MATH 4576 Rings and Fields
Additional exercises 4
(1) Construct a radical extension of \mathbb{Q} containing a splitting field of the polynomial $x^{4}+4 x^{2}-6$.
(2) Find the Galois group of the polynomial $x^{4}+3 x^{2}-10$.
(3) Let $\varepsilon \in \mathbb{C}$ be such that $\varepsilon^{5}=1, \varepsilon \neq 1$. Prove that $\mathbb{Q}(\varepsilon)$ is a normal extension of \mathbb{Q} and its Galois group G is cyclic with 4 elements.

Hint: ε is a root of the irreducible polynomial $p(x)=\frac{x^{5}-1}{x-1}$. Verify that the other roots of $p(x)$ are $\varepsilon^{k}(2 \leq k \leq 4)$. Deduce that there is an element $\sigma \in$ G such that $\sigma(\varepsilon)=\varepsilon^{2}$. What is $\operatorname{ord}(\sigma)$? Compare with \#(G).
(The same assertion is true if we replace 5 by any prime number p and 4 by $p-1$.)
(4) Let $K \supseteq Z_{p}$ (p a prime number) be a field with p^{n} elements, $G=\operatorname{Gal}_{Z_{p}} K$. Prove that
(a) The map $\phi: K \rightarrow K$ such that $\phi(a)=a^{p}$ is an element of G. (It is called the Frobenius automorphism).
(b) $\operatorname{ord}(\phi)=n$.
(c) $G=\langle\phi\rangle$.

