Matrix problems, small reduction and
representations of a class of mixed Lie groups

Yu. A. Drozd

In representation theory of Lie groups the cases of reductive and solv-
able groups are highly elaborated (cf. [K]). Much less seems to be known
about mixed groups, i.e. those neither reductive nor solvable. Moreover, the
simplest examples (cf. §1) show that in a sense the complete description of
their representations is a hopeless problem. Nevertheless, in some cases it
turns out to be possible to describe “almost all” of them in a rather appro-
priate way (cf. theorem 1.2), namely, they behave just like representations
of a reductive group.

This lecture is an account of the author’s joint work with A. Timoshin
[DT] where we managed to apply to the investigation of representations of
some mixed groups the method of so-called “matrix problems” which enabled
us to obtain such an answer.

Thus, the lecture splits into two parts. The first (§§1-3) contains the
formulation of the main theorem (theorem 3.1) with necessary preliminaries
and its reduction to a matrix problem. The second part (§§4-6) is devoted to
matrix problems which we treat in terms of representations of bocses (cf. [R])
and culminates in §6 with the proof of the main theorem. The most technical,
but to my mind also the most important, is §5 where we present an algorithm
elaborated in [BGOR]. I think that the importance of this algorithm (called
“small reduction”) is still far from being properly appreciated.

I am grateful to S. Ovsienko for friendly and fruitful discussions which
were of great use to me, and to A. Timishin for his kind permission to use
our joint results in this talk.

§1 Mackey Theorem. An Example.

In the calculation of representations of mixed groups a theorem of Mackey
concerning representations of group extensions is widely used (cf. [K]). Recall
it in the simplest case of a semi-direct product with normal abelian subgroup.
From now on, for a locally compact group G we denote by G its dual space,
i.e. the space of isomorphism classes of irreducible unitary representations

(cf. [K]).

Theorem 1.1. Suppose that a locally compact group is a semi-direct prod-
uct, G = H x N, of a closed normal abelian subgroup N and a closed sub-
group H and that all orbits of H on N are locally closed. Then there exists
a surjection p : G — N/H such that p~'(z") = H, for any orbit zH, where
H,::{hEHll'h::l:}.
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Here H acts on N naturally: z*(n) = z(hnh™'). The representation
of G corresponding to the representation T of H, is Ind(G, G;,zT), where
G; = H,N and T (hn) = z(n)T(h) for any h € H;,n € N.

Thus in order to calculate representations of G we have to find orbits
of H on N, then to define the stabilizers H, and finally to calculate the
representations of each H,;. Moreover, we can obtain the Plancherel measure
on G from those on N and H, as is shown in [KL]. Sometimes it is possible
to iterate this procedure, i.e. to decompose H, into a similar semi-direct
product and to apply Mackey’s theorem again. But as a rule such iterations
become more and more complicated as the following simple example shows.

Let K be a locally compact field and G = G(m, n) be the group of
invertible K-matrices of the form:

(Al An)

0 A

with an m x m block A;, an n x n block A; and an m x n block A;,. Clearly,
G = Hx N with H consisting of the “diagonal” matrices (such that A;; = 0)
and N of the “unipotent” ones (such that A, and A; are identities). Then
N = Mat(mxn), hence N = Mat(nxm) under the pairing (z,n) = e(tr(zn)),
e being a non-trivial character of the additive group of K (cf. [W]) and one

easily obtains zh = A{l:cAl for h = diag(A;,A2). Of course, its orbits are
well-known: each of them contains a unique matrix z of the form:

o o I
“\0 0
(I being an identity matrix). A simple calculation shows that H, consists of
all A = diag(Ai, A2) with

_ B] Bl2 _ 32 BZ3
=0 5) a= (0 R)
(the size of B, coincides with that of I in z).
Now again H, = H' x N' with H' “diagonal” and N' “unipotent”. If
k; is the size of B;, then
N' = Mat(k; x k) x Mat(k; x k3), hence
N' = Mat(kz x k1) x Mat(ks X k2)-

Moreover, if h = diag(B1, B2, Bs) € H', = (z1,22) € N', then one can
check that =" = (B{l:cBl,B;lsz). This means that elements of N’ can
be viewed as representations of the quiver

® —3> 0 — 0
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and orbits correspond to isomorphism classes of these representations (cf.
[G]). It is known then that any orbit contains a unique pair = = (z,,z2) with

0 70 0 I 00
0 0 I
T = , z2=|0 0 0 I
000 000 0
0 00
the size of columns in z; being the same as that of rows in z;. One can can

calculate the stabilizer H., of such a pair: it consists of all triples (B, B,, B;)
of the form:

Cy Caz3 Cu (s

Ci Cn2 Cis 0 C; 0 Css
Bi=|0 C; Cyu3|, By= 0 0 C, Cgs |
0 0 Cs 0 0 0 Cs
Ciy Czs Cie
B; = 0 Cs Cse
0 0 G

Let M be the normal subgroup of H,, consisting of all triples with C; = I and
Cij = 0 except maybe for (ij) = (13}, (25) or (36) (the matrices underlined
above). Write F' = H, /M. Then again F' = H" x N" with H" “diagonal”
and N" “unipotent”. But in this case the action of H"” on N" is described
by the quiver:

[ ] e [ ] — [ ]

! !

L] —_— L] e L]

which is known to be wild (cf. [N]), i.e. the classification of its represen-
tations (or orbits of our action) contains the well-known unsolved problem
of classification of pairs of linear operators on a finite-dimensional space.
Thus we have no hope of obtaining a precise description of representations
of groups G(m,n).

Nevertheless, we can describe “almost all” their representations via
the following simple observation. Consider the open dense subset NCN
consisting of all matrices of maximal rank r = min(m, n). This subset forms
an orbit of H. Namely, a matrix = € N is equivalent to one of the form

(0 I) or ((}) or I

according as n < m or m < n or m = n, respectively. Hence its stabilizer
H: is isomorphic to the group of pairs (A, A;) with

B, B A, B
A1=(01 Alzz) or Az=(01 Blzz) or A; = A,,
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respectively. Thus H is isomorphic respectively to G(m —n,n) or G(m,n —
m) or GL(m, K). Now the iteration gives us the following

Theorem 1.2. For G = G(m,n) there exists an open dense subset G* C G

homeomorphic to GL((ZK ), where d is the greatest common divisor of m
and n.

Moreover, using [KL] one can show that under this homeomorphism
the restriction to G° of the Plancherel measure G on G coincides with the
Plancherel measure on GL(d, K) and ug(G°) = 1.

An analogous result was proved in [L] for groups of block-triangular
matrices with an arbitrary number of blocks. In this case G® & D for some
direct product D of full linear groups over K.

We are going to generalise the latter result to a wider class of linear
groups which will be defined in the next paragraph.

§2 Dynkin Algebras

The groups we will consider are linear groups over algebras. These are by

definition the groups of the form G(P,A) = Auts(P), where A is a finite-
dimensional algebra and P a finitely generated projective A-module. To
obtain a good description of their representations we have to restrict the
class of algebras to the so-called Dynkin algebras which we are going to
define. We need some notions about categories in order to do so.

All categories considered are supposed to be linear over some field K
and all functors will be K-linear. We write @ and Hom instead of ® x and
Homg. A module over a category A is by definition a functor M : A — Vect
(the category of vector spaces over K). Let A-mod denote the category of
A-modules. An A-B-bimodule is a K-bilinear bifunctor V : A°P x B — Vect.
Denote by add A the smallest category which contains A and is completely
additive, i.e. additive and with all idempotents split. A category A will be
called skeletal if its objects are pairwise non-isomorphic and there are no non-
trivial idempotents in the endomorphism algebras A(i,i). A skeleton of A is
defined as a skeletal category equivalent to A. For instance, if A is a finite-
dimensional algebra, a skeleton can be chosen as the full subcategory of A-
mod consisting of a complete set of pairwise non-isomorphic indecomposable
projective A-modules.

Let A be a skeletal category such that all spaces A(i,j) are finite-
dimensional and A(:,1)/rad A(i,i) = K for all i € ObA (in this case we call
A split over K). Write

9(i,7) = dim rad A(i,§)/rad® A(i, )

(in this case rad A can be defined as the two-sided ideal of A consisting of
all non-invertible morphisms). Define the graph (Gabriel quiver) @4 of A4 as
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the graph having Ob A for the set of points and g(i,j) arrows leading from
i to j for all i,j. Call A connected provided @ 4 is connected.

If a category A has a skeleton Ay, it is called split if Ay is split and
connected if Ao is connected. For instance, a finite-dimensional algebra is
split if

A/rad A = IIMat(nm, K)

and is connected if it can be decomposed into a direct product of algebras
(cf. [DK]).

Suppose A and A are skeletal categories. Recall that a functor F :
A — A is called a covering [BG] provided it is surjective on objects and for
any : € Ob A, j € Ob A the following mappings induced by F' are surjective:

Orr=i A(k,j) — A(i, Fj);
Orr=i A(j, k) = A(Fj,i).

A skeletal category A is called simply connected if it is connected and
has no non-trivial connected coverings. A category A with a skeleton A is
called simply connected if Ao is simply connected.

Now let A be skeletal, split and finite-dimensional over K (that means
that Ob A is finite and all spaces A(4, j) finite-dimensional). Denote by C, its
Cartan matrix, i.e. the n x n integral matrix, where n = |Ob 4|, with entries
¢ij = dim A(i,j), and by 5C4 the symmetrisation of Ca, i.e. the symmetric
n X n matrix with entries S¢ij = (¢ij + ¢ji)/2. Call A positive definite if
the matrix SC, is positive definite. If A is of finite global dimension (e.g.
there are no oriented cycles in its graph @ 4 ), we can reformulate this notion.
Namely, consider the n-dimensional real vector space R™ and define for a
finite-dimensional A-module M its vector-dimension dim M as the vector
(d1,-..,dn) where d; = dim M(:). Then a bilinear (non-symmetric) form can
be defined on R™ such that

(dim M,dim N)a = Y (-1)™dim Ext} (M, N)

m

for all finite-dimensional A-modules M, N, and hence the quadratic form of
A, ga(X) = (X, X)4 is defined on R™. One can easily check (cf. [Ri]) that
in this case the dimensions of the representable functors A(i,—) form a basis
in R™ and that C4 is just the matrix of the form (, )4 with respect to this
basis. Thus A is positive definite if its quadratic form ¢, is.

Of course, these definitions may be applied to any category A having
a finite dimensional skeleton Ao, so we have for such categories the notions of
Cartan matrix, positive definiteness, bilinear and quadratic forms (, )4 and
g4, and vector-dimensions dim M. In the case of a finite-dimensional algebra
all of them coincide with the usual ones as defined, e.g. in [Ri].
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Definition. A finite-dimensional K -algebra A is called Dynkin if it is split,
positive definite, has no oriented cycles in its Gabriel quiver and all its con-
nected direct factors are simply connected.

One can verify that this definition is equivalent to that of Happel [H]
(we will not use this equivalence).

We give some examples of Dynkin algebras A and linear groups
G(P, A) over them:

(i) Take for A the algebra of upper-triangular n X n matrices over K.
Its quiver is

* — 00— ... — 0

(n points) and its quadratic form is just that of the quiver [G], thus known
to be positive definite. Thus A is Dynkin. In this case the groups G(P, A)
which arise are just the groups of block-triangular matrices with n diagonal
blocks, or, which is the same, parabolic subgroups of full linear groups.

(ii) Let S be a finite partially ordered set and A = A(S) its incidence
algebra, i.e. the subalgebra of Mat(n, K'), where n = |.S|, with a basis formed
by matrix units e;; with 1 < j in S. One can check that if ¢4 is positive
definite, this algebra is simply connected. Now as G(P, A) we obtain a class
of so-called net subgroups [B] (this was the starting point of the investigation
in [DT]).

§3 Main Theorem. Reduction to a matrix problem

Theorem 3.1. Let G = G(P,A) be a linear group over a Dynkin K-
algebra, where K is a locally compact field. Then there exists an open dense
subset G® C G with ug(G°) = 1 such that G® 2 D and the restriction pg|go
coincides with up (via this homeomorphism), where D = [1,,GL(d, K) for
some dimensions dm (depending on A and P).

Proof. Choose a complete set P,..., P, of pairwise non-isomorphic in-
decomposable projective A-modules. For each projective A-module P put
|[Pl=k1+ ...+ ko iff P=FkP &..&k,P,. Then an obvious induction

reduces our theorem to the following statement.

Lemma 3.2. Under the assumptions of theorem 3.1 suppose that G #
ImGL(dm, K) for any dmm. Then there exists an open dense subset GCéG
with uG(G) = 1 such that G = G' and ug|s = pe', where G' = G(P', A') for
some Dynkin algebra A' and some projective A’ -module P’ with |P’| < |P|.
Proof of the lemma. As there are no cycles in @4, we can find an in-
decomposable projective, say P;, such that Hom 4( Py, P;) = 0 for all i # 1.
Then P = P! @ P? with P! = ki, P, and P? = kP, @ ... ® ko P,. Then
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Hom 4 (P!, P?) = 0, so an element g € G can be written as a matrix:

(9 f
g*(o m)

with g; € G; = G(P',A) and f € N = Hom(P?, P'). Hence G = Hx N
where H = G, x G, and N is isomorphic to the dual vector space of N. It
can happen, of course, that N = 0 and we obtain no real reduction. To avoid
this case we need some additional results.

It is convenient to consider instead of A its skeleton, which has the
form KQ4 /I, where KQ 4 is the category of paths of the graph Q4 and I
an ideal of KQ4 contained in J? (J is the ideal generated by all arrows).
The points of this category, which we will also denote A, are just the indices
1,...,n and A(7,j) = Homa(P;, P;). Let ¢;; = dim A(¢,7) (the entries of the
Cartan matrix of A) and put B = Ends(P. @ ... & P,). Then B can be
viewed as the full subcategory of A consisting of objects 2,...,n.

Call two objects ¢, of A joint if either A(:,j) # 0, or A(j,i) # 0, and
disjoint otherwise.

Lemma 3.3. (i} ¢;; <1 foralli,j.

(ii) There exists no chain iy,is,...,i With m even, each i) joint with ig4y,
im Joint with iy and all other pairs ig, i; disjoint.

(iii) If i, j, k are pairwise different and disjoint, then there exists at most one
object joint to each of them.

(iv) If a € A(i,1) and b € A(j,i) are non-zero but ab = 0, then A(j,1) = 0.
Proof. (i)-(iii) follow from the positive definiteness of A. (iv) will be proved
in §6.

Lemma 3.4. The algebra B is also Dynkin.

Proof. Clearly, we have only to prove that each component of B is sim-
ply connected. For the sake of simplicity, suppose B is connected (it plays
practically no rdle in the proof). Let F': B — B be a non-trivial connected
covering. Consider the set S of all objects i of B such that there exists an
arrow in @ 4 leading from i to 1. It follows from lemma 3.3 (iv) that objects
of S are pairwise disjoint. Define an equivalence relation V on F’l(:S') as
the weakest one such that ¢ V j provided there exists an object k of B and
non-zero morphisms b: k¥ — i and ¢: k — j with ap;)F(b) and apg;) F(c)
both non-zero. Here, for any s € S we denote by a, the only arrow leading
from s to 1. Lemma 3.3 implies that F(:) # F(j) for distinct equivalent
i,j € F71(S). Let S/V be the set of equivalence classes and s, for s € S,
T € S/V, be the unique object in T with F(st) = s if such an object exists.
Now construct A as the category with object set Ob BU S/V and arrow set
the arrows of B together with new arrows a,r : s — T for each s € S,
T € S/V such that st exists. Extend F to A by putting F(T) = 1 and
F(a,7) = a, whenever st exists. One can easily extend also all relations
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from I to A and hence obtain a non-trivial connected covering F : A — A
which contradicts simple connectedness of A4, q.e.d.

Now if N = 0, we can consider the group G2 which is again a linear
group over the Dynkin algebra B. So without loss of generality we may
suppose that V # 0.

Put A; = Enda(P'). Then N is an Aj-As-bimodule and N is an
As-Ay-bimodule. Now G is the group of invertible elements of A; and if
h=(g1,92) € H,z € N, we have z* = g{lzgl via this bimodule structure.

Define End(z) to be the subalgebra of A; x A, consisting of all pairs
(a1,az) for which a;z = rai1. Then H. is just the group of invertible elements
of End(z). So the last step will be:

Lemma 3.5. If N s 0, there exists an open dense orbit z# in N such that
End(z) = A’ is also a Dynkin algebra and |A'| < |P|.

We then put G = p~*(z¥) (cf. theorem 1.1) and obtain G = H,. But
H, = G(A', A') has just the necessary form.

In order to prove lemma 3.5 we have to elaborate some technical tools
which allow us to investigate some kinds of “matrix problems”, e.g. those
arising from actions of linear groups on bimodules as above.

84 Representations of bocses

Recall ([R], [D]) that a bocsis a pair A = (A, V') where A is a category and V
an A-coalgebra, i.e. an A-bimodule supplied with bimodule homomorphisms
m :V — V ®4 V (comultiplication) and ¢ : V — A (counit) satisfying
the usual rules (cf. [M]). We always suppose that the bocs is normal, i.e.
for each object ¢ there is an element u; € V(i,i) such that e(u;) = 1; and
m(u;) = u; @ ui. Let V = Ker e, the kernel of the bocs.

For any a € A(i,j) and v € V(i,j) let Da = au; —uja and Dv =
m(v) —vu; — ujv (here and later we write zy instead of £ ® y for elements «,
y of the bimodule V). One easily sees that Da € V and Dv € V ®4 V. The
mapping D is called the differential of the bocs (it really induces a differential
on the (graded) tensor category of the bimodule V). It is clear that knowing
the kernel and the differential we can reconstruct the bocs.

A representation of a bocs A is defined as a functor M : A — Vect
(the category of finite-dimensional vector spaces). Given another represen-
tation N, we define Hom4(M, N) as the set of all bimodule homomorphisms
V — (M,N), where (M,N) is the A-bimodule such that (M,N)(i,j) =
Hom(M (2}, N(j)) and left (right) multiplication by a is defined as left (right)
multiplication by N(a) (resp. by M(a)). f f: M - N and g: N — L are
two such homomorphisms, their product ¢f is defined as composition:
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the last arrow being induced by the usual multiplication of mappings. One
can prove that in this way we obtain the category R(A) of representations
of the bocs A.

A morphism from a bocs A = (4,V) to another bocs B = (B, W)
is by definition a pair F' = (Fp, F}) consisting of a functor Fy : A — B
and a homomorphism of A-bimodules Fy : V — W compatible with the
comultiplications and counits of V and W ([D]). Such a morphism induces a
natural functor F* : R(B) — R(A).

Suppose given a bocs A = (A,V), a category B and a functor F :
A — B such that any object of B is isomorphic to a direct summand of
some Fi. Construct a new bocs A¥ = (B,B®,4 V ®4 B) and a morphism
(FR):A- AF where Fi(v) =1 ®v@1lp;for v € V(i,j) (we denote this
morphism also by F'). The restriction imposed on F involves the surjectivity
of the counit in AT and then we obtain easily from general nonsense

Proposition 4.1. In the above situation the induced functor F* : R(AF) —
R(A) is fully faithful and its image consists of those representations M : A —
Vect which can be factored through F.

A bocs A = (A, V) is called free provided A is a free category, i.e. the
path category KQ of some graph Q and the kernel V is a free A-bimodule.
Such a bocs is usually described by its bigraph Q4 = (Qo, So,51) whose
vertex set is the same as that of Q but as well as the set So = @, of arrows of
Q (free generators of A) there is an additional set of arrows 5] corresponding
to free generators of the A-bimodule V: if such a generator lies in V (i, j), the
corresponding arrow goes from : to j (usually the arrows of S are called solid
and those of S; dashed). To define A we need also to know its differential
D and of course it has to be defined only for arrows, i.e. for free generators.
The set 5 = Sp U 5 is called the set of free generators of A.

Notice that in general we can change the set of free generators and
a good choice of it sometimes plays an important réle (e.g. this is the case
in the definition of triangularity below). Nevertheless, the bigraph Q 4 does
not depend on this choice. We call A connected if its bigraph is connected.
If i,j € Ob A, let S(i,j) = {s € S| s :i — j} and similarly for So(i,j),
Sl (17 J )

A system S = So U S) of free generators is said to be triangular
provided there exists a function h : S — N such that A(Ds) < h(s) for any
s € S where h(Ds) denotes the maximum of k(b) for all b € S which occur
when we express Ds via generators from S (as A is free, such an expression
is unique). A free bocs possessing a triangular system of free generators
is called triangular. It is known (cf. [RK]) that if A is triangular, then
any idempotent in R(A) splits and a homomorphism f € Homu(M,N) is
invertible if and only if f(u;) is invertible for each : € Ob A.

The notion of coverings can also be defined for bocses. Namely, a
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morphism

F=(F,R):A=(A4 V)5 A=(4,V)

is called a covering if Fy is a covering of categories and for all objects : €
Ob A, j € Ob A, F) induces bijections:

D V(kj) - V(i,Fj) and @ V(5 k) - V(Fi,i).
Fk=i Fk=1i

A connected bocs (free, triangular) will be called simply connected if it pos-
sesses Nno non-trivial connected covering.

The advantage of bocses is that they admit plenty of “reduction al-
gorithms” based on proposition 4.1. A general scheme for producing such
algorithms is the following one. Suppose that A’ is a subcategory of A and
F': A" —» B'is afunctor. Consider the amalgamation (or push-out) B of B’
and A with respect to F' and the inclusion of A’ into A. Then universality of
amalgamation and proposition 4.1 imply for the natural functor F: A - B

Proposition 4.2. The functor F* : R(AF) - R(A) is an equivalence
between R(AF) and the full subcategory of R(A) consisting of all represen-
tations F': A — Vect whose restrictions to A’ can be factored through F'.

In most cases (cf. [RK], [R], [D]}) A’ and F’ are chosen in such a
way that any functor A’ — Vect can be factored through F', so F* is an
equivalence of categories. However for our present purposes an algorithm
will be useful to deal with other cases.

Recall also some notions related to representations of bocses. If the
category A contains finitely many (say, n) objects, then the vector-dimension
dimM = (di,...,ds) is defined as in §2 and we put |M| = d; + ... + d,.
Suppose now that A is free with a finite set of free generators. Denote by s;;
the cardinality of So(,j), and by t;; that of $1(Z,7). Then the bilinear form
(,)a on R™ is defined as follows:

(X,Y)a= Z iy = Y sijriws + Y by

ij t,j

The corresponding quadratic form g4(X) = (X, X)) 4 is called the Tits form
of the bocs A.

Fixing a vector d € R™, denote by R4(A) the set of all representations
of A of vector-dimension d. Fixing bases in all M(i) we can consider these
representations as sets of matrices, thus Rq(A) as an algebraic variety over
K (really, an affine space, as our bocs is free and hence any set of matrices
of prescribed dimensions defines a representation of A).
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§5 Small reduction

We are going to use proposition 4.2 in the following situation. Let A be a
free triangular bocs given by its triangular system .S of free generators and
its differential D. Suppose there is a € So(,7) with i # j and Da = 0 (call
such a a minimal edge). Denote by A' the subcategory of A consisting of
two objects ¢,j and the single morphism a. Take for B’ the trivial category
K{i,j} (i.e. the category consisting of the objects 1 and j and scalar multiples
of the identity morphisms only) and for the functor F' : A’ — B’, that
mapping i to i ®j, j to j and a to the morphism i & j — j given by the
matrix (0 1; ) (we really consider rather the additive envelope add B’ of the
category B'). Now we can construct the amalgamation B and the functor
F : A — B prolonging F' and hence construct a new bocs AF and the functor
F*. R(AF) — R(A). Call AF the small reduction of A via a in direction ij.
The small reduction of A via a in direction ji is defined similarly: we only

have to take for F' the functor mapping i to ¢, j to i ®j and a to ((1)) Now
proposition 4.2 implies

Proposition 5.1. If AT is the small reduction of a minimal edge a in direc-
tion ij (ji), then F* establishes an equivalence between R(AF) and the full
subcategory of R(A) consisting of all representations M with rank M(a) =
dim M (j) (resp. rank M(a) = dim M(i)).

Moreover, in this case AT is also a free triangular bocs and if both M(i) and
M(j) are non-zero for some M = F*(N), then |M| > |N]|.

(The last assertions are proved just as they are in [D] for the usual
reduction of a minimal edge.)

Corollary 5.2. Under the conditions of proposition 5.1 suppose that a
vector-dimension d of representations of A is given such that d; < d; (resp.
d; < d;). Then there is an open and dense (in the Zariski topology) subset
U C R4(A) such that U C Im F*.

We need a precise description of A" given in [BGOR] (it can also
be easily obtained using calculations similar to [D]) in terms of its bigraph
Q' = QaF. Suppose that the minimal edge a was reduced in direction ij (for
the ji case the answer is analogous). Then @' and the new differential D' are
as follows. The set of vertices of Q' coincides with that of @ = Q4. The set of
free generators (arrows) S’ is obtained from .S by deleting a, adding instead
of it a new arrow a’ € 5](j,i) (note that ' differs from a both in direction
and in type: it is dashed while a was solid) and extra arrows b’ corresponding
to the arrows b € S with source or target ¢ (for the sake of simplicity suppose
that S(i,i) = 0 as it is in the only case we need). Namely, if b € S (i, k)
(m = 0,1), then ¥ € S,,(j, k) and if b € Sm(k,i), then ¥' € S, (k,j). In
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other words, corresponding to each arrow (other than a) incident on i, we
adjoin another incident on j having the same type and direction.

To define D' we introduce some notation. If w = ...ab;...ab,... is an
(oriented) path in @ where all inclusions of a are shown, put W = ...b{...b5...
(all a are excluded and each right neighbour b of some a replaced by the
corresponding ', if a does not occur in w, then @ = w); if w = pa, ie. a
is the last arrow of w, then ¥ = 0. For w = pa put w' = pa’, otherwise
w' = w; finally for w = ap put 'w = a'p, otherwise 'w = w. Extend these
three operations by linearity to all elements of A, V and V ®4 V. Now we
are able to describe D' .
if b€ S(k,I) and ! # ¢, then D'b = Db;
if 1 =i, then D'b= Db+ a'b’ and D'b’ =' (Db);
if k=i, then D'8 = (DbY + ba';

Dd =0.

A useful consequence of this description is that we can determine
whether a bocs was really obtained from another one by a small reduction
of some minimal edge.

Proposition 5.3. Suppose a bocs A is given by its quiver and there is a
dashed arrow o' € S,(j,i) for j # i and there exists an injective mapping
b+ b’ putting in correspondence to each b € Sm(i, k) or Sp(k,i) an arrow
b' € Sm(j, k) or Sm(k,j), respectively, such that:

o ifbe S(i, k), then DY = (Db) + ba';

o ifb€ S(k,i), then Db=w + a'V and DV ='w for some element w

(not necessarily a word);

where the operations w' and 'w are defined as above. Then there exists a
bocs B (with the same set of objects) and a minimal edgea : i — j in B
such that A is the small reduction of B via a in direction ij.

(Of course, the analogous result is valid for a small reduction in direc-
tion ji). We shall call such an arrow a' integrable and the bocs B integrated
from A via @' in direction ¢j (or ji as the case may be).

Recall also the algorithm of “regularisation” (cf. [RK], [D]). An arrow
a € So(1,7) is called irregular provided Da € S(i,j) (this depends on the
choice of free generators). Define A’ and B’ as for the algorithm of small
reduction but put now F'(¢) =i, F'(j) = j and F'(a) = 0 (notice that now it
is possible that i = j). Again we are able to construct the amalgamation B
and the functor F': A — B prolonging F’, but in this case any representation
of A can easily be shown to be equivalent to some M with M(a) = 0, thus
proposition 4.2 implies
Proposition 5.4. In the above situation F* : R(AF) > R(A) is an equiv-
alence of categories.

Small reductions and regularisation are compatible with the Tits forms
of bocses.
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Proposition 5.5. If a bocs B is obtained from another one A by small
reduction or regularisation, then their bilinear forms (, )4 and (, ) p are equiv-
alent (hence so are also their Tits forms ¢4 and ¢g).
Proof. For regularisation it is obvious that even (,)a = (,)p. For small
reduction, say in direction ij, one can easily check using the above description
of B that (,)p is obtained from (, ) 4 if we change, in the standard basis {e;}
of R™, the vector ¢; to €; + e;.

Small reduction and regularisation are also compatible with coverings
of bocses.

Proposition 5.6. Ifa bocs B is a small reduction of another bocs A, then
A and B are either both simply connected or both not.

Proof. Clearly, either both A and B are connected or neither is. Suppose
they are connected and F': A — A is a non-trivial connected covering. Let
B be the small reduction of a minimal edge a : ¢ — j, say in direction ¢j.
Then one can choose for each object i’ of A such that Fi' = i an object j'
with Fj' = j and an arrow a' : i’ — j' with Fd' = a (hence Dd’ = 0). But
then we can apply to A the small reduction of all ' (each in direction 1'j')
and obtain a commutative diagram:

!

I & o

-

(PRI

in which G is again a covering (for more details, cf. [DOF]). The description
of small reduction shows immediately that B is connected, thus B is not
simply connected.

Conversely, let G : B — B be a non-trivial connected covering of B
and a' : j — i the new dashed arrow in B, hence integrable in the sense of
proposition 5.3. Then again for any object i’ of B such that Gi' = i one can
choose j' with Gj' = j and an integrable arrow a” : j' — ', Thus we can
integrate all o’ and obtain a covering F : A — A which is also non-trivial
and connected.

Analogous arguments give

Proposition 5.7. If B was obtained from A by regularisation and A was
simply connected, then each component of B is also simply connected.

Of course, in this case B need not be connected. Moreover, easy
examples show that B can be simply connected even if A was not.
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§6 Proof of the main theorem

Recall that in order to accomplish the proof of Theorem 3.1, we have only
to prove lemma 3.5 and lemma 3.3 (iv). To do this, we need a special type
of bocs related to bimodules (cf. [D]).

Suppose given two categories A;, A; and an A;-A;-bimodule U. It is
convenient here to consider A; and A; additive but with finite-dimensional
skeletons with object sets I} and I; respectively. Define the category C(U )
of “elements of the bimodule U” which has for objects the elements of all
U(i,j) with i € Ob A;, j € Ob A;. A homomorphism from u € U(4,j) to
u' € U(i',j') is defined as a pair (a,b) with a: i — ¢ and b: j — j' such
that bu = v'a.

Categories of type C(U) coincide with those of bocs representations,
as the following theorem, proved in [D], shows.

Theorem 6.1. Suppose that, in the above situation, the categories A;, A,
are split and all spaces U(i,j) are finite-dimensional. Then there exists a
free triangular bocs A such that categories C(U) and R(A) are equivalent.

We will need also the precise construction of the bocs A which will be
given in terms of its bigraph Q)4 and differential D. Namely, the vertex set of
Q = Q4 will be I U, I. All solid arrows go from some vertex ¢ € I, to some
J € I and the solid arrows a : 1 — j are in 1-1 correspondence with a basis
of the dual vector space U(i,j)*. All dashed arrows are going from some i to
j where ¢ and j are both either in I or in I; and the dashed arrows b:¢{ — j
are in 1-1 correspondence with a basis of rad(z,j)*, where rad denotes the
radical of the appropriate category. The differential D is defined on a solid
arrow a : 1 — j as I*(a) — r*(a) and on a dashed arrow b : i — j as m*(b)
where [*, r*, m* are the mappings dual to I, r, m respectively, where

l:@rad(k,j)@U(i,k) - U(1,j)
k

r :@U(hj)@rad(i, k) - U(i,j)
k

m : P rad(k, j) ® rad(i, k) — rad(i, 5)
k

are generated by multiplications.

It is convenient to consider elements of U as matrices with entries
in U(é,j). Namely, let v € U(z,y). Decompose z = @q4;j with j € I,
Yy = @g;t with ¢ € ;. Then v will be considered as a block matrix (vj),
where v;j is a matrix of size d; X d; with coefficients from U(7,5). Then
we obtain a representation of the bocs A corresponding to v by mapping
each vertex ¢ € I) U I, to a d;-dimensional vector space and any solid arrow
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a:i—j,ie. anelement of U(i,})*, to the linear map defined by the matrix
a(v;;) (applying a to a matrix component-wise). Thus the dimension of this
representation is the vector d = (d;).

Returning to the proof of the main theorem, recall that in lemma 3.5
we are considering the Az-A;-bimodule N = Hom 4(P?, P')*, where 4,, =
Ends(P™), P! = k1P and P?2 = k2P, @ ... ® kyPaj P1, ..., Ps are all non-
isomorphic, indecomposable projective modules over a Dynkin algebra A
and Homu(Py, P;) = 0 if i # 1. Of course, the categories A, and A, are
not additive, but we are able to replace them by additive ones, say, that of
all modules of the form d; P, and that of all modules of the form d2 Py &
... ® d, P, respectively. So we can define the bimodule U with U(X,Y) =
Hom4(Y, X)* and obtain N = U(P', P?). Clearly, isomorphic elements
of N in the category C(U) are just those lying in one H-orbit, and the
endomorphism ring End(z) of an element z € N defined before the lemma
3.5 is in fact its endomorphism ring in the category C(U).

Applying theorem 6.1, we construct the corresponding bocs A. Its
vertices correspond to modules P,..., P, (and will be denoted by 1,...,n).
The only solid arrows are those from 1 to some i # 1 corresponding to a
basis of A(i,1) = Homa(P;, P,) = U(Py, P;)*. Since A(1,1) = K (there are
no oriented cycles in @ 4), there are no dashed arrows 1 — 1. If i,5 # 1, the
dashed arrows b: i — j correspond to a basis of rad(i,j)*. Hence, there are
no loops and at most one arrow i — j if i £ j (it exists if A(i,j) # 0). The
differential of A arises from multiplication in A. Namely, using the above
description, one can verify that for an arrow a : ¢ — j it has the form:
Da =3 bic, where the sum is taken over all vertices k such that there are
arrows cg : ¢ — k, bg : k — j for which the corresponding products in A
are non-zero (if a is solid, hence i = 1, we need A(j,1)A(k,j) # 0 and if
is dashed, then A(k,j)A(i, k) # 0). As the algebra A can be reconstructed
from the bocs 4, it is quite obvious that any covering of one of them provides
a covering for the other, whence we have

Proposition 6.2. The bocs A is simply connected.

Consider the bilinear form (, ) 4 of the bocs A. By definition, it is:

(X,Y)a= Z:riyi - Zsliirlyi + Z SiTiY;

i i#l 1,j#1

where s;; is the number of arrows from ¢ to j (in our case the type of an
arrow is prescribed by its ends). But s;; = dim A(#,1) = ¢;; and, for i # 1,
sij = dim A(i,j) = cij, where the c;; are the entries of the Cartan matrix
C 4 of the algebra A. Then an easy calculation shows that (, )4 is equivalent
to the bilinear form with Cartan matrix C4. So we have
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Proposition 6.3. The bilinear forms (, )4 and (, )4 are equivalent. Thus
the Tits form q4 is positive definite.

The next lemma is the key to the whole proof. Define a road in the
bigraph @ = Q4 as a path in the graph obtained from @ by adding a new
arrow a~! for each a of Q (no matter of what type) going in the opposite
direction. In other words, a road is a non-oriented chain of arrows in contrast
with paths which are always supposed oriented. K the source of a road w
coincides with its target, call w a circle (again in contrast to cycles which
are supposed oriented). A road (in particular, a circle) will be called clean
if all arrows with their sources and targets in the vertices of the road are
themselves in the road. In particular, if a path p of @ occurs in Da for an
arrow a (with non-zero coefficient, of course), then a~'p is a circle in @ and
is called an active circle with marked arrow a. All other circles will be called
passive.

Lemma 6.4. If A is a simply connected bocs with positive definite Tits
form q = ¢4, then every clean circle in its bigraph Q is active.

Leaving the proof of this lemma (which is rather cumbersome) to the
end of the section, we now show how it implies all the results needed. First
of all, since the conclusion of the lemma is, of course, sufficient for A to be
simply connected, we obtain

Corollary 6.5. Any bocs B obtained from A by deleting some vertices
(together with all arrows which they are ends of) is also simply connected.

Proof of lemma 3.3 (iv). (Cf. the notation of this lemma.) If ab = 0,
then, of course, A(j,1)A(j,¢) = 0 as these spaces are 1-dimensional. Now if
A(7,1) # 0, there are arrows 1 — ¢, 1 — j and j — ¢ in A, which form a
clean passive circle, so we have a contradiction to proposition 6.2.

Now, as NV was identified with the set of representations of A of di-
mension (ky, ..., ks ), the proof of lemma 3.5 follows from the more general
result:

Lemma 6.6. Let A be a simply connected bocs with positive definite Tits
form, andd = (dy, ...,dy,) be a fixed dimension for representations of A. Then
in the set of all representations of A of dimension d there is an open dense
subset consisting of isomorphic representations and, if M is one of them,
then Enda(M) is a Dynkin algebra. Moreover, if there exists a solid arrow
a:j — i withdd; # 0, then [End4(M)| < |d| if a is regular.

Proof. Corollary 6.5 allows us to assume that all d; # 0. Now use induction
ond =d; + ...+ d,. If Ahas no solid arrows at all, then its representation is
completely defined by its dimension, so there exists, up to isomorphism, only
one representation M of dimension d. Its endomorphism ring is, by definition,
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Hom 4_4(V,(M, M})). Since the category A is trivial, this endomorphism ring
is isomorphic to:

€D Hom(V (i, ), Hom(M(i), M(7))) = @) M(i) ® V(i,5)" ® M(:)".

Denote the last expression simply as M ® V* ® M*. One can check that the
multiplication of A-homomorphisms corresponds via this isomorphism to the
composition

MOV QM*QMQV*QM* =5 MQV*oV*@M* ™8 MoV e M*,

where m is the comultiplication in V and ev is generated by the evaluation
map M*® M — K. But m* : V*® V* — V* turns V* into an algebra.
Since A was simply connected, this algebra is easily shown to be simply
connected too and one can check that the Cartan matrix of V* is just that
of the bilinear form (,)4. Hence V* is a Dynkin algebra. To each vertex
¢ of the bigraph Q4 corresponds a projective indecomposable V*-module
P} and if we put P! = diP; & ... ® dnP,, then M @ V* ® M* may be
identified with Endy.(P') which is therefore also Dynkin. Note that in this
case [End 4(M)| = |P'| = |d]|.

If there are solid arrows in A, take one of them, say a : ¢ — j with
h{(a) a minimal value of the function k used in the definition of triangular
bocses. Then either Da = 0 or Da = b for some b € S;. Note that in the first
case ¢ = j is impossible as A is simply connected with positive Tits form.
Thus we may apply to a either small reduction or regularisation. The latter
does not change the dimension but reduces the number of arrows. As for the
former, proposition 5.1 and corollary 5.2 allow us to choose the direction of
reduction in such a way that all representations of R4(A) lying in some open
dense subset have the form F*(M ) for some representation M of the reduced
bocs AF with dimension d' where |d'| < |d|. Propositions 5.5 and 5.6 show
that the new bocs is also simply connected with positive definite Tits form,
so an obvious induction completes the proof.

The proof of lemma 6.4 requires some topological methods, though
these are rather simple and available from any elementary course, say [AB].

First of all define the fundamental group of the bocs A to be the group
consisting of equivalence classes of circles containing some chosen vertex i
under the equivalence relation

-1 -1
a” a~aa" " ~1 forany arrow a,

w ~ 1 for any active circle w.

(Group multiplication is, of course, composition of circles.) If this group is
non-trivial, then one can build a non-trivial covering of A using practically
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the same construction as in [BG]. But it is quite obvious that the group
defined above coincides with the fundamental group of the cell complex Q*
obtained by attaching a 2-dimensional cell to each active circle of the bigraph
Q. I am going to show that, if A has positive definite Tits form and contains
a passive circle, then even H1(Q*) # 0.

On the contrary, suppose H;(Q*) = 0. Choose a minimal subcomplex
S of Q* such that: (i) Hi(S) = 0; (ii) S contains a clean passive circle
wo; (iii) with any two points, S contains all arrows connecting them, if such
arrows exist in Q.

Recall that if X, Y are two subcomplexes of Q*, there is a Mayer-
Vietoris exact sequence for homologies:

0 —Hy(XNY) — Ha(X) @ Hy(Y) — Hy(X UY) -2
Hy(XNY)— H(X)® Hi(Y) — H(XUY)-2H  (MV)
Ho(X NY) — Ho(X)® Ho(Y) — Ho(X UY) — 0.

We use it to show that H,(S) = 0. Otherwise take a 2-dimensional cycle z
on S and a cell X which really occurs in z. We can suppose that z = X 4 ...

Put Y = S— X (where X is the interior of X). Then in (MV)
H(XNY)=Z=Imd,, XUY =35,

whence H1(Y) = 0 in contradiction to the minimality of S.

We prove now that S contains only one passive circle. If there were
two of them, w and w’, then there would be an edge a belonging to w' but
not to w. Let X be the closure of a 2-dimensional cell containing a. Put

Y =S5 (XUa). Then XUY = S and XNY = B— a, where B is the
boundary of X. Thus (MV) implies H;(Y) = 0 and, since Y contains w, this
contradicts the minimality of S. Thus wy is the only passive circle in S.

Now it is evident that each arrow a belonging to S lies either on wy
or on some active circle such that the corresponding cell is in .S (we shall
say then that this circle is active in §). Otherwise apply (MV) for X = aq,
Y = 5— a. Again X UY = §, so di = 0 while X NY consists of 2 points,
thus Ho(X NY) =7 & Z whence also Ho(Y) = Z & Z. This means that ¥
consists of 2 connected components and we can diminish S replacing it by
the component of Y containing wy.

Call a circle of @ even if it contains an even number of dashed arrows
and odd otherwise. I claim that @ contains no even clean circles. To see
this, let w be such a circle. Consider the quadratic form ¢,, obtained from ¢
by putting to 0 all variables except those corresponding to the vertices of w.
It has the form:

qu(z1, .- Z:c + Z (£z:2it1), (Tms1 = 1)



