30]. Recall that a cofibration sequence is a such one

X
f−→ Y

g−→ Z
h−→ ΣX

Σf−→ ΣY (1)

that for every polyhedron P the induced sequences

Hos(P,X)
f∗−→ Hos(P, Y )

g∗−→ Hos(P,Z)
h∗−→ Hos(P,ΣX)

Σf∗−→ Hos(P,ΣY ),

Hos(ΣY, P )
Σf∗−→ Hos(ΣX,P )

h∗−→ Hos(Z, P )
g∗−→ Hos(Y, P )

f∗−→ Hos(X,P )
(2)

are exact. In particular, we have an exact sequence of stable homotopy groups

πSk (X)
f∗−→ πSk (Y )

g∗−→ πSk (Z)
h∗−→ πSk−1(X)

Σf∗−→ πSk−1(Y ), (3)

where πSk (X) = lim−→m
πk+m(Σ

mX) = Hos(Sk, X). Certainly, one can prolong the se-

quences (2) and (3) into infinite exact sequences just taking further suspensions.

Every CW-complex is obtained by attaching cells. Namely, if Xn is the n-th skeleton

of X, then there is a bouquet of balls B = mBn+1 and a map f : mSn → Xn such
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that Xn+1 is isomorphic to the cone of f , i.e. to the space Xn ∪f B. It gives cofibration

sequences like (1) and exact sequences like (2) and (3).

We denote by CWk
n the full subcategory of CW formed by (n− 1)-connected (n+ k)-

dimensional polyhedra and by CWFk
n the full subcategory of CWk

n formed by the polyhedra

X with torsion free homology groups Hi(X) for all i. Proposition 2.1 together with the fact

that every map of CW-complexes is homotopic to a cell map, also implies the following

result.

Proposition 2.2. The suspension functor Σ induces equivalences CWk
n → CWk

n+1 for all

n > k + 1. Moreover, if n = k + 1, the suspension functor Σ : CWk
n → CWk

n+1 is a full

representation equivalence, i.e. it is full, dense and reflects isomorphisms. (Dense means

that every object from CWk
n+1 is isomorphic (i.e. homotopy equivalent) to ΣX for some

X ∈ CWk
n.)

Therefore, setting CWk = CWk
k+2 � CWk

n for n > k + 1, we can consider it as a

full subcategory of CWS. The same is valid for CWFk = CWFk
k+2. Note also that CWk

n

naturally embeds into CWk
n+1. It leads to the following notion [2].

Definition 2.3. An atom is an indecomposable polyhedron X ∈ CWk
k+1 not belonging

to the image of CWk
k. A suspended atom is a polyhedron ΣmX, where X is an atom.

Then we have an obvious corollary.

Corollary 2.4. Every object from CWk
n with n ≥ k + 1 is isomorphic (i.e. homotopy

equivalent) to a bouquet
∨s

i=1Xi, where Xi are suspended atoms. Moreover, any sus-

pended atom is indecomposable (thus indecomposable objects are just suspended atoms).

Note that the decomposition in Corollary 2.4 is, in general, not unique [14]. That

is why an important question is the structure of the Grothendieck group K0(CWk). By

definition, it is the group generated by the isomorphism classes [X] of polyhedra from

CWk subject to the relations [X ∨ Y ] = [X] + [Y ] for all possible X,Y . The following

results of Freyd [14, 10] describe the structure of this group.

Definition 2.5. (1) Two polyhedra X,Y ∈ CWk are said to be congruent if there is a

polyhedron Z ∈ CWk such that X ∨ Z � Y ∨ Z (in CWk).

(2) A polyhedron X ∈ CWk is said to be p-primary for some prime number p if there is

a bouquet of spheres B such that the map pm1X : X → X can be factored through

B, i.e. there is a commutative diagram

X
pm1X ��

���
��

��
��

X

B

���������
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Theorem 2.6 (Freyd). The group K0(CWk) (respectively K0(CWFk) ) is a free abelian

group with a basis formed by the congruence classes of p-primary suspended atoms from

CWk (respectively from CWFk) for all prime numbers p ∈ N.

Therefore, if we know the “place” of every atom class [X] in K0(CWk) or K0(CWFk),

i.e. its presentation as a linear combination of classes of p-primary suspended atoms, we

can deduce therefrom all decomposition rules for CWk or CWFk.

3 Bimodule categories

We also recall main notions concerning bimodule categories [11, 13]. Let A,B be two

fully additive categories. An A-B-bimodule is, by definition, a biadditive bifunctor U :

A◦×B → Ab. As usual, given an element u ∈ U(A,B) and morphisms α ∈ A(A′, A), β ∈
B(B,B′), we write βuα instead of U(α, β)u. Given such a functor, we define the bimodule

category El(U) (or the category of elements of the bimodule U, or the category of matrices

over U) as follows.

• The set of objects of El(U) is the disjoint union

obEl(U) =
⊔

A∈obA
B∈obB

U(A,B).

• A morphism from u ∈ U(A,B) to u′ ∈ U(A′, B′) is a pair (α, β) of morphisms

α ∈ A(A,A′), β ∈ B(B,B′) such that u′α = βu in U(A,B′).
• The product (α′, β′)(α, β) is defined as the pair (α′α, β′β).

Obviously, El(U) is again a fully additive category.

Suppose that obA ⊃ {A1, A2, . . . , An } , obB ⊃ {B1, B2, . . . , Bm } such that every

objectA ∈ obA (B ∈ obB) decomposes asA � ⊕n
i=1 kiAi (respectively, B � ⊕m

i=1 liBi).

Then A◦ (respectively, B) is equivalent to the category of finitely generated projective

right (left) modules over the ring of matrices (aij)n×n with aij ∈ A(Aj, Ai) (respectively,

(bij)m×m with bij ∈ B(Bj, Bi)). We denote these rings respectively by |A| and |B|. We

also denote by |U| the |A|-|B|-bimodule consisting of matrices (uij)m×n, where uij ∈
U(Aj, Bi). Then U(A,B), where A,B are, respectively, a projective right |A|-module and
a projective left |B|-module, can be identified with A⊗|A| |U| ⊗|B|B. Elements from this

set are usually considered as block matrices (Uij)m×n, where the block Uij is of size li×kj
with entries from U(Aj, Bi). To form a direct sum of such elements, one has to write

direct sums of the corresponding blocks at each place. Certainly, some of these blocks

can be “empty,” if kj = 0 or li = 0. An empty block is indecomposable if and only if it is

of size 0× 1 (in U(Aj, 0)) or 1× 0 (in U(0, Bi) ); we denote it respectively by ∅j or by ∅i.
In many cases the rings |A| and |B| can be identified with tiled subrings of rings of

integer matrices. Here a tiled subring in Mat(n,Z) is given by an integer matrix (dij)n×n

such that dii = 1 and dik|dijdjk for all i, j, k; the corresponding ring consists of all matrices

(aij) such that dij|aij for all i, j (especially aij = 0 if dij = 0).
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Example 3.1. Let A ⊂ Mat(2,Z) be the tiled ring given by the matrix

1 12

0 1

 ,

U be the set of 2× 2-matrices (uij) with uij ∈ Z/24 if i = 1, j = 2, uij ∈ Z/2 otherwise.

We define U as an A-A-bimodule settinga 12b
0 c


u1 u2

u3 u4

 =

au1 + bu3 au2 + 12bu4

cu3 cu4

 ;

u1 u2

u3 u4


a 12b
0 c

 =

au1 cu2 + 12bu1

au3 cu4 + bu3

 .

If we need to indicate this action, we write1 12∗

0 1

 and

 Z/2 Z/24

Z/2∗ Z/2


for the matrix defining the ring A and for the bimodule U. Thus the multiplications of

the elements marked by stars is given by the ∗-rule:

(12a∗) · (u mod 2∗) = au mod 2. (4)

Example 3.2. In the classification of torsion free atoms below the following bimodule

plays the crucial role. We consider the tiled rings A2 ⊂ Mat(2,Z) and B2 ⊂ Mat(7,Z)

given respectively by the matrices

1 12∗

0 1

 and



1 2 2 12 24 12 24

1 1 1 12 24 6 24

1 2 1 12 24 12 24

0 0 0 1 2 12∗ 12

0 0 0 1 1 12 6

0 0 0 0 0 1 1

0 0 0 0 0 0 1



.
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The A2-B2-bimodule U2 is defined as the set of matrices of the form

Z/24 0

Z/12 0

Z/12 0

Z/2 Z/24

0 Z/12

Z/2∗ Z/2

0 Z/2



.

The multiplication in U2 is given by the natural matrix multiplication, but taking into

account the ∗-rule (4).
We shall use the following description of indecomposable elements in El(U2). Set I1 =

{ 1, 2, 3, 4, 6 } , I2 = { 4, 5, 6, 7 }, V = { v ∈ N | 1 ≤ v ≤ 6 }, V1 = { v ∈ N | 1 ≤ v ≤ 12 },
V2 = { 1, 2, 3 }.

Theorem 3.3. A complete list L2 of non-isomorphic indecomposable objects from El(U2)

consists of

• empty objects ∅j (j = 1, 2) and ∅i (1 ≤ i ≤ 7);

• objects vji ∈ U(Aj, Bi) (j = 1, 2; i ∈ Ij; v ∈ V1 if i = 1; v = 1 if i = 6, 7 or

(ij) = (14); v ∈ V otherwise);

• objects vjil =

(
vji
1jl

)
(j = 1, 2; i = 1, 2, 3, l = 4, 6 if j = 1; i = 4, 5, l = 6, 7 if j = 2;

if (il) = (26) or (57) then v ∈ V2; otherwise v ∈ V );
• objects v44 = (11

4 v
2
4) with v ∈ V ;

• objects v4l =

11
4 v

2
4

0 12
l

 with l = 6, 7 and v ∈ V ;

• objects viw44 =

v1
i 0

11
4 w

2
4

 with i = 1, 2, 3 and v, w ∈ V ;

• objects viw4l =


v1
i 0

11
4 w

2
4

0 12
l

 with i = 1, 2, 3, l = 6, 7 and v, w ∈ V .

Here the indices define the block containing the corresponding element.

Proof. Decompose U into 2-primary and 3-primary parts. Since for every two matrices

M2,M3 ∈ GL(n,Z) there is a matrix M ∈ GL(n,Z) such that M ≡ M2 mod 2 and
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M ≡ M3 mod 3, we can consider the 2-primary part and the 3-primary part separately.

Note that in the 3-primary part the blocks u1
4, u

1
6, u

2
6 and u

2
7 vanish, while the other non-

zero blocks of u ∈ ob(U2) are with entries from Z/3 and there are no restrictions on

elementary transformation of the matrix u. Thus every element in the 3-primary part is

a direct sum of elements 1ji with j = 1, i = 1, 2, 3 or j = 2, i = 4, 5.

For elements u, u′ of the 2-primary part write u < u′ if u′ = ua for some non-invertible
a ∈ A2. Then we have the following relations:

11
1 < 11

3 < 11
2 < 21

1 < 21
3 < 21

2 < 41
1,

11
6 < 11

4 < 41
1 and 11

6 < 21
2;

12
4 < 12

5 < 22
4 < 22

5 < 42
4,

12
7 < 12

6 < 42
4 and 12

7 < 22
5.

Using them, one can easily decompose the parts

ũ1 =


u1

1

u1
2

u1
3

 and ũ2 =

u2
4

u2
5


into a direct sum of empty and 1× 1 matrices. Now we obtain a column splitting of the

remaining matrices, and with respect to the transformation that do not change ũ1 and

ũ2, these columns are linearly ordered. Therefore, we can also split them into empty and

1 × 1 blocks. Together with ũ1 and ũ2, it splits the whole matrix u into a direct sum

of matrices of the forms from the list L2, where v, w are powers of 2. Adding 3-primary

parts, we get the result.

Example 3.4. Consider the idempotents e =
∑

i∈I1 eii ∈ A2 and e′ = e11 ∈ B. Set

A1 = eAe, B1 = e′B2e
′ � Z and U1 = e′U2e. Then U1 is an A1-B1-bimodule; elements

from El(U1) can be identified with those from El(U2) having no second column and fifth

row. Hence we get the following result.

Corollary 3.5. A complete list L1 of non-isomorphic indecomposable objects fromEl(U1)

consists of

• empty objects ∅i (i ∈ I1);
• objects vi (i ∈ I1; v ∈ V1 if i = 1, v ∈ V if i = 2, 3, v = 1 if i = 4, 6);

• objects vil =

(
vi
1l

)
(i = 1, 2, 3, l = 4, 6; if (il) = (26) then v ∈ V2, otherwise v ∈ V ).

Here the indices show the blocks where the corresponding elements are placed.

4 Bimodules and homotopy types

Bimodule categories arise in the following situation. Let A and B be two fully additive

subcategories of the category Hos. We denote by A† B the full subcategory of Hos
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consisting of all objects X isomorphic (in Hos) to the cones of morphisms f : A → B

with A ∈ A, B ∈ B, or, the same, such that there is a cofibration sequence

A
f−→ B

g−→ X
h−→ ΣA, (5)

where A ∈ A, B ∈ B. Consider the A-B-bimodule H, which is the restriction on A◦ ×B

of the “regular”Hos-Hos-bimodule Hos. If f ∈ Hos(A,B) is an element of H, it gives rise

to an exact sequence like (5) with X = Cf . Moreover, since this sequence is a cofibration

one, for every morphism (α, β) : f → f ′, where f ′ ∈ Hos(A′, B′), there is a morphism

γ : X → X ′, where X ′ = Cf ′, such that the diagram

A
f−−−→ B

g−−−→ X
h−−−→ ΣA

Σf−−−→ ΣB

α

� β

� �γ

�Σα

�Σβ

A′ −−−→
f ′

B′ −−−→
g′

X ′ −−−→
h′

ΣA′ −−−→
Σf ′

ΣB′
(6)

commutes. In what follows we suppose that the categories A and B satisfy the following

condition:

Hos(B,ΣA) = 0 for all A ∈ A, B ∈ B. (7)

In this situation, given a morphism γ : X → X ′, we have that h′γg = 0, hence γg = g′β
for some β : B → B′. Moreover, since the sequence

B
g−→ X

h−→ ΣA
Σf−→ ΣB

is cofibration as well, and Σ : Hos(A,B) → Hos(ΣA,ΣB) is a bijection, there is a

morphism α : A→ A′, which makes the diagram (6) commutative.

Note that neither γ is uniquely determined by (α, β), nor (α, β) is uniquely restored

from γ. Nevertheless, we can control this non-uniqueness. Namely, if both γ and γ′ fit
the diagram (6) for given (α, β), their difference γ = γ − γ′ fits an analogous diagram

with α = β = 0. The equality γg = 0 implies that γ = σh for some σ : ΣA → X ′,
and the equality h′γ = 0 implies that γ = g′τ for some τ : X → B. On the contrary, if

γ̄ = σσ′ = τ ′τ for some morphisms

X
σ′−−−→ ΣY

σ−−−→ X ′ and X
τ−−−→ Z

τ ′−−−→ X ′,

where Y ∈ A, Z ∈ B, the condition (7) implies that γg = h′γ = 0, so γ fits the diagram

(6) with α = β = 0.

Fix now γ, and let both (α, β) and (α′, β′) fit (6) for this choice of γ. Then the pair

(α, β), where α = α−α′, β = β−β′, fits (6) for γ = 0. The equality g′β = 0 implies that

β = f ′σ for some σ : B → A′, and the equality (Σα)h = 0 implies that Σα = ΣτΣf , or

α = τf for some τ : B → A′. On the contrary, if (α, β) : f → f ′ is such that β = f ′σ and

α = τf with σ, τ : B → A′, then g′β = (Σα)h = 0, hence this pair fits (6) with γ = 0.

Summarizing these considerations, we get the following statement.
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Theorem 4.1. Let A,B be fully additive subcategories of Hos satisfying the condition

(7), A† B be the full subcategory of Hos consisting of all spaces such that there is a

cofibration (5) with A ∈ A, B ∈ B. Denote by H the bimodule Hos considered as A-B-

bimodule, by I the ideal in A† B consisting of all morphisms γ : X → X ′ that factor
both through an object from ΣA and through an object from B, and by J the ideal in

El(H) consisting of all morphisms (α, β) : f → f ′ such that β factors through f ′ and α
factors through f . Then the factor categories El(H)/J and A† B/I are equivalent; an

equivalence is induced by the maps f �→ Cf and (α, β) �→ γ, where γ fits a commutative

diagram (6). Moreover, I2 = 0, thus the functor A†B → A†B/I reflects isomorphisms.

Proof. We only have to check the last statement. But if γ : X → X ′ factors as X τ−→
B′ g′−→ X ′ and γ′ : X ′ → X ′′ factors as X ′ h−→′

ΣA
σ−→ X ′′, where A ∈ A, B ∈ B, then

γ′γ = 0, since h′g : B → ΣA and Hos(B,ΣA) = 0.

Corollary 4.2. In the situation of Theorem 4.1, suppose that Hos(B,A) = 0 for each

A ∈ A, B ∈ B. Then El(H) � A † B/I. Moreover, the functor A † B → El(H)

is a representation equivalence, i.e. it is dense, preserves indecomposable and reflects

isomorphisms.

Note also that any isomorphism f : A
∼−→ B is a zero object in El(H)/J , since its

identity map (1A, 1B) can be presented as (f−1f, ff−1). Obviously, the corresponding

object from A† B is zero (i.e. contractible) too.

5 Small dimensions

We now use Theorem 4.1 to describe stable homotopy types of atoms of dimensions at

most 5, or, the same, indecomposable objects in the categories CW1
2 and CW2

3.

Example 5.1. It is well known that πn(S
n) = Z (freely generated by the identity map).

It allows easily to describe atoms in CW1
2. Such an atom X is (stably!) of the form Cf

for some map f : mS2 → nS2. Since Hos(Sn, Sn+1) = 0, Theorem 4.1 can be applied.

The map f is given by an integer matrix. Using automorphisms of mS2 and nS2, we can

transform it to a diagonal form. Hence, indecomposable gluings can only be ifm = n = 1;

thus f = q1S2 . One can see that such a gluing is indecomposable if and only if q is a

power of a prime number. The corresponding atom S2 ∪q B
3 will be denoted by M(q)

and called Moore atom. It occurs in a cofibration sequence

S2 q−→ S2 g(q)−−→M(q)
h(q)−−→ S3 q−→ S3.

For the next section we need more information about 2-primary Moore atoms. We

denote Mt = M(2t) and write gt, ht instead of g(2t), h(2t). These atoms can be included
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into the following commutative “octahedral” diagram [16], where t = r + s:

S2 gr ��

2s

��

Mr
hr

��������

ktr

��

S2

2r ��������

2t �������� S3

S2
gt

��

gs �������� Mt

ht

��������

kst��������

Ms

(8)

Moreover, in this diagram hskst = 2rht.

The exact sequence (3) is here of the form

πSk (S
2)

q−→ πSk (S
2) −→ πSk (M(q)) −→ πSk (S

3)
q−→ πSk (S

3),

which gives the values of stable homotopy groups of the spaces M(q) shown in Table 1

below. (By the way, this table implies that all Moore atoms are pairwise non-isomorphic.)

k 2 3 4

πS
k (M(q)), q odd Z/q 0 0

πS
k (Mt), t > 1 Z/q Z/2 Z/2 ⊕ Z/2

πS
k (M1) Z/2 Z/2 Z/4

Table 1

Actually, the only non-trivial case is the group πS4 (M1). It can be obtained as π6(Σ
2M1),

which is isomorphic to the 2-primary component of π6(S
3) = Z/12 (cf. [18, Lemma

XI.10.2]). To prove that the sequence

0 −→ πS4 (S
2) = Z/2 −→ πS4 (Mt) −→ πS4 (S

3) = Z/2 −→ 0

splits if t > 1, it is enough to consider the commutative diagram

0 �� πS4 (S
2) ��

0
��

πS4 (M1) ��

��

πS4 (S3) �� 0

0 �� πS4 (S
2) �� πS4 (Mt) ��πS4 (S3) �� 0

(9)

arising from the diagram (8) with r = 1. It shows that the second row of this diagram is

the pushdown of the first one along the zero map; thus it splits.

Example 5.2. Now we are able to describe atoms in CW2
3. They are cones Cf for some

f : mS4 → Y with 2-connected Y of dimension 4. Again Hos(Y, S5) = 0, so Theorem 4.1

can be applied. Example 5.1 shows that Y is a bouquet of spheres S3, S4 and suspended

Moore atoms ΣM(q). Note that πS4 (Y ) = π4(Y ) for every Y ; in particular π4(S
4) =

Z, π4(S
3) = Z/2 (generated by the suspended Hopf map η1 = Ση; η : S3 → S2 � CP

1
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which is given by the rule η(a, b) = (a : b), where (a, b) ∈ C
2 are such that |a|2 + |b|2 = 1)

and

π4(ΣM(q)) = πS3 (M(q)) =

{
Z/2 if q = 2r

0 otherwise.

The Hopf map η2 = Σ2η : S4 → S3 and the inclusion j : S2 → M(q) give rise to

an epimorphism η∗ : π4(S4) → π4(S
3) and to an isomorphism j∗ : π4(S

3) → π4(ΣMr),

where Mr = M(2r). Moreover, if t > r, there is a map M(2r) → M(2t) that induces an

isomorphism π4(Mr) → π4(Mt). If Y = s4S
4 ∨ s3S3 ∨ (

∨∞
r=1mrMr), a map f : mS4 → Y

can be given by a matrix of the form(
F4 F3 G1 G2 . . .

)
,

where Fi is of size m × si with entries from π4(S
i); Gr is of size m × mr with entries

from π4(ΣMr) (some of these matrices can be “empty,” containing no columns). Using

automorphisms of Y and B, one can easily transform this matrix to the shape where

there is at most two non-zero elements in every row (if two, one of them necessarily in

the matrix F4 and even) and at most one non-zero element in every column, as shown

below:

F4 F3 Gr

q

η

2t η

η

2t η

Thus X decomposes into a bouquet of the spaces Σ2M(q) (which are not atoms, but

suspended atoms), spheres and the spaces C(η), C(η2t),C(2rη) and C(2rη2t), which are

gluings of the following forms:

5 • •

��
��

��
��

� •

��
��

��
��

� •

��
��

��
��

��

4 • • • •
3 • • • •
C(η) C(η2t) C(2rη) C(2rη2t)

Here, following Baues, we denote the cells by bullets and the attaching maps by lines;

the word in brackets shows which maps are chosen to attach bigger cells to smaller ones.

We do not show the fixed point, which coincide here with X2 (since X is 2-connected);

thus the lowest bullets actually describe spheres, not balls. These polyhedra are called

Chang atoms. Again one can check that all of them are pairwise non-isomorphic.
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Thus we have proved the following classical result.

Theorem 5.3 (Whitehead [23], Chang [9]). The atoms of dimension at most 5 are:

• sphere S1 (of dimension 1);

• Moore atoms M(q), where q = pr, p is a prime number (of dimension 3);

• Chang atoms C(η), C(η2r), C(2rη2t),C(2rη) (of dimension 5).

In what follows, we often use suspended Moore and Chang atoms. We shall denote

them by the same symbols but indicating the dimension. Thus Md(q) = Σd−3M(q)

and Cd(w) = Σd−5C(w) for w ∈ { η, 2rη, η2r, 2rη2t }; in particular, M(q) = M3(q) and

C(w) = C5(w). The same agreement will also be used for other atoms constructed below.

6 Dimension 7

We shall now consider the category CW3. Its objects actually come from CW3
4, so we have

to classify atoms of dimension 7. Such an atom X is 3-connected, so we may suppose

that X3 = ∗. Set B = X5, then X/B only has cells of dimensions 6 and 7. Therefore

X ∈ Σ3CW1 † Σ2CW1 � ΣCW1 † CW1. Consider the bifunctor W(A,B) = Hos(ΣA,B)

restricted to the category CW1. Since, obviously, Hos(B,Σ2A) = 0 for A,B ∈ CW1, we

can apply Theorem 4.1. So we first classify indecomposable elements of the bimodule

category El(W).

Indecomposable objects of the category CW1 are spheres S2, S3 and Moore atoms

M(q) (q = pr, r prime). If q is odd, one easily sees that W(A,M(q)) = 0 for all A, so we

may only consider the spaces Mr =M(2r).

From the cofibration sequence

S2 gr−→ S2 →Mr
hr−→ S3 → S3

and the diagram (5), we get the values of the Hos-groups shown in Table 2.

S2 S3 M1 Mr (r > 1)

S2
Z Z/2 Z/2 Z/2

S3 0 Z Z/2 Z/2r

M1 Z/2 Z/2 Z/4 T1r

Mt (t > 1) Z/2t Z/2 T1t Ttr

Table 2

Here Ttr denotes the set of matrices

(
a b

0 a

)
with a ∈ 2mZ/2m, b ∈ Z/2, where m =

min(r, t). The equality Hos(M1,M1) = Z/4 follows from the fact that this ring acts on

πS4 (M1) = Z/4, so 2Hos(M1,M1)  = 0. The diagram (8) implies that the sequence

0 −→ Hos(S3,Mt) −→ Hos(Mr,Mt) −→ Ker{Hos(S2,Mt)
2r−→ Hos(S2,Mt)} −→ 0
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splits if min(r, t) > 1. The generator of the subgroup of diagonal matrices in Ttr is ktr,

while the matrix

(
0 1

0 0

)
corresponds to the morphism gtηhr.

Analogous calculations, using Table 1 of the preceding section and the diagram (8),

produce the following table for the values of the functor Hos(ΣA,B):

S2 S3 M1 Mr (r > 1)

S2
Z/2 Z/2 Z/4 Z/2 ⊕ Z/2

S3
Z Z/2 Z/2 Z/2

M1 Z/2 Z/4 Z/2 ⊕ Z/2 Z/2 ⊕ Z/4

Mt (t > 1) Z/2 Z/2 ⊕ Z/2 Z/4 ⊕ Z/2 Z/2 ⊕ Z/2 ⊕ Z/2

Table 3

It is convenient to organize this result in the form of Table 4 below, as in [5].

1⊗ 2⊗ 3⊗ . . . ∞⊗ ∗∞ . . . ∗3 ∗2 ∗1

⊗1 Z/2 Z/2 Z/2 . . . Z/2 0 . . . 0 0 0

⊗2 Z/4 Z/2 Z/2 . . . Z/2 Z/2 . . . Z/2 Z/2 0

⊗3 Z/4 Z/2 Z/2 . . . Z/2 Z/2 . . . Z/2 Z/2 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊗∞ Z/4 Z/2 Z/2 . . . Z/2 Z/2 . . . Z/2 Z/2 0

∞∗ 0 0 0 . . . Z Z/2 . . . Z/2 Z/2 Z/2
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3∗ 0 0 0 . . . 0 Z/2 . . . Z/2 Z/2 Z/2

2∗ 0 0 0 . . . 0 Z/2 . . . Z/2 Z/2 Z/2

1∗ 0 0 0 . . . 0 Z/4 . . . Z/4 Z/4 Z/2

Table 4

In this table the row marked by ⊗t (respectively, t∗) shows the part of the group

Hos(ΣMr,Mt) that comes from Hos(ΣMr, S
2) (respectively, from Hos(ΣMr, S

3) ). In the

same way, the column marked by r⊗ (respectively, ∗r) shows the part of this group that

comes from Hos(S3,Mt) (respectively, from Hos(S4,Mt) ). The columns ∞⊗ and ∗∞
correspond, respectively, to Hos(S4, ) and Hos(S3, ); the rows ⊗∞ and ∞∗ correspond,

respectively, to Hos( , S2) and Hos( , S3).

Therefore we consider the elements from El(W) as block matrices (W x
y ), where x ∈

{ r⊗, ∗r }, y ∈ {⊗t,
t ∗ } and the block W x

y is with entries from the corresponding cell of

Table 4. Moreover, morphisms between Moore spaces induce the following transforma-
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tions of vertical stripes W x and horizontal stripes Wy of such a matrix, which we call

admissible transformation:

(a) replacing the stripes M
r⊗ and M∗r

by M
r⊗X and M∗r

X;

(a′) replacing the stripes M⊗t and Mt∗ by XM⊗t and XMt∗;
(b) replacing M∗r

by M∗r
+M∗r′

X +M
s⊗Y , where r′ > r, s arbitrary;

(b′) replacing M⊗t by M⊗t +XM⊗t′ + YMs∗, where t
′ > t, s arbitrary;

(c) replacing M
r⊗ and M∗r

by M
r⊗ +M

r′⊗X and M∗r
+ 2r−r′M∗r′

X, where r′ < r;
(c′) replacing Mt∗ and M⊗t by Mt∗ +XMt′∗ and M⊗t + 2t−t′XM⊗t′ , where t

′ < t;
(d) replacing M

1⊗ by M
1⊗ + 2M

r⊗X + 2M∗s
Y ; r, s arbitrary;

(d′) replacing M1∗ by M1∗ + 2XMt∗ + 2YM⊗s ; r, s arbitrary;

(e) replacing M∗r

1∗ by M∗r

1∗ + 2M
s⊗
⊗1
X; s arbitrary;

(e′) replacing M
1⊗
⊗t

by M
1⊗
⊗t

+ 2XM∗1

s∗ ; s arbitrary.
HereX,Y denote arbitrary integer matrices of the appropriate size; in the transformations

of types (a) and (a′) the matrix X must be invertible. Two matricesW,W ′ are isomorphic
in El(W) if and only if W can be transformed to W ′ using admissible transformations.

It is convenient first to reduce the blockW
∞⊗
∞∗ to a diagonal formD = diag(a1, a2, . . . , am)

with a1|a2| . . . |am. Let ak = 2dkbk with odd bk. Denote by W
∞k⊗ and W∞k∗ the parts of

the stripes W
∞⊗ and W∞∗ corresponding to the columns and rows with dk = d (k = ∞

if dk = 0). Since all other matrices of these stripes are with entries from Z/2, we can

make the parts W
∞0⊗ and W∞0∗ zero. Moreover, using admissible transformations that

do not change the block D, we can replace W
∞k⊗ by W

∞k⊗ + W
∞l⊗X and W∞k∗ by

W∞k∗ + YW∞l∗ for any l < k. In what follows we always suppose that W is already in

this form.

Call two matrices of this form W,W ′ 2-equivalent, if there is a matrix W ′′ � W such

that W ′′ ≡ W mod 2. One can easily see that the problem of 2-equivalence of matrices

from El(W) is actually a sort of bunch of chains in the sense of [8, 12]. We use the paper

[12] as the source for the further discussion. Namely, we have the chain E = {⊗t,t ∗,∞k∗ }
for the rows and the chain F =

{
r⊗, ∗r,∞k⊗}

for the columns, where

1∗ < 2∗ < 3∗ < · · · < ∞∞ < · · · < ∞3∗ < ∞2∗ < ∞1∗ < ⊗∞ < · · · < ⊗3 < ⊗2 < ⊗1,
1⊗ < 2⊗ < 3⊗ < · · · < ∞∞⊗ < . . .∞3⊗ < ∞2⊗ < ∞1⊗ < ∗∞ < · · · < ∗3 < ∗2 < ∗1.

The equivalence relation ∼ on X = E ∪ F is given by the rule

⊗t ∼ t∗ (t  = ∞), r⊗ ∼ ∗r (r  = ∞), ∞k⊗ ∼ ∞k∗
for all possible values of t, r and k  = ∞. Thus we can get a classification of our matrices

up to 2-equivalence from [12]. Namely, we write x − y if either x ∈ E , y ∈ F or vice

versa, at least one of them belongs to {⊗t } ∪ { ∗r }, moreover, { x, y }  = {⊗t, ∗1 } and

{ x, y }  = {⊗1, ∗r }. We call an X -word a sequence w = x1ρ2x2ρ3 . . . ρnxn, where xi ∈
X , ρi ∈ {∼,−}, ρi  = ρi+1 (i = 2, . . . , n− 1) and xi−1ρixi holds in X for all i = 2, . . . , n.

Such a word is called full if the following conditions hold:

• either ρ2 =∼ or x1  ∼ y for all y ∈ X , y  = x1;

• either ρn =∼ or xn  ∼ y for all y ∈ X , y  = xn.
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w is called a cycle if ρ2 = ρn = − and xn ∼ x1 in X . If, moreover, w cannot be written

in the form v ∼ v ∼ · · · ∼ v for a shorter word v, it is called aperiodic. We call a

polynomial f(t) ∈ Z/2[t] primitive if it is a power of an irreducible polynomial with the

leading coefficient 1. We shall identify any word w with its inverse and any cycle w with

any of its cyclic shifts. Then the set of indecomposable representations of this bunch of

chains is in 1-1 correspondence with the set S ∪B, where S is the set of full words (up to

inversion) and B is the set of pairs (w, f), where w is an aperiodic cycle (up to a cyclic

shift) and f  = td is a primitive polynomial. We call representations corresponding to S
strings and those corresponding to B bands.

Note that an X -word can contain at most one element ∞k⊗, at most one element ∗∞k

and at most one subword of the form ⊗t−∗r or its inverse. Replacing w by its inverse, we

shall suppose that there are no words of the form ∗r −⊗t or
∞k⊗ ∼∞k ∗. It is convenient

to rewrite this answer in a modified form. Namely, we replace the subword ∞k∗ ∼∞k ⊗,
if it occurs, by kε

k, also omit x1 if ρ2 =∼, omit xn if ρn =∼ and omit all remaining

symbols ∼. Then we replace every subword r ⊗−⊗t by
r⊗t, ⊗t −r ⊗ by t⊗r, t ∗ −∗r by

t∗r, ∗r −t ∗ by r∗t and ⊗t−∗r by tθ
r. Note that in the last case r  = 1 and t  = 1. We also

omit all signs ∼, replace any double superscript rr by r and any double subscript tt by t.

Certainly, the original word can be easily restored from such a shortened form. Now, any

full word or its inverse can be written as a subword of one of the following words:

r1 ⊗t1 ∗r2 ⊗t2 ∗ . . .rn ⊗tn (“usual word”),

t−m ⊗ . . .r−2 ∗t−2 ⊗r−1 ∗t−1 θ
r1 ⊗t1 ∗r2 ⊗t2 · · · ∗rn (“theta-word”),

t−m ⊗ . . .r−2 ∗t−2 ⊗r−1 ∗k εk ⊗t1 ∗r2 ⊗t2 · · · ∗rn (“epsilon-word”),

Moreover,

• ∞ can only occur at the ends of a word, not in a theta-word or epsilon-word.

• In any theta-word t−1  = 1 and r1  = 1.

Any cycle or its shift can be written as

r1 ⊗t1 ∗r2 ⊗t2 ∗ . . .rn ⊗tn ∗r1 .

The description of the representations in [12] also implies the following properties.

Proposition 6.1. (1) Any row (column) of a string contains at most 1 non-zero element.

(2) There are at most 2 zero rows or columns in a string, namely, they are in the following

stripes:

(a) Mt∗ if w has an end ⊗t (or t⊗), t  = ∞;

(b) M∗r
if w has an end r⊗, r  = ∞;

(c) M⊗t if w has an end t∗;
(d) M

r⊗ if w has an end ∗r (or r∗);
(e) M∞k∗ if the left end of w is kε

k;

(f) M
∞k⊗ if the right end of w is kε

k.

We call each end occurring in this list a distinguished end.
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(3) The horizontal and vertical stripes of a band can be subdivided in such a way that

every new horizontal or vertical band has exactly 1 non-zero block, which is invert-

ible.

Recall that elements modulo 4 only occur in the stripes W
1⊗ and W1⊗.

Corollary 6.2. Let W ∈ El(W) (with diagonal W
∞⊗
∞∗ ). Denote by W its reduction

modulo 2 and by W̃ the matrix obtained from W by replacing all invertible entries with

0 (thus all entries of W̃ are even). Suppose that W =
⊕m

i=1W i, where all W i are strings

or bands. Then W � W ′, where W
′
= W and the only non-zero rows and columns of W̃ ′

can be those corresponding to the distinguished ends of types 2(a-d) of Proposition 6.1.

In particular, if some of W i is a band, a theta-string or an epsilon-string, W ′ has a direct
summand Wi such that W i ≡ Wi mod 2 and W̃i = 0.

Thus we only have now to consider the case, when W = W ′ and every W i is a usual

string. Suppose that Wi corresponds to a string wi. It is easy to verify that if wi and wj

have a common distinguished end, there is a sequence of distinguished transformations,

which does not change W and adds the row (or column) corresponding to this end in

W̃i to the row (or column) corresponding to this end in W̃j or vice versa. Hence, such

rows (columns) are in some sense linearly ordered. As a consequence, we can transform

W̃ to a matrix having at most one non-zero element in every row and every column

(without changing W ). It gives us the following description of indecomposable matrices

from El(W) with W̃  = 0.

Corollary 6.3. Suppose that W is an indecomposable matrix from El(W), such that

W̃ ′  = 0 for every matrix W ′ � W . Let W =
⊕m

i=1W i, where each W i is a usual string.

There are, up to isomorphism, the following possibilities:

(1) m = 1, W corresponds to a word w and W̃ has a unique non-zero element in the

block W a
b for the following choices:

w = t1∗r2 ⊗t2 . . . , a =
1⊗, b = ⊗t1 (t1 = = 1); (a)

w = r1⊗t1 ∗r2 ⊗ . . . , a = ∗r1 , b = 1∗ (r1  = 1); , (b)

w = 1∗r1 ⊗t1 ∗r2 . . . , a = ∗r, b = 1∗; , (c)

w = 1⊗t1 ∗r2 ⊗t2 . . . , a =
1⊗, b = ⊗t; . (d)

(2) m = 2, W i (i = 1, 2) correspond to the words wi and W̃ has a unique non-zero

element in the block W a
b , where

w1 = 1∗r−1 ⊗t−1 ∗r−2 ⊗ . . . , w2 =
r1⊗t1 ∗r2 ⊗t2 . . . , a = ∗r1 , b = 1∗, (e)

w1 =
1⊗t1 ∗r1 ⊗t2 ∗ . . . , w2 = t−1 ∗r−1 ⊗t−2 ∗r−2 ⊗ . . . , a = 1⊗, b = ⊗t−1 . (f)
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We encode these matrices by the following words w:

w = . . .⊗r2 ∗t2 ⊗r1 ∗t1θ1 in case (a),

w = 1θ
r1 ⊗t1 ∗r2 ⊗t2 ∗ . . . in case (b),

w = · · · ∗t2 ⊗r2 ∗t1 ⊗r1 ∗1 θ
r in case (c),

w = tθ
1 ⊗t1 ∗r2 ∗t2 ⊗r3 ∗ . . . in case (d),

w = · · · ∗r−2 ⊗t−2 ∗r−1 ∗1θ
r1 ⊗t1 ∗r2 ⊗ . . . in case (e),

w = · · · ∗ t−2 ⊗r−1 ∗t−1θ
1 ⊗t1 ∗r2 ⊗t2 ∗ . . . in case (f),

We call these words “theta-words” as well.

Obviously, cases (a-d) always give indecomposable matrices. On the other hand, one

can check that in case (e) W is indecomposable if and only if (r−1 + 1, t1, r−2, t2, . . . ) <

(r1, t−2, r2, t−3, . . . ) with respect to the lexicographical order [5]. In case (f) W is inde-

composable if and only if (t1 +1, r−1, t2, r−2, . . . ) < (t−1, r2, t−2, r3, . . . ) lexicographically.

Thus we obtain a complete list of non-isomorphic indecomposable matrices from El(W).

Moreover, it is easy to verify that they remain pairwise non-isomorphic and indecompos-

able in El(W)/I as well. Thus, using Theorem 4.1, we get the following result.

Theorem 6.4 (Baues–Hennes [7]). Indecomposable polyhedra from CW3
4 are in 1-1

correspondence with usual words, theta-words, epsilon-words and bands defined above,

with the only restriction that in a theta-word w = . . .r−2 ∗t−2 ⊗r−1 ∗t−1 θ
r1 ⊗t1 ∗r2 ⊗t2 . . .

the following conditions hold:

if t−1 = 1, then (r−1 + 1, t1, r−2, t2, . . . ) < (r1, t−2, r2, t−3, . . . ) lexicographically,

if r1 = 1, then (t1 + 1, r−1, t2, r−2, . . . ) < (t−1, r2, t−2, r3, . . . ) lexicographically.

The gluings of spheres corresponding to these words can be described as follows:

7 • • •
6 •

		
		

		
		

		
		

	 •

		
		

		
		

		
		

	 •

















· · ·
5 •

������������� •
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· · ·
4 •










 • •
for a usual word
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 • • •

· · ·
4 • • •

for an epsilon-word

In these diagrams vertical segments present the suspended atoms Mr, slanted lines cor-

respond to the gluings arising from Hopf maps Sd+1 → Sd, while the long slanted line in

a theta-word shows the gluing arising from the doubled Hopf map S6 → S4.

Note that all atoms from CW3
4 are p-primary (2-primary, except M(q) with odd q).

Therefore, we have the uniqueness of decomposition of spaces from CW3 into bouquets

of suspended atoms.

7 Bigger dimensions. Wildness

Unfortunately, if we pass to bigger dimensions, the calculations as above become ex-

tremely complicated. In the representations theory the arising problems are usually called

“wild.” Non-formally it means that the classification problem for a given category con-

tains the classification of representations of arbitrary (finitely generated) algebras over a

field. It is well-known, since at least 1969 [15], that it is enough to show that this problem

contains the classification of pairs of linear mappings (up to simultaneous conjugacy), or,

equivalently, the classification of triples of linear mappings

V1
������ V2 (10)

On the other hand, problems like the one considered in the preceding section, where

indecomposable objects can be parameterised by several “discrete,” or combinatorial pa-

rameters (as X -words above) and at most one “continuous” parameter (as a primitive

polynomial in the description of bands), are called “tame.” The problems, where the

answer is purely combinatorial, like the classification of atoms of dimensions d ≤ 5, are

called “finite.” I shall not precise these notions formally. The reader can consult, for
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instance, the survey [13], where it is done within the framework of representation theory.

An important question in the representation theory is to distinguish finite, tame and wild

cases. The following result accomplishes such an investigation for stable homotopy types.

Proposition 7.1 (Baues [5]). The classification problem for the category CW4 is wild.

Proof. Let B be the category of bouquets of Moore atoms M = M1, A = Σ2B. Then

CW4 contains the subcategory Σ3(A†B) � A†B. Corollary 4.2 shows that the category

A†B is representation equivalent to El(H), where H is the restriction of Hos onto A◦×B.

We know that Hos(M,M) = Z/4. Therefore, we only have to show that Hos(Σ2M,M) �
Z/2⊕ Z/2⊕ Z/2. Indeed, it implies the category El(H) is representation equivalent to

the category of diagrams of the shape (10).

The cofibration sequence S2 2−→ S2 → M → S3 2−→ S3 and the Hopf map η : S5 →
S4 produce the following commutative diagram:

0 −−−→ Z/2 −−−→ πS4 (M) −−−→ Z/2 −−−→ 0

η∗
� � ��

0 −−−→ Z/2 −−−→ πS5 (M) −−−→ Z/2 −−−→ 0,

Since η3 = 4ν, where ν is the element of order 8 in πS5 (S
2) = Z/24 [21], actually η∗ = 0,

so the lower row splits and πS5 (M) = Z/2 ⊕ Z/2. Just in the same way we show that

Hos(Σ2M,S2) = Z/2 ⊕ Z/2. Now, applying the functors Hos( , S2) and Hos( ,M) to

the same cofibration sequence, we get the commutative diagram

0 −−−→ Z/2 −−−→ Hos(Σ2M,S2) −−−→ Z/2 −−−→ 0� � ��

0 −−−→ Z/2⊕ Z/2 −−−→ Hos(Σ2M,M) −−−→ Z/2 −−−→ 0.

Since the upper row of this diagram splits, the lower one splits as well, hence Hos(Σ2M,M) =

Z/2⊕ Z/2⊕ Z/2. It accomplishes the proof.

We can summarize the obtained results in the following theorem.

Theorem 7.2. The category CWk is of finite type for k ≤ 2, tame for k = 3 and wild

for k ≥ 4.

8 Torsion free atoms. Dimension 9

Nevertheless, if we consider torsion free atoms, the situation becomes much simpler.

Namely, in this case neither sphere of dimension d can be attached to the spheres of

dimension d−1, thus in the picture describing the gluing of spheres there is no fragments

of the sort

d •
d− 1 •
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Therefore, a calculation of atoms from CWFk
k+1 can be organized as follows. Denote by

Bk the full subcategory of CW consisting of bouquets of torsion free suspended atoms of

dimension 2k and by Sk the category of bouquets of spheres S2k. Let Γm(X) denote the

subgroup Im{πSm(Xm−1) → πSm(X)} of πSm(X). When X runs through Bk, Γ2k can be

considered as an Sk-Bk-bimodule; we denote this bimodule by Gk. Then the following

analogue of Theorem 4.1 holds (with essentially the same proof).

Proposition 8.1. Denote by I the ideal of the category CWFk
k+1 consisting of all mor-

phisms X → X ′ that factor through an object from Bk, and by J the ideal of the

category El(Gk) consisting of such morphisms (α, β) : f → f ′ that α factors through f

and β factors through f ′. Then CWFk
k+1/I � El(Γk)/J . Moreover, both I2 = 0 and

J 2 = 0, hence the categories CWFk
k+1 and El(Gk) are representation equivalent.

Proof. The only new claim here is that J 2 = 0. But this equality immediately follows

from the fact that if a morphism X → Sm factors through Xm−1, it is zero.

Thus a torsion free atom of dimension 7 can be obtained as a cone of a map f :

mS6 → Y , where Y is a bouquet of spheres S4, S5 and suspended Chang atoms C6(η),

while f ∈ Γ6(Y ). Easy calculations, like above, give the following values of Γ6:

X S4 S5 C6(η)

Γ6 Z/2 Z/2 0

(The last 0 is due to the fact that the map η∗ : π6(S
5) → π6(S

4) is an epimorphism [21]).

The Hopf map η : S5 → S4 induces an isomorphism Γ6(S
5) → Γ6(S4). Therefore, the only

indecomposable torsion free atom of dimension 7 is the gluing C(η2) = C7(η2) = S4∪η2B7.

(Note that such an atom must contain at least one 4-dimensional cell.) Moreover, all

torsion free atoms of dimensions d ≤ 7 are 2-primary.

A torsion free atom of dimension 9 is a cone of some map f : mS8 → Y , where Y is a

bouquet of spheres Si (5 ≤ i ≤ 7), suspended Chang atoms C7(η), C8(η) and suspended

atoms C8(η2). One can calculate the following table of the groups Γ8 for these spaces:

X S5 S6 S7 C7(η) C8(η) C8(η2)

Γ8 Z/24 Z/2 Z/2 Z/12 0 Z/12

Morphisms between these spaces induce epimorphims Γ8(S
5) → Γ8(C

7(η2)) → Γ8(C
7(η)),

Γ8(S
7) → Γ8(S6) and monomorphisms Γ8(S

7) → Γ8(C
7(η) → Γ8(S

5), Γ8(S
6) → Γ8(S

5).

It can be deduced either from [21] or, perhaps easier, from the results of [22], cf. [3]. (The

only non-trivial one is the monomorphism Γ8(S
7) → Γ8(C

7(η)) ). Again we consider the
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map f as a block matrix

F =

(
F1 F2 F3 F4 F6

)

.

Here Fi is of size mi ×m with entries from Γ8(Yi), where

Yi =



S5 if i = 1,

C7(η) if i = 2,

C8(η2) if i = 3,

S6 if i = 4,

S5 if i = 6.

We have written F6, not F5, in order to match the notations of the Example 3.2; so

we set I1 = { 1, 2, 3, 4, 6 }. Using the automorphisms of mS7 and of Y , one can replace

the matrix F by PFQ, where P ∈ GL(m,Z) and Q = (Qij)i,j∈I1 is an invertible integer

block matrix, where the block Qij is of size mi × mj with the following restrictions for

the entries a ∈ Qij:

a =0 for i ∈ { 4, 6 } , j < i,
a ≡0 mod 2 for (ij) ∈ { (12), (13), (23) } ,
a ≡0 mod 6 for (ij) = (26),

a ≡0 mod 12 for j ∈ 4, 6, i ∈ { 1, 2, 3 } , (ij)  = (26).

Thus we have come to the bimodule category El(U1) considered in Example 3.4, so we can

use Corollary 3.5, which describes all indecomposable objects of this category. Certainly,

we are not interested in the “empty” objects ∅i, since they correspond to the spaces with

no 9-dimensional cells. Note also that the matrices (14), (16) correspond not to atoms,

but to suspended atoms C9(η2) and C9(η). We use the following notation for the atoms

corresponding to other indecomposable matrices F :
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A(v) for (v1),

A(ηv) for (v2),

A(η2v) for (v3),

A(vη) for

(
v1
16

)
,

A(vη2) for

(
v1
14

)
,

A(ηvη) for

(
v2
16

)
,

A(ηvη2) for

(
v2
14

)
,

A(η2vη) for

(
v3
16

)
,

A(η2vη2) for

(
v3
14

)
.

So we have proved

Theorem 8.2 (Baues–Drozd [3]). Every torsion free atom of dimension 9 is isomorphic

to one of the atoms A(w) with w ∈ { v, ηv, η2v, vη, vη2, ηvη, ηvη2, η2vη, η2vη2 }.

Using the gluing diagrams, these atoms can be described as in Table 5 below.
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A(η2vη) A(η2vη2) A(ηvη) A(ηvη2)

Table 5

One can also check that the 2-primary atoms in this list are those with v divisible by

3, while the only 3-primary one is A(8). Thus there are altogether 29 primary suspended

atoms of dimension at most 9. The congruent ones are only A(3) and A(9). Indeed,
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A(3)∨S5 corresponds to the matrix

(
3

0

)
mod 24. But the latter can be easily transformed

to

(
9

0

)
mod 24, which corresponds to A(9) ∨ S5:

(
3

0

)
→

(
3

12

)
→

(−9
12

)
→

(
9

12

)
→

(
9

0

)
.

(At the last step we add the first row multiplied by 4 to the second one; all other trans-

formations are obvious.) One can verify that all other 2-primary atoms are pairwise

non-congruent.

Corollary 8.3. The Grothendieck group K0(CWF4) is a free abelian group of rank 29.

Note that the matrix presentations allows easily to find the images in K0(CWF4) of

all atoms. For instance, the equivalence of matrices81 0

0 31

 ∼

11 0

0 01


implies that A(8) ∨ A(3) � A(1) ∨ S5 ∨ S9, thus in K0(CWF4) we have

[A(1)] = [A(8)] + [A(3)]− [S5]− [S9].

The reader can easily make analogous calculations for all atoms of Table 5.

9 Torsion free atoms. Dimension 11

For torsion free atoms of dimension 11 analogous calculations have been done in [6].

Nevertheless, they are a bit cumbersome, so we propose here another, though rather

similar, approach. Namely, denote by S′
k the category of bouquets of spheres S2k−1 and

S2k, by B′
k the category of bouquets of suspended atoms of dimension 2k − 1 and by G′

k

the S′
k-B

′
k-bimodule such that

G′
k(S

2k−1, B) = Γ2k−1(B) and G′
k(S

2k, B) = Γ2k(B).

Proposition 9.1. Denote by I ′ the ideal of the category CWFk
k+1 consisting of all mor-

phisms X → X ′ that factors through an object from B′
k, and by J ′ the ideal of the

category El(G′
k) consisting of such morphisms (α, β) : f → f ′ that α factors through f

and β factors through f ′. Then CWFk
k+1/I ′ � El(Γ′

k)/J ′. Moreover, both (I ′)2 = 0 and

(J ′)2 = 0, hence the categories CWFk
k+1 and El(Γ′

k) are representation equivalent.

Thus we obtain torsion free atoms if dimension 11 as cones of maps S → Y , where

S is a bouquet of spheres of dimensions 9 and 10, while Y is a bouquet of 5-connected
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suspended atoms of dimensions 6 ≤ d ≤ 9. Note that at least one of these atoms must

have a cell of dimension 6 in order that such a cone be an atom.

Just as above, we have the following values of Γ9 and Γ10 for such atoms:

X S6 C8(η) C9(η2) S7 C9(η) S8 S9

Γ9 Z/24 Z/12 Z/12 Z/2 0 Z/2 0

Γ10 0 0 0 Z/24 Z/12 Z/2 Z/2

(We have arranged this table taking into account the known maps between these groups,

as above.) The Hopf map S10 → S9 induces monomorphisms in the 4th and the 6th

columns of this table, while the maps between suspended atoms induce homomorphisms

analogous to those of the preceding section. Thus a morphism f : S → Y can be described

by a matrix

F =

F1 F2 F3 F4 0 F6 0

0 0 0 G4 G5 G6 G7





,

where the matrix Fi (Gi) has entries from the first row (respectively, second row) and the

i-th column of the table above. Two matrices, F and F ′, define homotopic polyhedra if

F ′ = PFQ, where P,Q are matrices over the tiled orders, respectively,



1 2 2 12 24 12 24

1 1 1 12 24 6 24

1 2 1 12 24 12 24

0 0 0 1 2 12∗ 12

0 0 0 1 1 12 6

0 0 0 0 0 1 1

0 0 0 0 0 0 1



and

 1 12∗

0 1

 .

Here 12∗ shows that the corresponding element obeys the ∗-rule (4), i.e. induces a non-

zero map Z/2 → Z/2 and acts as usual multiplication by 12 in all other cases.

Thus we have obtained the bimodule category El(U2) from Example 3.2, so we can use

the list of indecomposable objects from Theorem 3.3. Moreover, we only have to consider

the matrices having non-empty G-column and one of the parts F1, F2, F3 (otherwise we

have no 11-dimensional or no 6-dimensional cells). Therefore, a complete list of atoms
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arises from the following matrices:vi 0

14 w4

 ,


vi 0

14 w4

0 16

 ,


vi 0

14 w4

0 17

 ,

where i ∈ { 1, 2, 3 }, v, w ∈ { 1, 2, 3, 4, 5, 6 }. We omit the upper indices of Theorem 3.3,

since here they coincide with the column number; the lower indices show to which hor-

izontal stripe of the matrix F the corresponding elements belong. It gives the following

list of 11-dimensional torsion free atoms.

Theorem 9.2 (Baues–Drozd [6]). Every torsion free atom of dimension 11 is isomor-

phic to one of the atoms of Table 6 below.
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Table 6

Again 2-primary atoms are those with v, w ∈ { 3, 6 } and there are no 3-primary spaces
in this table. Moreover, the new 2-primary atoms are pairwise non-congruent, therefrom

we obtain the following result.

Corollary 9.3. The Grothendieck group K0(CWF5) is a free abelian group of rank 85.

We end up with the following statements about the higher dimensional torsion free

spaces.

Proposition 9.4. (1) There are infinitely many non-isomorphic (even non-congruent)

2-primary atoms of dimension 13. Hence the Grothendieck group K0(CWFk) is of

infinite rank for k ≥ 6.
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(2) If k ≥ 11, the classification problem for the category CWFk is wild.

Proof. We shall show first that πS12(A
11(η2v), or, the same, πS10(A(η

2v) equals Z/2⊕Z/2.

We consider the cofibration sequences

S8 f−→ ΣC
g−→ A

h−→ S9 Σf−→ Σ2C, (a)

S6 −→ S4 −→ C −→ S7 −→ S5, (b)

where A = A(η2v), C = C(η2). Note that the map f factors through S5. From the

sequence (b) we get πS9 (C) � πS9 (S
7) � Z/2 and πS9 (ΣC) � πS8 (C) = 0. The second

equality follows from the fact that the induced map πS8 (S
7) → πS8 (S

5) is known to be

injective [21]. Since πS10(S
5) = πS10(S

6) = 0, the sequence (a) gives then an exact sequence

0 −→ πS10(ΣC) � Z/2 −→ πS10(A) −→ πS10(S
9) � Z/2 −→ 0.

To show that this sequence splits, we have to check that 2α = 0 for every α ∈ πS10(A). In
any case, 2α factors through ΣC, which gives rise to a commutative diagram

M10(2)
φ−−−→ S10 2−−−→ S10

γ

� �β

�α

S8 −−−→
f

ΣC −−−→
g

A

for some β, γ (we have used the cofibration sequence forM(2) ). Since πS9 (S
5) = πS10(S

5) =

0, also Hos(M10(q), S5) = 0. But the map βφ = fγ factors through S5, so βφ = 0 and

β = 2σ for some σ ∈ πS10(ΣC) � Z/2. Hence β = 0 and 2α = 0.

Analogous calculations show that any endomorphism of A acts as a homothety on

πS10(A). Since, obviously, Hos(A, S10) = 0, Corollary 4.2 shows that the category of

spaces arising as cones of mappings mS12 → nA11(η2v) is equivalent to the category

of representations of the Kronecker quiver Ã1, or, the same, of diagrams of Z/2-vector

spaces of the shape V1 ⇒ V2. But it is well-known that this quiver is of infinite type,

i.e. has infinitely many non-isomorphic indecomposable representations. Obviously, all

corresponding spaces are 2-primary and non-congruent, which proves the claim (1).

The claim (2) follows from the equality πS20(S
11) � (Z/2)3. It implies that the category

of spaces, which are cones of mappings mS20 → mS11, is equivalent to that of diagrams

V1
������ V2 . The latter is well-known to be wild.

Perhaps, the estimate 11 in the claim (2) of Proposition 9.4 is too big, but at the

moment I do not know a better one. On the other hand, there is some evidence that the

classification problem for CWF6 is still tame.
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