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Abstract. In this survey article we report on recent results known for vector bundles on sin-
gular projective curves (see (Drozd and Greuel; Drozd, Greuel and Kashuba; Yudin). We recall
the description of vector bundles on tame and finite configurations of projective lines using the
combinatorics of matrix problems. We also show that this combinatorics allows us to compute the
cohomology groups of a vector bundle, the dual bundle of a vector bundle, the tensor product of
two vector bundles, the dimension of the homomorphism spaces between two vector bundles, and
finally to classity simple vector bundles.
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1. Introduction

Let X be a projective curve over an algebraically closed field k. For any two
coherent sheaves (in particular vector bundles) £ and F we have

dimy(Hom(E, F)) < eo.

This implies that in the category of vector bundles the generalized Krull-Schmidt

theorem holds: .
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i=1
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where the vector bundles 7 are indecomposable and m;, ; are uniquely deter-
mined.
Our aim is to describe all indecomposable vector bundles on X.

What is known about the classification of indecomposable vector bundles on
smooth projective curves?

1.

2.

Let X = P}. Then indecomposable vector bundles are just the line bundles
Op1(n),n € Z (Grothendieck).

Let X be an elliptic curve. The indecomposable vector bundles are described
by two discrete parameters r,d, rank and degree and one continuous parameter
(point of the curve X), see (Atiyah).

. It is well-known that with the growth of the genus g of the curve the moduli

spaces of vector bundles become bigger and bigger. For smooth curves of
genus g > 2 it was shown (Drozd and Greuel; Scharlau) that the classification
problem of vector bundles is wild. “Wild” means

a) “geometrically”: we have n-parameter families of indecomposable non-
isomorphic vector bundles for arbitrary large n;

b) “algebraically”: for every finite-dimensional k-algebra A there is an ex-
act functor (A-mod) — VBy from the category of A-modules to the
category of vector bundles on X mapping non-isomorphic objects to non-
isomorphic and indecomposable to indecomposable ones

Note that the implication (b) = (a) is easy, while the equivalence of (a) and
(b) appeared to be hard, see (Drozd and Greuel).

Moreover, in (Drozd and Greuel) the following trichotomy was proved:

. The category V By is finite (indecomposable objects are described by discrete

parameters) if X is a configuration of projective lines of type 4, (in this case
indecomposable vector bundles are just line bundles)

V4

AN

Figure 1.

. VBy is tame (intuitively this means that indecomposable objects are para-

metrized by one continuous parameter and several discrete parameters, see
(Drozd and Greuel) for a precise definition) if

a) X is an elliptic curve
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0

Figure 2.

b) X is a rational curve with one simple node

Figure 3.
¢) X is a configuration of projective lines of type 4,
4y
XA

Figure 4.

3. VBy is wild in all other cases.

2. Category of triples

Let X be a singular curve, X — X its normalization, & = m,(Oy). Since T is
affine, the categories Cohy and Coh(O—mod) are equivalent, see (Hartshorne).

Let J = Anny(O/0) be the conductor. It is the biggest common ideal sheaf

of the sheaves of the rings O and O such that 7O = 70. The usual way to deal
with vector bundles on a singular curve is to lift them up to the normalization, and
then work on the smooth curve. Surely we lose some information, since non-
isomorphic vector bundles can have isomorphic inverse images. To avoid this

problem we introduce the following definition:

DEFINITION 2.1. The category of triples, denoted by Ty, is defined as follows

1. objects are the triples ( F. M. i), where
F is a locally free O-module,
M is a locally free O/ J-module and
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i M — F®y0/T is an inclusion of O J-modules, which induces an
isomorphism L
I M®00/]— FIIF.
2. morphisms ( F, M, .i}) (ﬂ) (F, M, i) are the pairs (D,9), with
% 2, Ba morphism of O-modules,

M, - M u morphism of O/ J-modules, such that the following diagram is
commutative

Fi— Fi®p 0/~ M,

l“’ 16 [«,

h— 75@@@/,7*""[2 M, .
Now we formulate the main theorem of this section

THEOREM 2.2. The functor

VBy -5 Ty

F— (F,M.i),
where F := 7000@, M:=F/JF andi: F/IF — FR0O/I(FR00) is an

equivalence of categories. F is called the normalization of F.
PROOF. We construct the quasi-inverse functor
Ty - VBy

as follows. Let ( F, M, i) be some triple. Consider the pull-back diagram

0—JF—>F ——> M —>0

ol

0 IF F—>F/9F —>0

in the category of O-modules. Since the pull-back is functorial, we get a functor
Ty S, Coh x- One has to show that

1. the pull-back of 7w and i is a vector bundle
2. the functors @ and ¥ are quasi-inverse.

We refer to (Drozd and Greuel) for details of the proof. O
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3. Vector bundles on a rational curve with one node

Since the idea to reduce the classification of vector bundles on singular curves to
a matrix problem seems to be new and since the technique of matrix problems
appear to be unfamiliar to algebraic geometers and, moreover, since the general
procedure is not so easy to understand, we consider in this section a rather simple
case. We treat it in some detail in order to clarify the ideas.

Let X be a plane curve, given by the equation zy?> — x> — zx2 = 0. Then its
normalization is P' = X — X. Without loss of generality we may suppose that
the pre-images of the singular point are 0 = (0: 1) and o = (1:0).

/

0:1)

(1:0)

Figure 5.

What does the result of the previous section mean? A vector bundle ¥ on
the curve X is uniquely determined by some triple (F,M,i). F is a locally
free O-module, or equivalently, a locally free Opi-module. By the theorem of
Grothendieck F = @,,., O(n)™.

Since O/ = k, M is nothing but a k-vector space and i : My — (F /7)o can
be viewed as a k-linear map. But ( F/.7) is a k x k-module, hence the map i is
given by two matrices i(0: 1) and 1(1 0). The canonical map (0/ 7)o — (O/])
is the diagonal map k — k x &, so the condition that 7 : M®0/] O/ — F/Tis
an isomorphism means that both matrices /(0 : 1) and i(1 : 0) are invertible square
matrices.

Fix a direct sum decomposition ¥ = @, O(n)" and choose trivializations
of ¥ at the points 0 and . They induce a basis of the k x k-module F /3 F.
Choose also a basis of M. With respect to these choices i is given by some matrix,
divided into horizontal blocks, as in Figure 6.

Now we have to answer the main question: when do two triples ( ?l M, 0y)
and ( 95 M, iy) define isomorphic vector bundles? Surely, we have to require
_‘F] B, M, = M,. But what condition should be satisfied by the matrices defin-
ing iy and 7, in order to give isomorphic vector bundles? The answer follows from
the definition of the morphism in the category of triples. Namely, there should be
isomorphisms @ : Fi— P, 9: My — M, such that ®i| = ir@.

Let F = @D,z O(n)™. An endomorphism of F can be written in a matrix
form: ® = (®);;, where ®;; is a n; x n;-matrix with coefficients in the vector space
Hom(O(/), O(i)). But since Hom(O(i). O(j)) = k[xo,x|];—,, our matrix is lower



6 I. BURBAN, YU. DROZD AND G.-M. GREUEL

©:1)

(1:0)

Figure 6.

triangular. Moreover, the diagonal n; x n;-matrices ®;; are just matric_es over k. ®
is an isomorphism if and only if all ®;; are invertible. What isa map ®: F/J —
F/9? Let N = rank( F). Then @ : k&N — k? is given by the diagonal block
matrix diag(®(0: 1),®(1:0)). Note, that the matrices ®;;(1 : 0) and ®;;(0: 1),
(i > j) can be arbitrary. As a result we get a matrix problem:

We have two matrices i(1 : 0) and i(0 : 1). We require them to be square and
nondegenerate. Each of them is divided into horizontal blocks labeled by integer
numbers (they are called sometimes weights). Blocks of i(0 : 1) and i(1 : 0),
labeled by the same integer, have to have the same size. We can perform the
following transformations:

n-1 n-1
n }m" n
n+l n+l
i(0:1) i(1:0)
Figure 7.

1. We can simultaneously do any elementary transformations of columns of i(0 :
1) and i(1:0).

2. We can simultaneously do any invertible elementary transformations of rows
inside of the conjugated horisontal blocks.

3. We can independentely add in each of the matrices i(0: 1) and i(1 : 0) a scalar
multiple of any row with lower weight to any row with higher weight.

These types of matrix problems are well-known in representation theory. First
they appeared in the work of Nazarova and Roiter (1969) about the classification
of k{[x,»]]/(xy)-modules. They are sometimes called Gelfand problems in honour
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of I. M. Gelfand, who formulated a conjecture at the International Congress of
Mathematics in Nice (1970) about the structure of Harish-Chandra modules at the
singular point of SL,(R). This problem was reduced to some matrix problem of
this type in (Nazarova and Roiter, 1973). The idea to apply this technique is that
we can write the matrix i in some canonical form which is quite analogous to the
Jordan normal form.

EXAMPLE 3.1. The following data define an indecomposable vector bundle of
rank 2 on X: the normalization O @ O(n),n # 0, together with the matrices shown
in figure 8.

Figure 8.

A Gelfand matrix problem can be coded by some partially ordered set, to-
gether with some equivalence relation on it. For example, the problem of clas-
sifying vector bundles on a rational curve with one node, corresponds to the
following partially ordered set. There are two infinite sets Ey = {Ey(i)|i € Z} and
E.. = {E-(i)|i € Z} with total order induced by the order on Z, and two one-point
sets Fy and F... On the set

E|JF = (E)UE.)| J(RUF.)

we introduce an equivalence relation: Ey(i) ~ Ew(i),i € Z, Fy ~ F..

c O

Figure 9.

From this picture we can easily recover the corresponding matrix problem: EyU Fy
and E., U F., correspond to i(0 : 1) and i(1 : 0) respectively. Fy ~ F., means that
we have to do elementary transformations with columns of i(0 : 1) and i(1 : 0)
simultaneously, the partial order on E, and E.. implies the division of matrices into
horizontal blocks, where each block has some weight. Eqy (i) ~ E..(i),i € Z, means
the conjugation of blocks: they have the same number of rows and elementary
transformations inside of them should be done simultaneously.

Let now X be a configuration of projective lines of type 4, or A,. We can
proceed with constructing the category of triples in the similar way as we have
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done for a rational curve with one node. The matrix problem we get is coded
by the Bondarenko’s partially ordered set as follows: consider the set of pairs
{(L,a)}, where L is an irreducible component of X, a € L a singular point. To
each such pair corresponds a totally ordered set E(; ,) = {E(; 4)(i)|i € Z} and a
one-point set F{; ,). On the set

EUF: U (E(L,a)UF(L,a))
(L,a)

we introduce an equivalence relation:

L Fira) ~ Fua)
2. E(I.,a)(i) ~ F(I,,(l’)(i)ai € 7.

This means that we have a set of matrices M(L,a), where (L,a) runs through all
possible pairs (L,a),a € L, and each of the matrices is divided into horizontal
blocks with respect to the partial order on E; ,. The principle of conjugation of
blocks is the same as for a rational curve with one node.

What is the combinatorics of indecomposable objects in this case? A Gelfand
problem has two types of indecomposable objects: bands and strings (see (Bon-
darenko, 1992) and Appendix A in (Drozd and Greuel)). If X is a configuration
of projective lines of type A4,,, then each indecomposable vector bundle has to be
a line bundle. Let X be either a rational curve with one node or a configuration
of projective lines of type 4,. The condition on matrices M(L,a) to be square and
nondegenerate implies that vector bundles correspond to band representations.

DEFINITION 3.2. Let X be either a rational projective curve with one node or a
cvcle of s projective lines. Let {ay,aa,...,as} be the set of singular points of X,

X 5 X the normalization of X, i.e. X is the disjoint union of s copies Ly, ...,Lg
Q{I ‘the prl(l)jective line, and {d,d} = n~"(a;). Suppose that a,a,, € L;, where
dep) = 4y

A band B(d,m,\) = (B, M ,i) is defined by the following parameters:

1. d=d\dy...did; \dsiy.. . dos...drs_si1drg—s12. .. dps Is a sequence of degrees
on the normalized curve X. This sequence should not be of the form ¢!, where
e is another sequence (i. e. d is not a self-concatenation of some other se-
quence).

2. m is the size of the elementary block of the matrix defining the glueing. The
first two properties mean that the resriction of the normalized vector bundle
on the I-th component of X is

D Ow(dris)".
i=1

3. A € k* is a continuous parameter:
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We have 2s matrices M(L;.a;) and M(L;,a},|),i = 1,...,s, occurring in the
triple, corresponding to ‘B(d,m,\). Each of them has size mr x mr. Divide these
matrices into m x m square blocks.

Consider then sequences d(i) = didiy;...diy(—1)s and label the horizontal
strips of M(L;,d}) and M(L;.d, |) with respect to occurence of integers in the
sequence d(i). If some integer d occured k times in d(i) then the horizontal strip
corresponding to d consists of k substrips with m rows each. Recall now an
algorithm of writing the components of the matrix i in normal form:

1. Write a sequence

| |
(Lias) = (Laudh) = (Lasal) =5 ...

L (Ld) S (Lnd) S L (L, d)).

2. We unroll the sequence d. This means that we write over each (L;,a) the
corresponding term of the subsequence d(i) together with the number as often
as this term already occured in d(i):

(Ly,d5) l’—)(L a)‘d“')——>(L ,dy) ! LI

5 (L) L (L))

3. We are ready to fill the entries of the matrices M(L,a):

. L , .
a) Consider each arrow above: (L,a)\) — . Then we put the matrix I, in

the block ((d,i).k) of the matrix M(L,a) (the block which is an intersec-
tion of the i-th substrip of the horizontal strip with label d' and the k-th
vertical strip).

b) We put on the ((d\.1),r)-th place of M(Ly,a)) the Jordan block Jy(\)
(our continous parameter- h appears at this moment).

EXAMPLE 3.3. Let X be a union of two projective lines intersecting transver-
sally it two different points (4\-configuration), d = 01131-2. Then B(d,m,A) is a
vector bundle of rank 3m given by its normalization

(O} &0 (1)) B (01, (—2)" B O, (1) @ O, (3)™)

and the matrices in figure 10.

EXAMPLE 3.4. 4 vector bundle from example 3.1 is just B(On, 1,A).

REMARK 3.5. One can ask the following question: if bands corresponds to vector
bundles, what do correspond to strings that are degenerated series in the Gelfand
problem? As one can guess, some of the strings correspond to torsion-free sheaves
which are not locally free. For this purpose one should modify a little bit the
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Jlll 0 I m
| i I;|‘ | - | : I m -
| | - I m i l . ' I "“
L2,
1 n l I||| : -
I m i 3 . I m :
Figure 10.

definition of the category of triples. For example, if X is a rational curve with one
node, then the triple (Op1,k%,i), where i is given by two matrices

defines O = 1, (Oy).

In what follows we shall see that this way of representing of vector bundles
on rational curves is indeed a convenient one. It allows in particular to determine
the dual bundle, the decomposition of tensor products and the computation of
cohomology groups.

4. Dual vector bundle

THEOREM 4.1. Let X be cither a projective curve with one node or a configu-
ration of projective lines of type Ay, let B = B(d,m,\) be a vector bundle on X.
Then BY = B(—d,m,A7").

PROOF. Let B be a vector bundle on X. By the adjoint property we have:
Homp(BRo 0,0) 2 Homo(B, Homp(0,D)) = Homy(B,0).

But we have a canonical map Homq(B,0) @0 O — Homo(B, D), which is an
isomorphism in case B is locally-free. Hence, if the normalization of B is B then
the normalization of BY is B". Now, let B be given by a triple (B, M, i). Then we
have a commutative diagram

0 9B
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Apply the functor Home( ,0) to obtain the glueing matrices of Home(B,0).
Then we get

0 — Home(B,0) — Homy(IB,0) — Ext)(B/JB,0) — Ext\,(‘B,0)
T T I

0 — Homep(B,0) —> Homo(B,0) — Ext.,(B/B,0) — Ext.,(B,0)

But since X has nodal singularities, Exty,(O,©0) = 0, and we get, as a corollary,

Ext},(B,0) = 0. Moreover, since our curve X is Gorenstein, % /O is an injective
(O-module (X denotes a sheaf of rational functions). Hence,

0—0—XK—>K/0—0

is an injective resolution of O. If %\ is a skyscraper sheaf, then Homo (N, K) =
0 and ‘Ext},(N,0) is naturally isomorphic to Home(N, K/O). So, we have a
commutative diagram

Ext'(B)9B.0) —> Homo (B IB,0/0)

Ext\(B)B.0) —— Homo(B)B,0/0)

where Homo(B/B,0]0) — Homo(B/IB,D/0) is the map induced from the
exact sequence

0— M- B/ — B/B—0.
Let us see what are Homo(B,0) and Homo(JB,0).
1. We have canonical O-module homomorphisms
JHome(B,0) — Home (B, T) — Home(B,0).

Since all modules occurring in the sequence are coherent O-modules, we can
check that these homomorphisms are isomorphisms just looking at stalks. For
the stalks howewer, this is true since all singular points of X are nodes.

2. We have canonical O-module homomorphisms

Home(IB.0) — Homp(IB,J) «— Homy(B,0)
which are isomorphisms on stalks.

Finally we get a commutative diagram:

0 — JHomy(B.0) —> Homy(B,0) —> Home(B/IB,0/0) —0

S |

0 — JHomy(B,0) — Homo(B,0) — Homo(B/B,0/0) — 0.
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But this is a diagram we are looking for. It remains only to describe a map giving
an inclusion of the kernel of the map of O/ J-modules

,"-[omo/j(@/ﬂ, 0/0) N Home,y(M,0/0).

Let x be a singular point, {u,uy,....u,} a basis of My, {vi,va,...,va;wy,
wa,...,wy} abasis of (B/JB), and i, is given by

i(vi) = Zapvi + Xbaw;
i(v2)) = Yapvi + Xbow;

i.\'(Vn) = Yapvi + Zbinwi’

Let (0/9)y = (0,B), (0/9) = (y). Since O/ J is supplied with an O/ J-module
structure by the diagonal mapping, (0/0), = (o, B)/(Y,Y). So we may suppose
that the isomorphism (O/0), — k is given by (o] = 1, [B] = —1.

The space Home5(B/B,0/0) has a basis v{, v3, ..., vi; Wi, w3, ..., W},
where vi(v;) = §;;[at], vi (w;) =0, wi(v;) = 0, wi(w;) = &;;[B]. Therefore we get
(V) (uj) = aijlo] = a

and on the other hand
iy (wi)(u;) = byj[B] = —bi).

So, if iy was (4), then i is given by (4", —B"). Now we may suppose that the
matrix i has a canonical form. Then we can easily compute the matrix giving an
embedding of the kernel of i*. As a corollary we get the claim of the theorem. [J

5. Cohomology groups, tensor products and homomorphism spaces

5.1. COMPUTATION OF COHOMOLOGY GROUPS OF VECTOR BUNDLES

Let B = B(d, m,A). The developed technique allows us to compute the cohomol-
ogy groups of B in terms of the combinatorics of the sequence d. Let (B, M, i) be
a triple corresponding to B. We have an exact sequence

0— B— B— B/B—0.
After taking cohomology we get the long exact sequence:
0 — H(B) — HY(B) -5 HY(B/B) — H'(B) — H'(B).

" The map f: H(B) — H°(‘B/B) can be computed explicitly; it is just the com-
position

H°(B) — H(B/JB) — H°(B/JB)/H(B/IB).
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But B/JB = M, and the embedding H°(‘B/ JB) —> HO(B/JB) is given by the
matrix i. So we can compute cohomology groups as the kernel and cokernel of the
map /. We refer to (Drozd, Greuel and Kashuba) for more details and just give
the result:
rs
dimgHY(E) = m(Y (di+ 1)* — 8(d)) + 5(d, 1),
i=1
s
dimyH'(E) = m( Y (di +1)" +rs— 0(d)) + 8(d, ),
i=1
where §(d,A) = 1 ifd = (0,....0), A = 1 and 0 otherwise; k* = k if k> 0 and
zero otherwise, k= = k* — k. Call a subsequence p = (dj, ... ydi+1), where 0 <
k<rsand 1 </ <rs,apositive part of d if all dy+; > 0 and either / = rs or both
di <0 and dgy /41 < 0. For such a positive part put 8(p) = / if either / = rs or
p=1(0,...,0) and 8(p) =/ + 1 otherwise. Then 6(d) = 3 0(p), where we take a
sum over all positive subparts of d.

5.2. TENSOR PRODUCT OF VECTOR BUNDLES

All the results of this subsection are taken from (Yudin). Let B, and B, be two
indecomposable vector bundles either on a rational curve with one node or on a
configuration of projective lines of type A4,,. What is B, ®¢ B,?

Let ( @1,7"[1,1'1) and (@2,%,1’2) be triples corresponding to By and B, re-
spectively. Then it is not difficult to see that B, ®¢ B, corresponds to (@1 ®p
B, M Q¢ /9 M,i) ®iy). Moreover i| ®i5 is given by the Kronecker product of
matrices, but the problem is that we have to care of the horizontal block division
of these matrices.

Let us suppose for simplicity that char(k) = 0 (for fields of prime characteristic
an answer is analogous but more sophisticated). The first two steps in describing
the decoposition of the tensor product are the following lemmas

LEMMA 5.1. Let s be the number of components of X, 0=00...0 a sequence of
0's of length s. Then

B(d,m.\) = B(d,1,A) ® B(0,m, 1).
LEMMA 5.2. Moreover

B(0.m.1) @0 B(0,n,1) = P B0,n—m+1+2j,1).

J=1

It remains to describe the tensor product of vector bundles of type B(d, 1,A).
For simplicity let us use the following notation. Let d' = dd. ..d (/ times), then

/
B(d',m.}) = ) B(d,m,EVR),
i=1
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where & is a [-th primitive root of 1.

Let B(d, 1,A) and B(e, 1. ) be two vector bundles of rank k and / respectlvely
The tensor product of this two bundles has to be of rank /. Let d = d| dz d/,
(each d dii s+|d(, l)s+2 - - - dis defines a sequence of degrees on Ly, Lo, ..., Ls;

one should not mix d with d(i) from section 2), and e= €18,...8;. Write

d=d\d;...did\d>.. . dy...d\dy...dy, ©€=¢\8,...86162...8/.../6,...€].
W N e’ W \_\,_/
| 2 ! |

- —

1)

We have (k,/) sequences fi, f.....f ;) (where (k,I) is the greatest common
divisor of k and /): . . .
fi=d +e\,dy+é&,....di+¢

(the lenght of f, is [k,/], the smallest common multiple of & and /),
f=d+&.d+8,...d+é,

ki) = dy +€k1), A2+ €k 410+ Ak + €k -1
Then
(k) )
(dalﬂ}\)®0$e 1,/1 @folalay\' I,ul_l)
i=1

5.3. COMPUTATION OF EXTENSION AND HOMOMORPHISM SPACES

Now we are able to compute the dimension of the homomorphism space and of
the first Ext-group between two vector bundles,

Homo(E, F) = H(E' @0 F),

Exth(E, F) = H(E' ®0 F).

We have formulas for computing the dual of a vector bundle and for decomposing
a tensor product into a direct sum of indecomposables.

Let us describe the simple vector bundles (i.e. those bundles E, for which
Endy (E) = k. In other words, each automorphism of  is a scalar multiple of the
identity automorphism). This question is motivated by the recent work of (A. Pol-
ishchuk), which relates spherical objects (Seidel and Thomas) with solutions of
the classical Yang-Baxter equation. Suppose E = B(d,m,A) a simple vector bun-
dle. Since an automorphism of a Jordan block defines also an automorphism of
B(d,m. L), we can conclude that m = 1. Further, it is easy to see that each d(i)
should not contain degrees with difference greater than one (otherwise there will
be an automorphism of £ which induces the identity map modulo conductor).
Since it is enough to describe simple bundles modulo the action of the Picard
group, we may suppose that each d;(i = 1,2,...,s) consists of 0’s and 1's. Now
we apply the machinery developed above and get
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THEOREM 5.3. B(d,m,A) is a simple vector bundle if and only if

l.m=1;

2. the difference between degrees of any two vector bundles on the same compo-
nent of the normalized curve is at most 1;

3. consider all possible differences d — d[t], where t is a shift of the sequence
d d[l] = ds11dss2...dyd\dy .. d;); then each of these differences does not
contain a subsequence of type 10...01.
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