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1. CATEGORIES

If not specified another, all categories are supposed preadditive and
all functors additive. Recall that an additive category .« is said to
be fully additive (or Karoubian) if all idempotents in o/ split, i.e.
if e € @/(A, A) is an idempotent, there are morphisms 7 : A — B
and ¢ : B — A such that e = ¢w and ¢ = 1. Since 1 — ¢ is also
an idempotent, there are also 7’ : A — B’ and / : B’ — A such that
1—e =/7n"and 7't/ = 15. Therefore, A ~ B® B’. One can easy embed
any preadditive category &7 into a fully additive category .&7% called
the fully additive hull of <7, such that every object in .&7“ is isomorphic
to a direct summand of a direct sum of objects from 7. This category
can be constructed as the category of matriz idempotetnts. Below we
will give another description of &%,

A category 7 is said to be local, if every object A € &/ decomposes
as A ~ A @ Ay @ ... ® A, where all rings o/ (A;, A;) are local. It
is well-known [1, Theorem 1.3.6] that a local category is fully additive
and Krull-Schmidt. It means that if A ~ A, Ay @ ... D A, ~
Al @ Ay D ... @ A, where all A; and A’ are indecomposable, then
n =m and A; >~ Aj up to a renumeration of A’’s.

Let k be a commutative ring. We say that a category &7 is a k-
category if all groups o/ (A, B) are actually k-modules and the mul-
tiplication of morphisms is k-bilinear. A k-category .o/ is said to be

locally finite over k, or k-lof if all k-modules </ (A, B) are finitely
1
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generated. If the ring k is noetherian, local and complete while o is a
fully additive k-lof, then & is local. We will mainly consider the case
when k is a field and &7 is a k-lof.

A (left) module over a category <f, or an &/-module, is an module
(additive) functor M : &/ — Ab, the category of abellian groups. If
x € M(A) and o : A — B, we write ax instead of M(«a)z € M(B).
Analogously, we call a functor N : &7°P a right o/ -module and write y3
instead of N(f)y € N(B) for y € N(A) and g € &/(B, A). If M is an
o/-module and &7“ is the fully additive hull of <7, one can extend M
to an @/“-module (uniquely up to isomorphism), which we denote by
the same letter M. We denote the category of &7-modules by .o7-Mod.
For any subset S C (J, M(A) we denote by S(A) the intersection
SN M(A). A set of generators of an «/-module M is, by definition,
a subset G C |J, M(A) such that every element x € M(B) can be
presented as a sum ) . € Ga,g, where o, : A — B if g € G(A)
and almost all ay = 0. If one can choose a finite set of generators, the
module M is said to be finitely generated. We denote by .o/-mod the
category of finiktely generated .o/-modules. Both categories .o/-Mod
and o/-mod are abelian, where kernels and cokernels of a morphism
f: M — M’ are defined “componentwise,” i.e. (ker f)(A) = ker f(A)
and (Coker f)(A) = Coker f(A). In particular, a sequence

is exact if and only if so are all sequences
e My1(A) = Mi(A) = My (A) — .

where A runs through objects of o7

For every object A € &/ we denote by &/ the representable (left).< -
module <7 (A, _) and by 74 the representable right </ -module </ (_ , A).
Obviously, these modules are finitely generated: the set of generators
consists of a unique element 1 4. The well-known Yoneda Lemma claims
that mapping A to @74 we get a full embedding &/ — .&7°P-mod. More-
over, 2/, are projective in the category «7-Mod (or «7-mod) and every
projective module from .o7-mod is isimorphic to a direct summand of
a direct sum of representable modules. Therefore, one can identify the
fully additive hull &7“ with the category .o7°P-proj of finitely generated
projective right .o/-modules.

Given a left o/-module M and a right o/-module N, we define their
tensor product N ®., M as the factorgroup of @, N(A) ® M(A) by
the subgroup generated by all differences za ® y — ¢ ® ay, where z €
N(B), y € M(A), a: A — B. This operation has usual properties of
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tensor product of modules over a ring (and coincide with the latter if
</ only contains one object, so is actually a ring).

An o7-%B-bimodule is, by definition a biadditive functor V : &7°P x
P — Ab. If v € V(A, B), we often write v : A --» B, and we write
avfs instead of V(a, B)v € V(A', B'), where a: A’ - B, §: B — B'.
It matches the usual rule for “multiplication of arrows,” since we have
the sequence of arrows

A—oa-v.p_Pop

We only have to remember that there is at most one dashed arrow in
any product and if there is one, the whole product is also dashed. If
o = A, we speak about &7 -bimodules. Again, any .o7-%-bimodule V'
can be extended to an &7“-%“-bimodule, uniquely up to isomorphism,
and we denote this extended bimodule by V' too. Obviously, if <7 is
a k-category, every left (right) «7-module can be considered as k-7-
bimodule (respectively, as «7-k-bimodule).

Given an @7-%-bimodule V and a #-%-bimodule U, one can define
their tensor product U @4 V', which is an o/-%-bimodule, setting

Uz V)AC)=U(,C)osV(A,_-).

Again, this operation has usual properties of tensor product of bimod-
ules over rings, including the adjointness formula:

Homy-¢(U ®5 V,W) ~ Homg-« (U, Hom,, (V, W)),

where U,V are as above, W is an &7/-%-bimodule and Hom,, (V, W) is
the #-%-bimodule such that

Hom,, (V, W)(B, C) = Hom,,(V(_, B), W(_,C)).

Let o/ be a k-categfory. We define the principle o7 -bimodule </ as
o/ B R Ay, i.e.

X, Y) = (B,Y) @ (X, A).

The element 15 ® 1,4 is a generator of this bimodule. Direct sums of
principle bimodules are called free bimodules. They are projective in
the category of o7-%-bimodules and every finitely generated projective
is a direct summand of a free bimodule.

Let F : &/ — % be a functor and V be a %-%-bimodule (or a
€-%-bimodule). One can consider the .27-%-bimodule V¥ such that
VE(A,C) =V (FA,C) (respectively, the €-o/-bimodule 'V such that
FV(C,A) =V(C,FA)). If V is a $B-bimodule, we also can define the
o7 -bimodule V¥, Especially, we can define the &7-%-bimodule %' as
well as the #-.7-bimodule % and the .«7-bimodule ¥ %% . Moreover,
one easily sees that VI ~ V @4 87 ~ Homg(F%,V) and F'V ~
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V @ P ~ Homyg(PBY, V). Sometimes we omit the superscript £,
when it implies no ambiguity.

Let T" be a quiver (an oriented graph) and k be a commutative
ring. We define the path category kI as the k-category with the set of
objects VerI' (the set of vertices of I') and such that kI'(z, y) is the free
k-module with the basis consisting of all paths from x to y in the quiver
[. If x = y, wew also count the empty path from z to z (containing no
arrows), which we denote by 1,. The product ab of paths a : z — y and
b: z — x is just their concatenation; especially al, = a and 1,b = b.
This definition gives the multiplication of morphisms from kI'" by k-
linearity. We often call kI' the free k-category generated by the quiver
I.

In what follows, we often consider biquivers. A biquiver I' consists
of the set of vertices VerI" and for each pair (x,y) of vertices two sets
Lo(z,y) and I'y (z,y). We call elements of I'y(z, y) the solid arrows from
x toy and the elements of T'y(x, y) the dashed arrows from x to y. We
also denote by I'y the usual quiver with the set of vertices VerI' and
with ['g(z,y) as the set of arrows from x to y (the solid part of T'). For
every path p in I' we define its degree degp as the number of dashed
arrows in p. Now we consider the free k-category kl'g and define the
k[g-bimodule kI'; taking for (kI'y)(z,y) the set of all paths of degree
1 from x to y. This bimodule is generated by the dashed arrows from
['1, and one easily sees that

kI~ @ (kDo)

aely
Q:r--»y

(just map the arrow a: x --» y to 1, ® 1,). So every biquiver defines
a free k-category and a free bimodule over this category.

2. BOXES, REPRESENTATIONS AND CHANGE OF RINGS

Definition 2.1. (1) A boz is a quadruple A = (&7, 7, u,€), where
e o/ is a category;
e 7 is an o/-bimodule;
o YV -V Ry Vande: ¥V — o
are homomorphisms of .7-bimodules such that the diagrams

v SN YV Ry V

| [ v

VQuV —— VQuV QuV,
H®ly
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as well as
VY L Vo,V v L ve,v
I T
7/77/@%% 7/7527&%“//

are commutative, where id, and id; are natural identifications,
mapping v, respectively, to v ® 1 and to 1 ® v.

In other words, p and € establish an o7-coalgebra structure
on the bimodule 7.

We often write 2 = (27, ) not mentioning p and e.
A morphism of boxes A = (A, V , u,e) - A = (A", V' 1, €)
is a pair F' = (Fy, Fy), where Fy : &/ — &/’ is a functor and F} :
v - Pyl s a homomorphism of .&7-bimodules compatable
with comultiplication and counit, i.e. such that the diagrams

v L Ve,V Y — o
F l l FIQF and Fi l l Fo
“//’T>”//’®M”f/’ 7/’7>£7’

are commutative.

We usually omit indices and write F' instead of Fy and F; when it is
not ambiguous. The kernel of the homomorphism ¢ is called the kernel
of the boz.

Y=o c=1yand pu: o — o R, is the natural isomorphim,
the box A = (&7, o7) is called principal.

Definition 2.2. Given a box 2, we define the category of A-modules
2A-Mod as follows:

e Objects of A-Mod are .o/-modules.
e The set of morphisms Homgy (M, N) is defined as

Hom,, (¥ ®,, M, N).

e The product gf of morphisms f € Homg(M, N) and g € Homgy (N, L),

i.e. @/-homomorphisms f: V®,M — Nandg: YV ®,N — L,
is defined as the composition g(1 ® f)(u® 1):

V@{%ML@)“//@M“//@VQ{M%“//@Q{NAL.

e The identity morphism 1y € Homgy(M, M) is defined as the

composition id; ' (¢ ® 1):

c id !
V@, MEh o @, M2 M.
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We must check that this product is associative and 1,; is indeed an
identity morphism, i.e. fly; = f and 1;;f" = f’ whenever these prod-
ucts are defined. Let h € Homg(L, K), i.e. h is an «/-homomorphism
Y Qo L — K. Then h(gf) is the composition

YV Ry M — Hel 7/®M7/®¢M—1§%7/®ML£>K,
that is, the composition

v @, MYES v o, v 22

Oy, Yo, NS yve, LN K

7/®Q¢7/®g7/®ﬂM—>

while (hg) f is the composition

VYo, M5 ve,ve, M2 ve, N K,

that is, the composition

VYo, M S ve,veo, M ve, N
Hel — VYV Ry V Qy N — 19 7/®ML£>K.

Note that in the composition

”//®;y7/®WM "f/@&{N V@%V@MN

both g in p®1 and 1 in 1® f act on the first multiplier #". Therefore,
it is the same as the composition

VYV Ry V Qpy M —— ne1el VRQu YV QyV Qy N —— 118/ YV Ry V Qy N
After this identification, the product (hg)f becomes the composition

V@, ML v o, v 0, M2, V@w"ﬁ@gﬂ/mM%
) "//®Q{7/®;yN 7/®@¢L—>K

Since p(p®1) = p(1®@p), hence (L@ 1)(R1®1) = (L 1)(1QLR1),
this composition equals that for h(gf) above. Just in the same way
(even easier) one verifies that f1,; = f and 15f" = f’ whenever these
products are defined. We leave it to the reader. Thus 2A-Mod is indeed
a category.

There is a natural functor @/-Mod — 2-Mod which is identity on
objects and maps an .&/-homomorphism « : M — N to the compositon

7/®Q¢M5—®1—)£f®ﬂM—>M——>N
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In particular, every diagram of direct sum in @/-Mod gives rise to a
diagram of direct sum in 2-Mod, so the latter category is always addi-
tive. Further we shall show some conditions for it being fully additive
(it is not always the case).

Note that if 2 = («7,.<) is a principal box, the category 2A-Mod
coincide with «/-Mod. So we can (and will) identify such a principal
box with the category 7.

If F:2A — B is a morphism of boxes, where 2 = (&, %) and
B = (A,%), it induces a functor F* : B-Mod — A-Mod which maps
a $B-module M to o/-module MY = @4 M ~ Homyk(%, M) and a
morphism f € Homg(M, N), i.e. a homomorphism f:# ®4 M — N

to the morphism F*f € Homg(M%, N') given by the composition

V&s M LELLNG 7 14 Rz M i> N. In other words, F* f maps an element

vRr €YV ®yMto f(Fv@x) € N.

We consider a special case of morphisms of boxes arising in “change
of rings.” Let A = (&7,7%) be a box and F : &/ — A is a functor.
We define a new box A = (B, B 2., V @., B) with comultiplication
given as the composition

%@{d%@{d%%%@%%@d%@{d:@—)
1®ins®1

BRyV Ry B Ry V Ry B~
~(BRy YV Ry B) Rz (B Ry V Ry B),

where ins : ¥V Qu V — V Qpy B Ry VY maps u Qv to u ® 1 ® v.
Then the pair (F, F}), where Fi(v) =1 ® v ® 1, becomes a morphism
2A — AP, We denote it by the same label F'. Now we get the following
“change-of-ring theorem.”

Theorem 2.3. For any functor F : A — B the morphism of boxes
F A — AY induces a fully faithful functor F* : A¥-Mod — 2A-Mod.
Its image consists of all modules M : o/ — Ab that factor through F'.

The proof is quite evident, since, for any two -modules M, N

Homy(B Q. V @ B 25 M, N) ~ Homy, (¥ @, M* Hom, (%, N))

~ Hom /(¥ ®., M*, N).
O
Note that even if 2 = (&7, .o/) is a principal box, the induced box
A = (B, B 2., B) is, as a rule, non-principal.

We usually use Theorem 2.3 in connection to the pushout construc-
tion. Let 2 = (&7, %), & be a subcategory of &/ and F' : &' — %'
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be a functor. We consider the pushout diagram of categories
o emb of

B — B,

where emb is the embedding of .27’. It gives the induced box 2 and the
fully faithful functor F* : A"-Mod — 2A-Mod. Obviously, the image of
F™ consists of all .@/-modules M : .o/ — Ab such that the restriction
M|af' : &/ — Ab factors through F”.

3. FREE BOXES AND DIFFERENTIAL BIQUIVERS

The most used class of boxes are the so called free normal boxes. We
fix a commutative ring k and consider k-categories. All functors are
then supposed k-linear (bifunctors are k-bilinear).

Definition 3.1. Let A = (&7, 7, u, €) be a box.

(1) The box 2 is said to be free (over k) if &7 is a free k-category
and the kernel ¥ = kere is a free .«7-bimodule.

(2) A section w of the box 2 is a set of elements {wa € ¥ (A, A) },
where A runs through the objects of &7, such that e(ws) = 14
for every object A.

(3) A section w is said to be normal (or group-like) if p(wa) =
wa ® wy for every A.

(4) A box is said to be normal if it has a normal section.

As we have seen in Section 1, the pair (&7, ¥), where < is a free
category and 7 is a free o/-bimodule can be given by a biquiver T
Then &7 = kI'y and ¥ = KkI';. If 2 is a free box with a section w, a set
of generators of the bimodule ¥ consists of the elements w, and free
generators of 7, i.e. the arrows from I';. Moreover, since ¥ /¥ ~ o,
to know the whole bimodule structure on ¥ we only have to know
the differences da = aws — wpa for every arrow a € I'g(A, B). This
difference belongs to 7 (A, B), since £(da) = aly — 1pa = 0. So we
get amap 0 : .o/ — ¥ . One easily check that it it is a derivation, i.e.
satisfies the Leibniz rule d(ab) = (0a)b + a(0b).

Note that every element from ¥'(A, B) can be presented as a sum
aws + v; as well as a sum wpa + vy, where @ = £(v) and vy, vy €
¥ (A, B). Therefore, every element w € #®2(A, B) can be presented
as

W=wp®aws + Vs ®ws +wp ® vy + W,
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where a : A — B, v,v0 : A --» B and w € ¥®2. Suppose that
w = pu(v), where v € ¥, and apply € ® 1. Since (e ® 1)u = 1y, we get
awsq +v; =v,s0 a =0 and v; = v. Applying 1 ® €, we get vy = v,
therefore

) =v®wy +wpv + dv, where v € ¥
where Ov € ¥®2. If b: B — C, then

A(bv) = p(bv) —bv @ wy — we ® bu =
=bu(v) —bv @ws —bwp @V + @ v =
=b(0v) + b @ v,

taking into account that web = bwgb + 0b. Analogously, if a : C' — A,
we also get

d(va) = (Ov)a — v ® da.

All these rules can be formulated as the graded Leibniz rule

(1) 0(af) = (0a)B + (=1)**a(0P),

where a and 3 can be either both from &7 or one from 7 and the other
from 7', and we omit the sign ® between the elements from 7". Now
we define a map 0 : ¥®? — ¥®3 using the graded Leibniz rule (1) as
the definition. Thus we set, forv: A --+» C and u: C --+ B,
u®v)=0u®v—u® v =

= (u(u) —u®we —wp @ u) @v—

—u® (uv) —v@ws —we ®v) =
=) —(1u)(u®v)+uRVRws —wp QU V.

Therefore, for every w € ¥ ®?(A, B), we have
O(w) = (p@1)(w) = (1@ p)(w) +wws —wp @ w.

Proposition 3.2. If the section w is normal, then 0?a = 0 for every
element « € & ora € V.

Proof. Let « : A — B, so 0a=a®wy —wp ® a. Then

O*a = p(da) — da @ wy — wp ® da =
= owg @®wWga —wWp QW —awg Q wa+

+ wpa ®@wy —wp ®aws + wp @ wa = 0.
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Ifa:A--+B,soda=pla) —a®ws —wp @ a, then
O’a = (p®1)(0a) — (1® p)(0a) + da @ wa — wp @ o =
=(p@Du(a) — pla) ®ws —wp @wp @ a—
— (1® p)a(a) + 0 ® wa ® wa — wp © ()
+ () Qwa —a @ wa AW —wWp D@ wy—
—wp®ua)+wp®aRwas+wp@w,®a =0,
since (p® 1)p = (1® p)p. O

Thus, to define the bimodule structure and the coalgebra structure
on a free box kI', we have to define da for every arrow of I', both solid
and dashed. Then the value of 9 on every path can be obtained usinig
Leibniz rule. Moreover, to verify that 9> = 0, one only has to check it
for every arrow. Indeed, since 0 increases deg« by 1, we have

9*(af) = 9((0) B + (=1)*a(9B)) =
= (9%a)f + (=1)* = (9a) (9B)+
+ (=1 (9a)(98) + (=1)*5°(0°8) = 0
as soon as 0%a = 9% = 0.

Definition 3.3. A pair (I',0), where I' is a bigraph and 0 is map
sending every arrow a € I'(7,7) to a k-linear combination of paths
from i to j of degree dega + 1 such that, calculated by the graded
Leibniz rule, 8%a = 0 for every arrow a, is called a differential bigraph
(over the ring k).

Thus, we have one-to-one correspondence between free normal boxes
and differential bigraphs over k.

Given a differential biquiver (I", 9), we calculate the category of mod-
ules 2A-Mod of the corresponding box 2 as follows. Its objects are the
representation of the solid part 'y of the biquiver. In other words, such
an object M consists of k-modules M (i), where ¢ runs through Ver I’
and of k-linear maps M (a) : M (i) — M(j) given for every solid arrow
a: 17— j. To define a morphism M — N, i.e. an .@/-homomorphism
Y ®, M — N, we need some observations. Since ¥ = @ aer, &Y

a:T--»Y z7
there is an exact sequence
0 P & =7 5o -0,

acl
Q:i--+J

and there is a (right) section w, : &/ — ¥ mapping a : i — j to wja.
Note that w; is not a bimodule homomorphism: it only respects the
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right multiplication by morphisms from 7. Since o/ = &/7 @ 7, and
o @ M ~ M(i), there is an exact sequence of left o7-modules

0— @szﬂ@)k M@G) =V @, M =2 M — 0.

a€el’
aii-—»J

It also has a section w, ®1: M — ¥ ®, M mapping z € M (i) to w; ®z.
This section is also not an .@7-homomophism; it only respects multipli-
cation by elements from k. Therefore, to define an .o7-homomorphism
f: 7V ®y M — N, we havce to prescribe the values f(a ® x) and
f(w; ® x), which we denote, respectively, by f(a)x and f(w;)z. So, we
get k-homomorphisms f(om;) : M (i) — N(i) for every i € VerI' and
f(a) : M(i) — N(j) for every a: i --+ j. On the other hand, suppose
given such homomorphisms f(w;) and f(«). In order that they define
an o/-homomorphism, they must be compatable with the multiplica-
tion by arrows from I'g. Since « is a free generator of szji, it just gives
a definiton of f(paq) for any solid paths p : j — k and ¢ : | — 1.
Namely, f(pagq) = N(p)f(a)M(q). For f(w;) it gives, for each solid
arrow a : 1 — 7,
N(a)f(wi)z = f(aw;)x = f(wia + da)r = f(w;)M(a) + f(0a)z,

l.e.
(2) N(a)f(wi) = fw;)M(a) + f(Oa).
Note that, since da € ¥ (i, 7), we have already calculated it above.

The equation (2) shows the difference between morphisms in «7-Mod
and 2(-Mdd. It consists in the extra term f(da).

Now we calculate the rule of composition. Let f : 7 ®y — N and

g:V®yL — M are given by the sets { f(w;), f(«) } and { g(w;), g(a) }.
Then

(fo)wir)=f1og)(pel)(w®r)=
= f1®g)(wi®w; @) = f(w; ®g(wi)r) = flwi)g(wi)z,
(f9)(ws) = f(wi)g(wi).

Let o : i --» j with Oa = ) p, ® ¢,, where p,, g, are paths of degree
1. Then

(fo)la@z)=fleg)(ptel)(a®r)=
=fgR1)(w;Ra@r+aR@w@x+ (0a) @) =
= fwj ®@g(a)r +a®@g(w)r + 3, pr @ g(g:)x) =
= f(wj)g(a)z + fla)g(wi)z + >, f(pr)g(ar),
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Slo)
(f9)(@) = flwi)g(@) + fla)g(wi) + (f * 9)(0a),

where (f * g)(u ®v) = f(u)g(v). Note that if f is an isomorphism, all

f(w;) are also isomorphism. The comverse is not true in general case,

as we shall see below.

Example 3.4. Consider the differential bigraph

1
/ \ da =0, Ob= ta, O = 0.

Let 2 be the corresponding free normal box. An .o/-module M is given
by a diagram of k-modules

M@2) & prn) M9 ar(3).
If N is another module, an A-morphism f : M — N is given by a
diagram

N(1)
NG

where we set f; = f(w;), X = f(£). Since da = 0, the left square
of this diagram should be commutative: N(a)f; = fg (a), but since
0b = &a, the right square is not. It is “commutative up to 0b,” i.e.

N()f1 = fsM(b)+ X M(a) (note that f(0b) = f({a) = XM(a)). The
product fg of morphisms is given by the rules:
(f9)i = figi,
(f9)(€) = fs9(&) + f(§)ge
Example 3.5. Let the differential bigraph I" be

« (12 e Da=ga, 96 =€

Then a representation of 2 is a k-module M with a fixed endomor-
phism A. A morphism f : (M,A) — (N,B) is a pair (f, X) of k-
homomorphisms M — N such that Bf = fA 4+ XA. Consider the
case M = k, A = 0. Then the pair e = (0,1)) is an endomor-
phism of this module. Moreover the product (f, X)(g,Y) is the pair
(fg,fY + Xg+ XY), so €2 = e and ¢ is a nontrivial idempotent. It
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cannot split. Indeed, if e = (f, X)(g,Y) and (g, X)(f,Y) = 1(n,p) for
some N, then gf = 15 and fg = 0, which is imposiible. Therefore, the
category 2A-Mod is not fully additive.

Consider now the representation N given by the pair (k,1). Then
the pair (1,—1) defines a morphism f : N — M. But the product
(1,—1)(g,Y) is given by the pair (g, —g), which never equals the pair
(1,0), which defines the identity morphism. Therefore, f is not an
isomorphism, though f(w;) is invertible.

Example 3.6 (Repsesentations of posets). Let S be a poset (partially
ordered set), o be a new symbol, not belonging to S. We consider the
differential bigraph S with the set of vertices S U {0}, solid arrows
a; : 1 — o for every element ¢ € S, dashed arrows «;; : j --+ ¢ for each
pair of elements 7,5 € S, ¢ < j and the derivation 0 defined by the

rules:
daj = Z @i%ij
i<j
ij = — Z VikVkj>
i<k<j

We denote by 24(S) the corresponding free normal box. Then a repre-
sentation M of 2 is a diagram of k-modules

M(o) ,
s
M) M) M(k)

where the indices in the lower row are the elements of S and M; =
M(a;). A morphism f from M to another representation N is a set
of homomorphisms (f,, fi,¢;;), where i,j € S, i < j, f, : M(o) —
N(o), fi : M(i) = N(i), g;j : M(j) — N(7) such that

N]f] = foMj + ZNZ‘QZ] for every ] eSs.
i<j
Ifaset (f;, fi, gi;) defines another morphism f’, the product f " is given
by the set (fofg, fifis hij), where hij = figl; + gij f; — D icej 9ikGiy-

If k is a field and all vector spaces M (i) are finite dimensional, we
can rewrite it using matrices. Then a representation is given by a set of
matrices { M (i) | ¢ € S} having the same number of rows. Two such
representations are equivalent if they can be transformed to each other
by the following operations:
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e Elementary transformations of rows common to all matrices
e Elementary transformations of columns inside each matrix M (7).
e Adding multiples of columns of M (i) to those of M (j) for each
pair ¢ < j.
It is just the original definition of Nazarova—Roiter [5].
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