MATH 4576 Rings and Fields
Additional exercises 1
(1) Let $R=\mathbb{Z}[\sqrt{2}]=\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}\}$.

Set $\delta(m+n \sqrt{2})=\left|m^{2}-2 n^{2}\right|$.
(a) Prove that R is a Euclidean domain with respect to the function δ.
(b) Prove that $a \in R$ is a unit if and only if $\delta(a)=1$.
(c) Prove that any irreducible element from R divides a prime integer.
(d) Prove that an odd prime integer p is an irreducible element of R if and only if $p \equiv \pm 1(\bmod 8)$. (Use the result of the next exercise.)
(e) Deduce a criterion for the equation $x^{2}-2 y^{2}=p$, where p is a prime number, to have an integral solution.
(2) Let p be an odd prime number and K be an extension of the field Z_{p} such that the polynomial $x^{4}+1$ has a root θ in K.
(a) Prove that $\left(\theta+\theta^{-1}\right)^{2}=2$.
(b) Prove that

$$
\theta^{p}=\left\{\begin{array}{ll}
\theta & \text { if } p \equiv 1 \\
(\bmod 8), \\
-\theta^{-1} & \text { if } p \equiv 3(\bmod 8) \\
-\theta & \text { if } p \equiv 5 \\
\theta^{-1} & \text { if } p \equiv 7 \\
(\bmod 8)
\end{array},\right.
$$

(c) Deduce that
if $p \equiv \pm 1(\bmod 8)$, then $2^{(p-1) / 2} \equiv 1(\bmod p)$,
if $p \equiv \pm 3(\bmod 8)$, then $2^{(p-1) / 2} \equiv-1(\bmod p)$.
Hint: $2^{(p-1) / 2}=\frac{\left(\theta+\theta^{-1}\right)^{p}}{\theta+\theta^{-1}}$ (in the field K).
(d) Deduce that the congruence $x^{2} \equiv 2(\bmod p)$ has a solution if and only if $p \equiv \pm 1(\bmod 8)$.

