MATH 4576 Rings and Fields
Additional exercises 3
Let K be the splitting field of the polynomial $x^{4}-2 \in$ $\mathbb{Q}[x], G=\operatorname{Gal}_{\mathbb{Q}}(K)$ (as in Additional exercises 2), $G=$ $\operatorname{Gal}_{\mathbb{Q}} K, \sigma, \tau$ - elements of G such that

$$
\begin{aligned}
& \sigma(i)=i, \sigma(\sqrt[4]{2})=i \sqrt[4]{2} \\
& \tau(i)=-i, \tau(\sqrt[4]{2})=\sqrt[4]{2}
\end{aligned}
$$

(1) Prove that $G=\left\{\iota, \sigma, \sigma^{2}, \sigma^{3}, \tau, \sigma \circ \tau, \sigma^{2} \circ \tau, \sigma^{3} \circ \tau\right\}$.
(2) Which of the elements listed above equals $\tau \circ \sigma$?
(3) Prove that $\operatorname{ord}(\sigma \circ \tau)=2$ and $K^{\langle\sigma \circ \tau\rangle}=\mathbb{Q}((1+i) \sqrt[4]{2})$.

