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Matrix problems and representations of
algebras

Yu. A. Drozd

Abstract. This paper is devoted to the theory of matriz problems, a new
branch of modern algebra created and developed to a large extent by the
Kyiv algebraic school. It originated from the questions of the theory of
representations, but now has proved its efficiency in many areas, such as
algebraic geometry, algebraic topology, linear algebra, theory of groups etc.
Certainly, I could not embraced all achievements or even all directions of
investigation, so their choice in the paper is rather subjective. Moreover, I
only consider the “classical” results, not involving the new investigations
and applications to algebraic geometry and algebraic topology (see surveys
[20, 21]).

Amnoranisi. Ilsg crarTs npucBsideHa meopii MampuuHux 3a0aM, HOBIH ra-
JIy3i cydacHol anrebpu, sika OyJsia CTBOpeHA 1 PO3BHHEHA 3HAYHOIO MipOIO
Kuiscbkoro asrebpudnoro 1mikosow. Bora BuHuMKIA 3 mpobsieM Teopil 30-
OpakeHb, ajie 3apa3 BxKe JI0BeJia CBOI ePEeKTUBHICTD ¥ 6araTboxX rajy3siX,
TAKKUX K aJredpuvdHa reoMeTpisi, aJredOpuaHa TOIOJIOoTis, JiHiiiHa airebpa,
Teopist TPy, TOIIO. 3BUYAIHO, sI HE MIil' OXOIUTH BCi JOCSATHEHHST a00 X04a O
yCi HATPSIMKY JTOCII?KeHb, TOXK IXHiif BUOIp y CTATTI TOCUTH CyH’'€KTUBHMIA.
Bisbin Toro, st o6MeKuBCs JHIe «KJIACUIHUMU» PE3YJIbTATaAMU, HE TOPKa-
IOYNCh HOBITHIX JOCJIPKEHDb 1 3aCTOCYBaHb J0 aJareGpUYHOl reoMerpil Ta
anrebpuaenol romnosoril (zuBuck orusiau [20, 21]).
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1. INTRODUCTION

The new history of the representations theory of finite dimension algebras
starts with the Brauer—Thrall conjectures. We give corresponding definitions
and formulate these conjectures. In waht follows k denotes a field and we
consider algebras over this field. If the opposite is not stated, all algebras
and modules are supposed to be finite dimensional. By r(d, A) we denote the
number of isomorphism classes of indecomposable A-modules of dimension
d. (possibly r(d, A) = 00). Recall that for finite dimensional representations
the Krull-Schmidt theorem holds true [22], that is every represemtations
decomposes into a direct sum of indecomposables and this decomposition
is unique up to isomorphism and permutation of summands.

Oszsuavenns 1.1. They say that an algebra A is

e of finite representations type if it only has finitely many non-isomorphic
indecomposable modules;

e of bounded representations type if the dimensions of indecomposable
A-modules are bounded, i.e. there is an integer dy such that r(d, A) =
0 for d > dy;

e of strongly unbounded representations type if there are infinitely
many d such that r(d, A) = co.

Obviously, if the field k is finite, bounded representation type is the same
as finite representation type and the strictly unbounded representation type
is impossible.

T'imoresa 1.2 (see [9],[49],[28]).

1st. If an algebra A is of bounded representation type, it is actually of
finite representation type.

2nd. If an algebra A over an infinite field k is of unbounded representation
type, it is actually of strictly unbounded representation type.

These conjectures we proved by Yoshii [50] if (rad A)? = 0. There were
more papers devoted to these conjectures, until in 1968 A. Roiter proved
the 1st Brauer—Thrall conjecture completely [42]. It was, in some sense, a
sensation which gave a wide publicity to the Kyiv school of the theory of
representations.

The 2nd Brauer—Thrall conjecture turned out to be much more difficult.
To approach it, L. Nazarova and A. Roiter started in 1970-es to develop
a new branch of the representation theory, namely, the theory of matriz
problems. The idea was completely clear and evident. Every representation
of an algebra is a set of matrices. Isomorphic representations correspond to
conjugate sets. One knows, from the standard course of linear algebra, how
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to deal with one matrix: there is the Jordan or Frobenius normal form. Why
not to reduce one of the matrices to this normal form, fix it and consider
only conjugations that do not disturb it.

Though the idea was so simple, its realization was far from being so. The
thing is that there are relations between the matrices defining a representati-
on and it is usually very troublesome to follow them during the described
process of reduction. Actually, it seemed to be non-realistic. A countermeasure
was first found in homological algebra, a powerful tool of linearization non-
linear problems. Indeed, if we fix an ideal I C A and consider its annihilator
J, we can include any module M into an exact sequence 0 - N — M —
L — 0, where N = MI and L = M/MI. Then N is a module over the
quotient A/J and L is a module over the quotient A/I. These new algebras
are of smaller dimensions (at least if I C rad A), so one can suppose that
the conjecture holds true for them and try to use induction.

A problem is that non-equivalent extensions (in the sense of homologi-
cal algebra) can produce isomorphsic modules. On the level of the group
Ext}4 (L, N) it is always so if the corresponding elements can be transformed
to one another by automorphisms of N and L. Moreover, usually one can
choose the ideal I in such a way that this condition is also necessary in
order that two extensions produce isomorphic modules.

The new problem looks much better, since ExtlA (L, N) is vector space and
there are no relations between its elements. If we know a decomposition
of L and N into a direct sum of indecomposable modules, the elements
of Ext!(L, N) are presented by sets of matrices (with no relations). The
automorphisms of N and L are linear algebraic groups, so we just have
to find orbits of their action. The realization of this idea gave origin to the
theore of matrix problems. Roughly speaking, it is the study of some specific
actions of special algebraic groups on special vector spaces. In what follows
I will try to explain, what do the words ‘specific’ and ‘special’ mean in this
context.

In [38] L. Nazarova and A. Roiter announced that this method was appli-
ed to prove the 2nd Brauer—Thrall conjecture, the details were contained
in their preprint [40]. Unfortunately, it was never published in a journal
paper. So the first such papers with a complete proof of the 2nd Brauer—
Thrall conjecture only appeared in 1985 [1, 7, 25].

2. REPRESENTATIONS OF QUIVERS AND POSETS

The first two papers on matrix problems appeared almost simultaneously.
They were the paper of P. Gabriel [26] and that of L. Nazarova and A. Roiter
[39].



P. Gabriel introduced the notion of representations of quivers. Actually,
a quiver is an oriented graph I', perhaps with multiple edges and loops. We
denote by I'g the set of its vertices, by I'y the set of its arrows and suppose
that both I'g and I'; are finite. We write a : ¢ — j if ¢ is the source and j is
the target of the arrow a.

Osznauvenus 2.1. (1) A representation of the quiver I' over a field k is
a map V' that maps every vertez i to a vector space V(i) over k and
every arrow a : i — j to a linear map V(a) : V(i) = V(j).

(2) A morphism of a representation V to a representation W is a map
@ that maps every vertex i to a linear map @(i) : V(i) = W (i) so
that o(j)V (a) = W(a)p(i) for each arrow a : i — j.

In particular, the representations V and W are isomorphic if and
only if there are isomorphisms of vector spaces (i) : V(i) — W (7)
such that W (a) = o(5)V(a)p(i)~t for every arrow a :i — j.

(8) The dimension dim V' of the representation V is the vector d =

(di)iery, where d; = dim V' (4).

In other words, a representation of quiver is a set of linear maps between
vector spaces, and two representations are isomorphic if one can choose bases
in these spaces in two ways so that the matrices of the first set of operators
with respect to the first choice are the same as the matrices of the second
set of operators with respect to the second choice. Thus it is a rather general
problem of linear algebra and the classification of such representations can
be considered as the problem of finding canonical forms of matrices of such
sets of linear maps. For the simplest quiver ¢ — e it is one linear map
AV — W. For the loop e 3 it is one linear map A : V — V., when
the classification of representations is given by the Jordan or the Frobenius
normal form. For the Kronecker quiver K : e 3 e it is the problem on
matriz pencils solved by Kronecker.

Obviously, one can define the representations type of a quiver in the
same way as for an algebra. In [26] P. Gabriel proved both Brauer—Thrall
conjectures for quivers. Moreover, he gave a criterion for a quiver to be of
finite representation type and described the indecomposable representati-
ons in the finite case. Namely, he considered the quadratic form Qr =

> ier, z? -3 aer; Ti%j, known now as the Tits form of the quiver I, and

a:i—j
proved the following theorem.

Teopema 2.2. (1) A quiver T is of finite representation type if and only
if the form Qr is positive definite, i.e. Qr(z) > 0 for every non-zero
vector x. If not, it is of strictly unbounded representation type.
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(2) In this case there is an indecomposable representation V' of the quiver
I' such that dimV (i) = d if and only if Qr(d) = 1. Moreover, for
such dimensions there is only one, up to isomorphism, indecomposable
representation.

Actually, (2) was obtained from an explicit description of all indecomposable
representations.

Note that the orientation of the arrows play no role in this theorem, since
it does not imply the Tits form. So the answer only depends on the underlyi-
ng non-oriented quiver |I'|. The list of connected non-oriented graphs with
positive definite Tits form had been known for years and was closely related
to the theory of Lie algebras and groups. They are the so called Dynkin
graphs (see Table 1). Moreover, the integral vectors d such that Qr(d) =1
are just the roots corresponding to these graphs, which are also of great
importance in Lie theory.

Tasuniis 2.1. Dynkin graphs

Eg: 1—2—3—4—5

7
|
E;: 1—2—3—4—5—6

8
\
Eg:1—2—3—4—5—6—-7

L. Nazarova and A. Roiter considered another class of matrix problems,
the so called representations of posets (partially ordered sets). We give the
version of their definition proposed by P. Gabriel.

OsnauenHst 2.3. Let G be a finite poset.

(1) A representation of the poset & over the field k is a map V that
maps every element i € & to a subspace V(i) of a vector space V(0)
over k so that V(i) CV(j) ifi <j in &.



(2) A morphism of a representation V' to a representation W is a linear
map ¢ : V(0) = W(0) such that p(V (i)) C W (i) for everyi € &.
In particular, the representations V. and W are isomorphic if and
only if there is an isomorphism of vector spaces ¢ : V(0) — W(0)
such that p(V (i) = W (j) for every element i € &.
(8) The dimension dim V' of the representation V is the vector d =
(do,d;)ics, where d; = dim V' (i).

It is very easy to translate this definition to the original matrix one of [39].
Choose a basis vy, vy, . .., v, of the space V(0) and for every i € & choose a
basis ul, uj, ..., ul, of V(i) modulo > j<i V(j). Let ul, = > i1 a}kvj. Then
V is given by the set of matrices Ay, As,..., As, where A; = (a}k)nXmi.
If we change the basis of V(0), the matrix A; changes to S(0)A4; for an
invertible n x n matrix S(0). A bit more complicated is the change of the
basis ui,ub, . .. ,uﬁni, since we can also add to every u}c the vectors from
V(j) for j < i. Therefore, under such changes A, is transformed to A;S(i) +
> j<i AjSij. Alltogether, two such matrix representations {4;} and {B; } are
isomorphic if and only if there are invertible matrices S(0) (of size n x n)
and S(i) (of size m; x m;) and matrices S;; (of size m; x m;) for j < i such
that B; = S(0)~' (A4:S(i) + 2j<z’S(j)Sij)' It is just the matrix definition
of representations of posets from [39].

The paper [39] was devoted to the proof of the Brauer—Thrall conjecture
for representations of posets.

Teopema 2.4. Every poset is either of finite representation type or of stri-
ctly unbounded representation type.

The proof rested upon an algorithm of reduction. Namely, choosing a
maximal element ¢ € &, they constructed, for every representation V a
new representation V' of a new poset & (derived poset) such that the
correspondence V' +— V' reflected isomorphisms and was one-to-one, except
several “trivial” representations. In particular, representations type of &’
was the same as that of &. Afterwords, they proved that after several steps
the iterated derived poset becomes either trivial or of width 4 (i.e. contaning
4 non-comparable elements).In the first case & is of finite representation
type, in the second case it is of strictly unbounded representation type.

This paper did not contain neither a criterion for a poset to be of finite
representation type nor a description of indecomposable representatioins.
These problems were solved by M. Kleiner [30],[29]. In the first paper he
gave the following criterion.
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Teopema 2.5. A poset & is of finite representation type if and only if it
does not contain subposets of the following forms:

<
T © e
e © o
[ ]

. .

. .

o o e ©e o

Lo N

e o o e ©o o

These posets are called critical and usually named, respectively, {1,1,1,1}, {2,2,2}, {
and {N,4}.

A simpler proof of this result was proposed by A. Roiter in [45].

Note that, contrary to the case of quivers, there is no “good” list of posets
of finite representation type and their number grows rapidly with the growth
of the number of elements.

In the second paper M. Kleiner gave a complete descriprion of indecomposable
representations. It was possible, since, as he proved, there is only a finite
number of posets of finite representation type which have sincere indecompoosable
representations, that is such that all matrices A; are non-empty, i.e. > j<i V(i) #
V(7). As this list is rather big, we do not present it here.

As M. Kleiner remarked (oral communication on a seminar), these results
could also be formulated in terms of some quadratic form. Namely, define
the Tits form of the poset & as Qe = T3+ ;e :L'?—FZJ-Q- TiTj—) e TOTi-

BayBaxkenus 2.6 (Kleiner’s remark). (1) & is of finite representation
type if and only if the form Qg is weakly positive in the sense that
Qs(x) > 0 for any nonzero vector with non-negative coordinates.
(2) If & is of finite representation type, the dimensions d of its indecomnposable
representations are just the roots of this form in the sense that

Qe(d) = 1.

Note that if the Tits form of a quiver is weakly positive, it is positive
definite, but it is not so for the Tits forms of posets.

Theorem 2.5 was further generalized by Yu. Drozd and E. Kubichka
[23]. Namely, they considered representations over infinite fields and di-
mensions of finite type, i.e. such that there is finitely many non-isomorphic
representations of this dimension, and proved the following result. We call
a dimension d critical, if its support {i € & | d; # 0} is a critical set and the
restriction of d onto its support is of one of the dimensions from Table 2.2.



Tabsauis 2.2. Critical dimensions

® Lo
B L L
11 1 1 2 1 1 2 1 1
©®© 1

| ® 1

1 1

5 1 121

L I

3 2 1 2 1 1

Here we write dimensions d; instead of the elements ¢ of &. The encircled
number denotes the dimension of V' (0).

We write d’ < d if d; < d; for all i. Using the approach analogous to [45],
they proved the following result.

Teopema 2.7. (1) The following conditions for a dimension d are equi-
valent:
(a) d is of finite type.
(b) Qs(d’) >0 for any d’ < d.
(c) There is no critical dimension d’ < d.

(2) If d is of finite type, the following conditions are equivalent:

(a) There is an indecomposable representation of dimension d.
(b) Qe(d) = 1.
Moreover, in this case there is a unique (up to isomorphism) indecomposable
representation V' of dimension d and End V' ~ k.

Obviously, this theorem implies the Kleiner’s criterion (Theorem 2.5)
as well as his remark (Remark 2.6). An analogous result for quivers was
obtained by P. Magyar, J. Weyman and A. Zelevinsky [34].

SayBaxkennust 2.8. Note that in all theorems 2.2-2.7 the ground field k
plays no role. The answer does not depend on this field.

3. REFLECTIONS AND COXETER FUNCTORS

The proofs of Theorems 2.2-2.5 rested on some matrix calculations.
Actually, as J. Tits remarked, rather simple geometrical considerations
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show that if a quiver Qr is of finite type, then Qr is positive definite,
as well as if a poset & is of finite type, then Qg is weakly positive. One
only has to compare the dimension of the space of representations of a
prescribed dimension and the dimenion of the group of transformations
that define isomorphisms of representations. Since there was also a one-
to-one correspondence between dimensions of representations and positive
roots of the quiver, one could presume that there must be an a priory way
to establish this correspondence as well as to prove that the positive defini-
teness of the Tits form implies finite representation type. This presumption
was realized by I. Benstein, I. Gelfand and A. Ponomarev [4]. Their idea
was the categorification of reflections, which played an important role in the
study of Lie algebras and Coxeter groups.
Namely, let @ be a quadratic form on R™, B be the corresponding symmetric

bilinear form e € R™ be a vector with Q(e) # 0. The reflection with respect

to e is defined as the linear map se : x — X—ZBCSXS) . This map is isometric:

Q(sex) = Q(x), and involutive: s2 = id. If Q = Qr is the Tits form of a
quiver I and e; (i € I'g) are the basic vectors (the i-th coordinate equals
1, all other coordinates are 0), set s; = Se;. The subgroup W C GL(n,R)
generated by these reflections is called the Weyl group of the quiver. It is
known (and rather easy to prove) that if Qr is positive defiite, every root
is of the form we; for some 7 and some w € W. Moreover, in this case W is
finite, so there are finitely many roots.

I. Benstein, I. Gelfand and A. Ponomarev categorified these reflections.
Namely, if the vertex i is either a source (or a sink) in the quiver I', they
defined the action of s; on representations. Actually, if V' is a representation
of I, s;V is a representation of the quiver s;I' obtained by reversing all
arrows that starts (or ends) at ¢. Moreover, except trivial cases, dim s;V =
s; dim V. Using this categorification, they proved the following theorem.
They used a numeration of the vertices i1, 4o, .. ., %, such that iq is a source,
i9 is a source in s;,I', i3 is a source in s;4,5;, I" etc. The crucial role in their
proof played the Cozeter transformation C = s;, ... Si,Si,.

Teopema 3.1. Let Qr be positive definite. For every indecomposable representati-
on V there is an integer m such that V = s; s, ...5;,€;,.., (here we set
ik+ng = ik). The integer m is uniquely defined by dim V. On the contrary,

all such representations are indecomposable.

Obviously, it implies that I' is of finite representation type and there is
a one-to-one correspondence between indecomposable representations and
positive roots.

The Kleiner’s remark 2.6 gave a hint that something similar could be
done for representations of posets. Indeed, in [14] Yu. Drozd constructed an



10

analogue C of the Coxeter transformation for representations of posets and
proved the following result.

Jlema 3.2. Let Qg is weakly positive. Then every indecomposbale representati-
on is of the form C*U, where either U is not sincere or U = Uy, where

Up(0) =k =Uy(i) for alli € S.

It implies the main theorem.

Teopema 3.3. Let Qg is weakly positive.

(1) & is of finite representation type.

(2) There is an indecomposable representation of dimension d if and
only if Qs(d) = 1. Moreover, in this case there is a unique (up to
isomorphism) indecomposable representation of dimension d.

The weakness of this paper was that the author could not construct all
reflections. Actually, only two operations, o and p, were constructed, where
p could be considered as the reflection sy, while o replaced the product
of all reflections s; (i € &). To improve this defect, in the paper [17] a
generalization of representations of posets was considered.

Oznavenns 3.4. (1) A bisected poset is a poset & together with a
partition & = & U S~ such that if i € &~ and j < i, then also
jEeG.

We set & = S U{0}, where 0 ¢ & is a new symbol.

(2) A representation V' of such a bisected poset consists of vector spaces
V(i) (i € &) and linear maps v(i) (i € &), where v(i) : V(i) — V(0)
ifi € & andv(i): V(0) = V(i) if i € &T, such that V(i)V(j) =0
ifj<i,j€67,i€GT.

(8) A morphism ¢ of a representation V to a representation W is a set
of linear maps (i) : V(i) — W(i) (i € &) and (ij) : V(i) —
W (j), where i < j and eitheri,j € &% ori,j € &=, such that

p(0)o(i = w(i)p(i) + > _w(j)p(ii) ific &,
7<i
w(@)p(0) = p(i)o(i) + ) w(ij)v(j) ifie&™.
1<j
One easily checks that ¢ is an isomorphism if and only if all (i) are so.
3ayBarkeHHd 3.5. (1) If 8" = 0, this definition becomes equivalent
to the usual definition of representations of a poset.

(2) This definition can be naturally formulated in the language of boxes
(see Section 4), as it was done in [17].
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The Tits form for a bisected poset does not depend on the partition,
it is the same form Qg = 28 + Y ;e 27 + Dj<i TiTj — D ice T0Ti- An
element i € & is called positive if either ¢ is minimal in & or ¢ = 0 and
St = (. It is called negative if either i is maximal in &~ or ¢ = 0 and
S~ = 0. In [17] all reflections s; are defined for positive or negative i € &.
Just as before, when doing reflections, the bisposet also changes. Namely,
the positive (respectively, negative) vertex i is displaced from &* to &~
(respectively, from &~ to &T), becoming negative (respectively, positive).
It is proved that, if Qg is weakly positive and V is sincere (that is all
V(i) # 0), then dim s;V = s; dim V and s?V ~ V. It gives the proof of the
following theorem.

Teopema 3.6. G is of finite representation type if and only if Qs is weakly
positive. In this case

(1) Every indecomposable representation is of the form si, Siy ... Si,, W
for some m and some non-sincere indecomposable representation W.

(2) There is an indecomposable representation of dimension d if and
only if Qs(d) = 1. Moreover, such representation is unique up to
isomorphism.

4. BOXES, BIMODULES AND REDUCTION

In [31] A. Roiter and M. Kleiner gave a very general definition that had to
cover most cases of matrix problems known at that time. It was formulated
in terms of differential graded categories. An equivalent, but more easy-to-
use formulation was proposed by A. Roiter in [44] in terms of bozes (or
bocses, ukrainian , from bimodule over a category with coalgebra structure).

OsznavenHs 4.1. (1) A box is quadruple A = (A, V, u,e), where A is
a category, V is an A-bimodule, i.e. an additive bifunctor A°P x A —
Vec (the category of vector spaces), u: V® 4V — V (comultiplication)
and € : V = A (counit) are morphisms of A-bimodules furnishing
V with the structure of A-coalgebra. Recall that it means that the
following diagrams are commutative:

o

v

VoV
p p®id (coassociativity)

V®_AVT®M>V®AV®AV



12

/ﬂl \ (counit axiom)

VosA VOIUVYV—----> ARy V
e®id

id®e

(~ marks the natural isomorphisms).

(2) A representation of the box 2 is an A-module, i.e. a functor M :
A — Vec.

(8) A morphism of a representation M to a representation N is a
morphism of A-modules o : V @4 M — N.

(4) The product ¢ of morphisms ¢ : M — N and ¢ : L — N is the
composition

VO ALY v Vel % v, M N,

We denote by Rep 2 the category of representations of the .

In most applications they use special classes of boxes.

Osnauenns 4.2. Let 2 = (A,V,p,€) be a box. Denote by V the kernel
kere. A section is a morphism of (left) A-modules (usually not of bimodules)
w:A=V. ThenY =Imw ®V as A-module. The box A is called

o free if A is a free category (i.e. isomorpic to the category of parths
of a quiver T') and V is a free A-bimodule, i.e. a direct sum of bi-
modules of the form Ae; A, where e; is the trivial path at a vertex 1.
In other words it means that there are sets of generators Ay of
morphisms of the category A and A of the A-bimodule V such
that there are no nontrivial relations between them. They say that
A =AgUA; is a set of free generators of the box 2.

e normal if there is a section w such that p(w;) = w; @ w; for every
verter i € I', where w; = w(e;).

In this case we set da = aw; — wja for a morphism a : i — j and
Ov = pu(v) — v ®w; —w; ®v, where v € V(i,5). Note that da € V
and Ov €V @4 V.

e triangular or Roiter box if it is free, normal and the set A of free
generators of A can be linear ordered so that, for every a € A, Oa is
contained in the subbox generated by the set {b € A | b < a}. Such
set of generators is called triangular.

SayBaxkennst 4.3. If V = A, the box 2 is called the principal box over the
category A. It is quite obvious that in this case Rep 2l coincides with the
category A-mod of A-modules.
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The category of representations Rep2l of a Roiter box 2 has “usual”
properties of the categories of modules, as was proved in [31]. Namely, for
a morphism ¢ : M — N and an element £ € V(i,j) we denote by ¢(§) :
M(j) — N(i) the map sending = € M(j) to p({ ® x) € N(i).

Teopema 4.4. Let U is a Roiter boxr, M, N € Rep 2.
(1) A morphism ¢ : M — N is an isomorphism if and only if o(w;) is
an isomorphism for every i.
(2) Rep 2 is fully additive (or Karubian, or idenpotent complete), that
1s, for every idempotent endomorphism e of M there are morphisms

Mé M’ such that e = v and mo = idpr.
L

(Then M ~ M'@® M", where M" is the object constructed in the
same way from the idempotent idy; — e.)

A lot of applications of boxes appear through another categorical constructi-
on, namely, bimodule categories, first considered in [12].

OsuauenHst 4.5. Let B be a bimodule over a category A. The bimodule
category El(B) or the category of elements of the bimodule B is defined as
follows.
e Its set of objects is | J;con 4 B(4,1).
o If A € B(i,i),B € B(j,j), a morphism A — B is a morphism
¢ 11— j such that A = By (note that both paths are in B(i,7)).
o The bimodule B is called locally finite dimentional if all spaces
A(i, j) and B(i,j) are finite dimensional.

For instance, such a bimodule category appeared in the Introduction,
where A was the product of the categories of A/I-modules and A/.J-modules,
while B(X,Y) = Extl (X, Y).

Another application of the bimodule categories was proposed by Y. Drozd
in [16]. Let A be a finite dimensional algebra, A-pro be the category of
projective A-modules, A = A-pro x A-pro, B be the A-bimodule such that
B(Q, P) = Homy(Q,rad P), I C EI(B) be the ideal generated by the objects
which are homomorphisms of the form @ — 0 and C : EI(B)/I — A-mod
be the functor that maps a homomorphism « to its cokernel, .

Trepmxenns 4.6. The functor C is an equivalence of the categories EI(B) /T =
A-mod.

Note that the indecomposable objects of EI(B)/I are the same as in B,
except the “trivial” objects ) — 0, where () is an indecomposable projective
A-module.
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IMpukaazn 4.7. Let k be algebraically closed and (rad A)?2 = 0.If P, P, ..., P,
are all pairwise non-isomorphic indecomposable modules, the indecomposable
objects of A are the pairs (P;, Pj) and if a € Endg P is in radical, it acts
trivially on B. Therefore, we can factor out such morphisms. Reduced in this
way, the bimodule category El(B) can be considered as that of representati-
ons of the quiver I" whose vertices are {1,2,...,n,1',2',... n'} and there
are cj; arrows i — 4, where ¢ij = dim Homy (P}, Pj).

This approach was used by P. Gabriel in [26], who deduced from his result
on representations of quivers a criterion for an algebra A with (rad A)? =
0 to be of finite representation type. The same approach was used by
S. Kruglyak [33]|. In fact, he also proved the Gabriel’s Theorem 2.2 for
this specific sort of quivers and obtained the same finiteness criterion for
algebras with (rad 4)2 = 0.

There is a close relation of bimodule categories to representations of
boxes. Namely, in [16] the following result was proved.

Teopema 4.8. Suppose that k is algebraically closed and the bimodule B is
locally finite dimensional. There is a Roiter box L such that the categories
Rep 2l and EI(B) are equivalent.

The box 2l and this equiuvalence were explicitly constructed.

Together with Proposition 4.6, it gives a tool to replace the study of
modules over an algebra A by representations of boxes.

The language of boxes has a powerful advantage. Namely, it allows to
make change of rings easily. Note that if v : A — B is a homomorphism
of rings, every B-module can be considered as A-module, which defines a
functor v* : B-mod — A-mod. Unfortunately, this functor is far from being
full, or faithful, or dense (essentially surjective). On the contrary, on the
level of boxes an analogous change of rings can be done perfectly, as shown
in [16] (see also [18]).

Teopema 4.9. Let A = (A, V, u,e) be a box and F : A — B be a functor.
SetW=B®4V4D8.

(1) There are natural morphisms v : W @ W — W and 0 : W — B
such that AF = (B,W, v, 0) is a box.
Actually, v arises from the map V@4V — V ®4 B®4 V that
maps a ® b to a®1®band 6§ is the composition

mult

BoaVoaB 2L Bo Ao B~Bo,B ™ B,

where mult is the multiplication.



Matrix problems 15

(2) The natural map F* : Rep Y — Rep A gives a fully faithful functor
which establishes an equivalence of the category Rep AY and the full
subcategory of Rep 2 consisting of representations of the form MF,
where M is a B-module.

Often one can choose F' such that every representation of 2 is isomorphic
to such composition. Then F* is an equivalence Rep2Af =5 Rep 2.

Usually, the functor F' is constructed as follows [18]. We choose a “simple”
subcategory A" C A such that the A’-modules can be easily described. It
gives rise to a fucntor F’ : A" — B’ such that every A’-module of some
class C is isomorphic to M'F’ for some B’-module. Then we take for B the
pullback AT 4 B' of A and B’ over A’ and for F' the extension of F” onto
A. In this case the image of F* contains all representations such that their
restrictions onto A’ are form the class C. Note that there is a rather simple
algorithm that calculates the box 2. One can see [18, Sec. 6] for examples
of explicit calculations.

5. TAME AND WILD ALGEBRAS

When studying the algebras of infinite representation type, they found
out that there are two completely different sorts of them. The first paper
where it was remarked was, pehaps, that of S. Krugluak [32]. Namely,
he considered representations of the group P of type (p,p): G = (a,b |
aP = b = 1,ab = ba), for prime p > 2. He noticed that for any n-
tuple of square matrices X1, Xo,..., X, one can construct a representati-
on M(X1,Xs,...,X,) of the group P depending on this tuple so that
M(X1, Xo,..., X)) ~ M(Y1,Ys,...,Y,) if and only if there is an invertible
matrix S such that ¥; = S~1X;S for all i. Thus, to classify all representati-
ons of GG one has to classify all tuples of matrices up to conjugation. Quite
another story is if p = 2, when, for each dimension, there is either finitely
many indecomposable representations or they form a 1-parameter family
[2].

An analogous effect was considered by I. Gelfand and V. Ponimarev [27]
who considered pairs of commuting operators, or, the same, representations
of the polynomial algebra k[z,y]. Again, they constructed representations
M (X1, Xs,...,X,) with the same property as above. On the other hand,
they have classified all pairs (A, B) of mutually annihilating matrices, i.e.
such that AB = BA = 0. In 1972 Yu. Drozd divided all commutative
finitely generated algebras over an algebraically closed field into two types
[13], whose representations behaved just as representations of the (p,p)
group, respectively, for p = 2 and for p > 2.
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In their paper [11] P. Donovan and M. R. Freislich conjectured that all
finite dimensional algebras of infinite representation type can be split into
two classes, which they called tame and wild. Formal definitions of these two
classes were proposed by Yu. Drozd in [15]. We present here a bit changed
but equivalent version of this definition.

Oszuauenns 5.1. An algebra A over an algebraically closed field k is called

e tame if, for every dimention d its indecomposable representations
form a finite set of algebraic families parametrized by an open subset
of the projective line;

(Note that it is is allowed that some of these families are trivial, i.e.
consist of isomorphic representations. Thus representation finite algebras
are also tame according to this definition.)

o wild if for every finitely generated algebra B there is an exact functor
F : B-mod — A-mod such that

— FM ~ FN if and only if M ~ N;
— F'M s indecomposable if and only if so is M.

In the same paper it was proved that neither algebra can be both tame
and wild.

By this time a lot of examples were already known when the “tame-
wild dichotomy” took place. For representations of quivers P. Donovan and
M. R. Freislich [10] and, independently, L. Nazarova [36] proved that a
quiver I' is tame if and only if its underlying graph is a disjoint union of
Euclidean (or extended Dynkin) graphs presented in Table 5.1. Otherwise
I' is wild. Moreover, they gave an explicit description of representations of
Euclidiean quivers. We only present the qualitative part of this description.

Teopema 5.2. Let I' be a Euclidean quiver, Qr be its Tits form and d be
a dimension for its representations.

(1) There is an indecomposable representation of dimension d if and
only if Qr(d) < 1.

(2) If Qr(d) = 1, there is exactly one indecomposable representation of
dimension d (up to isomorphism).

(8) If Qr(d) = 0, there are infinitely many non-isomorphic indecomposable
representations of dimension d that form an algebraic family of such
representations parametrized by the projective line.

Note that every dimension d with Qr(d) = 0 is an integral multiple of
the smallest one. The coordinates of such smallest dimensions are also given
in Table 5.1.
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Tasauiia 5.1. Euclidean graphs

IS
—N—

1—2—3—2—-1

2
|
E,:1—2—3—4—3—2—1

3
\
Eg:2—4—6—5—4—3—2—1

In [37] L. Nazarova proved that a poset & is tame if and only if it does
not contain supercritical subsets listed in Table 5.2. Otherwise & is wild.

TabauLs 5.2. Supercritical posets

e—0o—-0—0o
oe—0o—-—0—-90—-90—0
°e—o
7
°e—o

These posets are called, respectively,
(1,1,1,1,1), (1,1,1,2), (2,2,3), (1,3,4), (1,2,6) and (N, 5).
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Finally, in [16] Yu. Drozd proved the result known now as “tame-wild
dichotomy”.

Teopema 5.3. Every Roiter box, as well as every finite dimensional algebra
over an algenraically closed field is either tame or wild.

The proof for boxes was based on the reduction procedure described in
Theorem 4.9. Using this procedure it turned necessary to consider a bit bi-
gger class of boxes obtained from Roiter boxes by a localization with respect
to a polynomial f(a), where a € Ay was a loop such that da = 0. Then
this result was extended to finite dimensional algebras using Proposition 4.6
and Theorem 4.8.

The same approach was used by V. Bekkert and Yu. Drozd [3, 19] to prove
that tame-wild dichotomy also holds true for derived categories of modules
over finite dimensional algebras. Another important result was obtained by
Yu. Drozd and S. Ovsienko [24] who proved that tameness is preserved
in Galois coverings with torsion free Galois groups. Note that coverings
introduced by K. Bongartz and P. Gabriel [8] are now a powerful tool in
the representation theory of algebras and in the study of matrix problems.
Again, in these papers they had to widen the considered class of boxes.

Perhaps, the first paper, where the “tame-wild dichotomy” was effecti-
vely used, was that of V. Bondarenko and Yu. Drozd [6] devoted to the
representation type of finite groups. Let G a finite group and k be a field of
characteristic p > 0. By that time it had been known that the group algebra
kG is representation finite if and only if the Sylov p-subgroup of G is cyclic.
The result of Kruglyak [32] cited above had shown that, if p > 2, all other
group algebras are wild. If p = 2, V. Bondarenko [5] and C. Ringel [41]
described the representations of dihedral groups and actually showed that
they are tame. It was also known that there were at most two more classes
of 2-groups that are not wild. They were quasi-dihedral and generalized
quaternion groups. In [6] the representations of quasi-dihedral groups were
classified. From the tame-wild dichotomy it followed that any subgroup of a
tame group is tame and if the Sylov p-subgroup is tame, so is the group G.
Since generalized quatrenion groups are subgroups of quasi-dihedral ones,
the following result was proved.

Teopema 5.4. The group algebra kG is tame if and only if either the Sylov
subgroup G, of G is cyclic or p = 2 and G, is dihedral, quasi-dihedral or
generalized quaternion. In all other cases kG s wild.
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6. INVOLUTION

Papers [43] and [48] initiated the study of matrix problems with involuti-
on. Namely, in [43] A. Roiter introduced the general notion of bozes wi-
th involution and proved an important result, which was a far-reaching
generalization of [35, §23.2, Thm. 3].

Teopema 6.1. Let A be a box with involution over an algebraically closed
field k of characteristic # 2, M, N be its self-adjoint representations in the
inwvolutive category of vector spaces with the standard involution V — V* =
Homy (V. k). If M ~ N in the category Rep %, they are conguent, i.e. there
is an isomorphism ¢ : M = N such that ¢~ = ¢*.

In [48] this approach was applied to simple involutive quivers, i.e. such
quivers with involution * that a # a* for any vertex a. The simplest example
of such a quiver is

22 1"=2 o =8 (6.1)

A self-adjont representation of this quiver is actually given by a linear map
V — V* or, the same, by a bilinear form in the space V. The Roiter’s
theorem 6.1 shows that to classify such forms one has to classify self-adjoint
representations of the Kronecker quiver (6.1). Just in the same way, self-
adjoint representations of a simple involutive quiver can be identified with
systems of linear maps and bilinear forms. In [48] V. Sergeichuk defined the
scheme of a simple involutive quiver I' as the (non-oriented) graph whose
vertices are in one-to-one correspondence with the pairs a, a* of vertices of
I' and the edges between a,a* and b,b* are in one-to-one correspondence
with the arrows a — b, a — b*, a* — b and a* — b*'. For instance, the
scheme of the involutive quiver (6.1) is just a loop e 3
In [48] V. Sergeichuk proved the following criterion.

Teopema 6.2. With respect to the classification of self-adjoint representati-
ons a simple involutive quiver with the scheme B is

e representation finite if and only if B is Dynkin;

e tame if and only if B is Fuclidean;

o wild otherunse.

In the paper [47] V. Sergeichuk developed a general theory of representati-
ons of categories with involution. Namely, let k be a field with involution
A — A (maybe, trivial). An involution * on a k-linear category C maps

L Actually, the definition in [48] was a bit different but equivalent to this one.
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objects to objects, morphisms to morphisms so that a** = a, (af)* = f*a*,
(a+ B)* = a* + B* and (\a)* = Aa* for A € k. For a vector space V over
k denote by V* the space of semilinear maps V' — k and by ¢* : W* — V*
the adjoint map for the linear map ¢ : V. — W. If FF : C — Vecy, is
a representation of C over k, the adjoint representation F* is such that
F*(a) = F(a*)* for any object or morphism a.

Suppose that the involution * is simple, i.e. a % a* for every object a.
Then there is a bisection ObC = Obg U Ob; such that if b ~ a* the objects
a and b are in different parts of this bisection. The following procedure
was proposed in [47] for the description of self-adjoint representations of
C. Let indgC be a full set of representatives of isomorphism classes of
indecomposable self-adjoint representations (i.e. such that F* = F) and
ind; C be a full set of representatives of isomorphism classes of indecomposable
representations which are not isomorphic to any self-adjoint one. For any
representation F' € ind; C define the self-adoint representation F'* as follows.

e If a € Obyg, then F™(a) = F(a) ® F*(a); if a € Oby, then F*(a) =
F*(a) ® F(a).
e If «:a — b, then the matrix presentation of F'*(a) with respect to
the preceding decompositions of F*(a) and F*(a) is
— (" gl ) if asb € Oby;

0 F*(a)
F*(« 0 .
—( O()Fa)>1fa,b60b1;
0 F*(a)

(
- (F(a) Fra ) if a € Obg, b € Oby:
~ (5l §7) if a € Oy, b€ OBy,
Obviously, ™ ~ F @ F*, but the latter representation is not self-adjoint.
Let now F € indoC, A(F) = End F' and A(F) = A(F)/rad A(F'). Note
that A(F) is an algebra with involution * and A(F) is a skewfield with the
induced involution, which we denote by ~. If ¢ € A(F) is invertible and
¢ = ¢*, set ¢(a) = 1p(q) for a € Obg, ¢(a) = ¢(a) for a € Oby and define
the representation F'® as follows.
o [(a) = F(a) for any object a.
e [%(a) = ¢(b)"'F(a)p(a) for a:a — b.
One easily sees that ¢ is an isomorphism A? =5 A (though not a congruence).
For a self-adjoint element £ # 0 of the skewfield A(F') choose a self-adjoint
preimage ¢ € A(F) and set F¢ = F?. For a vector € = (&1,&a,...,&m) €
A(F)™ with invertible components set F¢ = @ | F& and Q¢ = Y 1", #:&;;
(it is a Hermitian form over the skewfield A(F)).
The following theorem (see [47, Thm 1]) gives a complete description of
self-adjoint representations.
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Teopema 6.3. Let k be a field of characteristic # 2, C be a k-category with
a simple involution. Every self-adjoint representation of C is congruent to a
direct sum

FfeFe. eF eF eF,e.. 0F"

where F; € ind1C for 1 < ¢ < k and F; € indgC for k < i < n. This
decomposition is unique up to permutation of summands and replacing F,fjrl

by F,f_lH such that the Hermitian forms Qg, and Qgg are equivalent over the
skewfield A(Fyyq).

This description becomes simpler if one knows the classification of hermi-
tian forms, for instance, if k = C (either with trivial or with non-trivial
involution), or R, or a finite field (see [47, Thm. 2]).

Applying this theorem to the representations of simple involutive quivers,
one obtains classification results for a lot of problems of linear algebra such
as classification of bilinear forms, some sorts of operators in spaces with
bilinear metric etc. See, for instance, the book 46| for some results of this
sort.
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