MATH 4576 Rings and Fields Additional exercises 4

- (1) Construct a radical extension of \mathbb{Q} containing a splitting field of the polynomial $x^4 + 4x^2 6$.
- (2) Find the Galois group of the polynomial $x^4 + 3x^2 10$.
- (3) Let $\varepsilon \in \mathbb{C}$ be such that $\varepsilon^5 = 1$, $\varepsilon \neq 1$. Prove that $\mathbb{Q}(\varepsilon)$ is a normal extension of \mathbb{Q} and its Galois group G is cyclic with 4 elements.

Hint: ε is a root of the irreducible polynomial $p(x) = \frac{x^5 - 1}{x - 1}$. Verify that the other roots of p(x) are ε^k $(2 \le k \le 4)$. Deduce that there is an element $\sigma \in G$ such that $\sigma(\varepsilon) = \varepsilon^2$. What is $\operatorname{ord}(\sigma)$? Compare with #(G).

(The same assertion is true if we replace 5 by any prime number p and 4 by p - 1.)

- (4) Let $K \supseteq Z_p$ (p a prime number) be a field with p^n elements, $G = \operatorname{Gal}_{Z_p} K$. Prove that
 - (a) The map $\phi : K \to K$ such that $\phi(a) = a^p$ is an element of G. (It is called the *Frobenius automorphism*).
 - (b) $\operatorname{ord}(\phi) = n$.
 - (c) $G = \langle \phi \rangle$.