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As it was conjectured in [ DFT] and proved in [D1], finite-dimensional algebras of
infinite type (i.e. having infinitely many indecomposable representations) split into
two classes. For the first one, called tame, indecomposable representations of any
fixed dimension form a finite set of at most 1-parameter families, while for the
second one, called wild, there exist arbitrarily large families of non-isomorphic
indecomposable representations. Moreover, in some sense, knowing representa-
tions of one wild algebra, one would know those of any other algebras.

A lot of examples showed that the same should hold for Cohen-Macaulay
modules over Cohen-Macaulay algebras of Krull dimension 1. In this paper we
give a proof of it based on the same method of “matrix problems” or so called
representations of bocses (cf. Sect. 1). But we had to consider a new situation,
namely that of “open subcategories” (Sect. 2) and first reprove the results of [D1]
for it. This new shape seems to be unavoidable in the case of Cohen-Macaulay
modules but it should be also of use for other questions in representation theory. In
Sect. 3 we propose a method to reduce the calculation of Cohen-Macaulay modules
to some open subcategory and use the results of Sect. 2 to prove the tame-wild
dichotomy.

The method we use is rather well-known in the theory of integral representa-
tions (cf. [GR] or [RR]). In principle, it almost coincides with that used in [J] for
representations of commutative orders. We hope that it will be possible to spread
both the method and the main theorem on tame-wild dichotomy to any orders over
a complete discrete valuation ring, although at the moment we lack some technics
to do it.

1 Preliminaries

As the notions of bocses and their representations are not well-known, remind the
main definitions (cf. [Roi, D1]). All considered categories will be linear over some
base field K which will always be supposed algebraically closed. Respectively, all
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functors are K-linear (bifunctors bilinear). We write Hom, ® instead of Homy,
® k- A module over a category A is a functor M: A — Vect (the category of K-vector
spaces); an A-B-bimodule (where A, B are categories) is a bifunctor V-
A°? x B — Vect; if A = B, we call V' an A-bimodule. For ve V(X, Y), ac A(X', X),
be B(Y, Y') we write bva instead of V(qa, b)(v). A bocs is a pair a = (4, V) where
A is some category and V an A-coalgebra, ie. an A-bimodule V' supplied with
a comultiplication w. V- V® 4,V and a counit & V' — A satisfying the usual
conditions.

A representation of a over some algebra R is defined as a functor M:
A — pr — R, the category of finitely generated projective R-modules. If N is another
representation, define

Hom, (M, N) = Hom,_ ,(V, (M, N}))
where (M, N) is an A-bimodule defined by the rules:
(M, N)(X, Y)=Homp(M(X), N(Y)) for X, YeobAd;
afb = N(a)fM() for fe(M,N)X,Y),.
aY->Y, bbX' -X inA.

The product of g e Hom,(M, N) and e Hom,(L, M) is defined as the com-
position

u PRy m
Vo VR V—>(M,N)® (L, M) — (L, N)

where m is the multiplication of R-homomorphisms. Thus the category of repre-
sentations Rep(a, R) is defined. We write Rep(a) instead of Rep(a, K).

Any algebra R can be considered as a bocs (“principal bocs”) if we put
A = V = R. Of course, representations of such bocses are just representations of R.
Remark that if MeRep{a, R} and LeRep(R, R’), then their tensor product
M(L) = M®pgL lies in Rep(a, R'); so M can be viewed as “a family of representa-
tions of a parametrized by R”.

As a rule, the category A will be finitely generated over K, i.e. with finite object
set and a finite set of morphisms (generators) whose products span all spaces of
morphisms A(X, Y). A dimension of a representation of a is defined as a function
d: ob4 — N. In cases when there is a notion of rank for finitely generated projective
R-modules, we can associate to M eRep(a, R) its dimension dim M: ob4 - N,
namely, (dim M}(X) = rank M (X) and denote by Rep,(a, R) the set of representa-
tions having dimension d. For instance, this is the case if R= K (hence
rank = dim), so Repy(a) is defined. If S is a system of generators for A, then each
representation M eRep(a) determines (and is determined by) linear mappings
Mi{a): M(X)—> M(Y), ae S, a: X — Y. Hence, treating all linear mappings M(a) as
matrices, we can consider Rep,(a) as an algebraic variety lying in affine space All4ll
carrying the Zariski topology, where
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All considered bocses are supposed normal — which means that for any X eob4 an
element wy e V(X, X) exists such that ¢ (wy) = 1y, tlwy) = oy ® wy. In this case
the bimodule structure on V is completely determined if we know the kernel of the
bocs a, V' = Kere and for each ae A(X, Y) its differential 0a = awy — wyae V.
Moreover, the coalgebra structure is determined if we know the differentials
=) —vQ@wy —wy®ve V®, Viorall ve V(X, Y).

In main applications free bocses arise, i.e. such that A is a free category (that of
paths K I of an oriented graph I') and the kernel Vis a free A-bimodule. A free bocs
is completely determined if we know the set S, of free generators of A4, the set S; of
free generators of V and their differentials. The set S = S, U S, is called a set of free
generators of the bocs a.

For technical purposes, semi-free bocses are needed. A semi-free category is, by
definition, a category of the form KI'[g,(a) '] where a ranges through the set of
loops (i.e. elements of Sy such that a: X — X) and g¢,(t)e K[t] is a non-zero
polynomial (depending on a). If g, # const, call the loop a marked. A bocs is called
semi-free if A is a semi-free category, V a free A-bimodule and da = 0 for all marked
loops. In this case call S a set of semi-free generators of a.

If a is free, then, of course, Repy(a) ~ Al if a is semi-free, then Rep,(a) is an
open subset in A4, B B

A semi-free category is called triangular if there exists a system S of semi-free
generators and a function h: S — N such that for any aeS da belongs to the
subbocs generated by be S with h(b) < h(a).

A representation M eRep(a, R) is called strict if it satisfies the following two
conditions:

(1) If LeRep(R, R’) is indecomposable, then M(L)eRep(a, R’) is also in-
decomposable.

(2) If L, L’ e Rep(R, R’) are non-isomorphic, then M (L) 4 M(L’), too.

One can say that if such M exists, the representation theory of a is at least as
complicated as that of R.

Ifaset F = {M;|M; e Rep(a, R;)}} is given (each M; can be a representation over
its own R;), we call F strict provided each M; is strict and if i & j, then
M;(L) 4 M;(L’) for any L e Rep(R;, R), L' € Rep(R;, R).

We need also “bimodule categories” defined as follows. Let U be an R;-
R,-bimodule where Ry, R, are some algebras. For each algebra R let P; = P;(R) be
the category of finitely generated projective R;® R°’-modules. Consider a P,-
P,-bimodule Uy such that Ug(P,, P,) = Homg, g rer (P, U ®g, P2).

Take the elements of all Ug(P,, P,) as objects of a new category U(R) and as
morphisms from ue Ug(P,, P,) to u' € Ug(P}, P}) take all pairs (f,,f) with
fie Homg, g gor (P;, P7) such that u' f, = fou.

If L e Rep(R, R’), then P,®rL € P;(R’), so L defines a natural mapping

®L: Up(P1, P2} > Ug (P ®rL, P, ®gL).

Hence, one can reproduce for bimodule categories the above notion of strictness.
Note that this definition is formally distinct from that of [D1] though they
provide equivalent categories.
Usually the algebras R; are finite-dimensional and in this case the following
theorem is valid [D1]:

Theorem 1. If R,, R, are finite-dimensional algebras and U is a finite-dimensional
R,-R,-bimodule, then there exists a free triangular bocs a = a,, and for each algebra
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R an equivalence of categories Tg: Rep(a, R) > U(R) commuting with tensor prod-
ucts, i.e.

Te(M®gL)~ Tp(M)®gL for any LeRep(R, R').

2 Tame and wild open subcategories

Let a be a finitely generated bocs and X < Rep(a) a full subcategory. Call X an
open subcategory if it satisfies the following conditions:

() Y MeX and N ~ M, then N eX;

2 M@&NecXifand onlyif MeX and NeX;

(3) for each dimension d the subset X4 = X N Repq(a) is open in Repq(a).

For any algebra R put X(R) = {M ¢ Rep(a R)IM(L)e X for any L € Rep(R)}.
It is clear that if M € X(R) and L € Rep(R, R’), then M(L)e X(R').

Call X wild if for any finitely generated algebra R there exists a strict representa-
tion M e X(R). Non-formally this means that to know the representations of X we
have to know the representations for all finitely generated algebras.

It is well-known (and easy to check) that to prove wildness it is sufficient to find
a strict representation M € X(K {x, y)) (free non-commutative algebra with 2 gen-
erators), as the latter has a strict representation over any other one. A little more
complicated but also known (cf. [GP] or [D2]}is that here we can replace K {x, y)
by the polynomial ring K[x, v] or even the power series ring K[|x, y|].

Call a rational algebra any algebra of the form K[x,f(x)" '] for a non-zero
polynomial f(x), i.e. the affine algebra of a smooth rational affine curve.

Theorem 2. Let a = (A, V) be a finitely generated semi-free bocs, X = Rep(a) an
open subcategory. Then the following conditions are equivalent:

(1) X is non-wild,

(2) for each dimension d there exists a subvariety X4 < X4 such that

dmX,<ldl= Y d(7)
- TeobA
and any representation from X is isomorphic to one belonging to X &5

(3) for each dimension d there exists a subvariety Yy = Xy such that dim Yy 1
and any indecomposable representation from X is isomorphic to one belonging to Yy

(4) there exists a strict set {M;liel, M; e_X(Ri)} with rational algebras R, such
that for each dimension d all indecomposable representations from X4 except a finite
number (up to isomorphism) are isomorphic to M(L) for some i€ly and some
L e Rep(R;) where 14 is a finite subset of I (depending on d). -

(If these conditions are satisfied, call X tame).

Proof. (4)=(3) as any indecomposable n-dimensional representation L of a ra-
tional algebra K[x, f(x)~'] maps x to a Jordan cell J(i) with eigenvalue 2 such
that f(2) += 0. Hence representations M;(L} for such L produce a [-dimensional

subvariety of Xy and as d is fixed, n is also fixed.
(3) = (2) is quite evident as |d| is an upper bound for the maximal number of
indecomposable direct summands of any representation of dimension d.
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(2)=(1) if M e X4(K<x,y)) is strict, then M(L) for L e Rep, (K{x, y>) form
in X,4 a subset of dimension at least n? consisting of pairwise non-isomorphic
representations and n? > |nd| if n > |d|.

At last, (1) = (4) can be proved just by repeating the proof of the above Theorem
1 given in [D1] if we make the following simple observation. Let a € A(X, Y) with
da = 0. Then if M ~ N in Rep(a), we have N(a) = DM (a)C~" for some isomor-
phisms C: M(X)—-> M(Y) and D: N(X)— N(Y) (C=D if X =Y). Denote
X(a) = {M(a)| M e X}. As X is an open subcategory, X(a) form an open subset in
the space of all linear mapping L — L' for any fixed L = M(X) and L' = M(Y).
Then the only possibilities for X(a) are:

—if X + Y, either all linear mappings, or those F: L — L’ withrk F = dim L, or
those with rk F = dim L’ or isomorphisms only;

—if X = Y there exists a finite subset E(a) = K such that X(a@) = {F: L > L|F
has no eigenvalue from E(a)}.

Of course, the proof of [D1], based on algorithms of reduction of matrices, is
rather complicated. Unfortunately, till now the only known way to obtain the
equivalences (1) <> (2) <> (3) is to prove that (1) = (4).

3 Cohen-Macaulay algebras

In this paragraph we consider algebras A over K satisfying the following condi-
tions:

(A1) The centre Z of A is a complete local noetherian Cohen-Macaulay ring of
Krull dimension 1 with residue field K;

(A2) Ais a (finitely generated) Cohen-Macaulay module over Z;

(A3) A is semi-prime, i.e. has no nilpotent ideals.

We call such algebras CM-Algebras. Denote by CM(A) the category of A-
modules which are maximal Cohen-Macaulay modules over Z, ie., in our case,
finitely generated and torsion free. Call them CM-A-modules.

If A is a CM-algebra, its full quotient ring Q is a semi- smple artinian ring and
there exists a (not necessarily unique) maximal overring A, i.e. a CM-algebra such
that 4 = A = Q and there are no CM-algebras A’ + Awith A = A’ < @ (cf. [D3]).
It follows from [Rog] that A is always hereditary, i.e. any CM-A-module is
projective over A.

If R is any K-algebra, denote by CM(A, R) the category of R-A-bimodules
M satisfying the following conditions:

(M1) M is finitely generated as bimodule;

(M2) ,M is torsion free;

(M3) My is flat;

(M4) M(L) = M®pgL is a CM-A-module for any L € Rep(R).

If R/m is finite-dimensional over K for any maximal left ideal m < R, then (M4)
is equivalent to

(M4') for any non-zero divisor Ae Z the R-module M/AM is also flat.

Surely, if M e CM{A, R)and Le Rep(R, R’), then M(L) e CM (A, R’). So we are
able to define strict modules M e CM (4, R) and strict sets of such modules just as
in Sect. 1. If R is a finitely generated commutative K-algebra of Krull dimension d,
call any bimodule M € CM(4, R) a d-parameter family of CM-A-modules (with
base R).
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Call A4 CM-wild if for every finitely generated algebra R there exists a strict
module MeCM(4, R). Again we have to check the existence of M only for
R =K<{x,yy, or R=K]J[x,y],or R=K[|x, y|l

If a A-module M is torsion free (over Z) it can be embedded into the Q-module
Q® 4 M, so if A’ is an overring of A, i.e. a CM-algebra such that A =« A" = Q, we
can consider the A’-module A'M, which is the image of '@ M in Q® M. If
M was a CM-module, then so is A’ M. In this case Q ® 4 M is finitely generated over
Q, thus Q@O M ~rQ,@® - ®r,Q, where Qy, ..., Q, are all pairwise non-
isomorphic simple Q-modules. Call the vector t(M) = (ry, . . . , ry) the (vector) rank
of M and denote CM,(A) the set of all CM-A-modules of rank r.

Theorem 3. For a CM-algebra A the following conditions are equivalent:

(1) A is not CM-wild,

(2) for any rank r = (ry, ..., r,) there exists a d-parameter famify M of CM-
A-modules withd < |r| = 54_ r; such that any CM-A-module of rank 1 is isomorphic
to some M(L),

(3) for any rank t there exists a 1-parameter family M of CM-A-modules such
that any indecomposable CM-A-module of rank t is isomorphic to some M(L);

(4) there exists a strict set {M;|ie I, M;e CM(A, R;)} with rational algebras R,
such that for each rank 1 all indecomposable CM-A-modules of rank t except a finite
number (up to isomorphism) are isomorphic to M;(L) for some i€ I, and L € Rep(R;)
where 1, is a finite subset of I (depending on r). -

If these conditions are satisfied, call 4 CM-tame.

Proof. Again (4) = (3)=(2) = (1) is clear, so we have only to prove (1) = (4).

Fix an overring A" > A and denote by CM(A{A’) the full subcategory in
CM(A) consisting of all modules M such that A'M is A’-projective. Of course, if A’
is hereditary (e.g. maximal), then CM(A]A4") = CM{A). Let I < rad A be a two-
sided A’-ideal such that dimgA'/T < oo (it exists as A'/A is a finitely generated
torsion Z-module). Then IM « M <« A'M for any CM-module M and any
homomorphism ¢: M — N can be uniquely prolonged to ¢: A'M — A'N. Put

Ay = AL, Ay =AYl

and consider a new category C = C(A|A") whose objects are pairs (P, X)
with P a {finitely generated) projective A,-module, X = P a A,-submodule, and
morphisms (P, X)—(P,, X;) are A,-homomorphisms ¢: P — P, such that
@(X) € X,. Define a functor T: CM(A|A’)— C putting T(M) = (A" M/IM,
M/IM) and let C, be the full subcategory of C consisting of all such pairs (P, X)
that A, X = P. Then the following lemma is evident (cf. [GR] or [RR]}):

Lemma 1. T(M) e C, for any M € CM (A} A") and the functor T: CM(A{A") = Cq is
full, dense and reflects isomorphisms and indecomposability.

Now consider the A,-4,-bimodule U = A, and define a functor Im: U(K) — C
putting, for ¢: P, = P, Im ¢ = (P,, Im ¢). Denote X the full subcategory of U(K)
consisting of all such ¢ that Kergp < rad P, and 4, -Img = P,. Certainly, these
conditions define an open subset in Hom,(P,, P,) = U(P,, P,) and are stable
under direct sums and summands. As A, is artinian, any A;-module X possesses
a projective cover whence we obtain the following lemma:
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Lemma 2. If ¢ € X, then Im ¢ € Cq and the functor Im: X — Cy, is full, dense and
reflects isomorphisms and indecomposability.

Identify according to Theorem 1, U(K) with Rep(a) for a free triangular bocs a.
Then X becomes an open subcategory in Rep(a), thus Theorem 2 is applicable, i.e.
X is either tame or wild.

Let u € X(R) for some algebra R. Then u: P, —» P, where P; is a projective
A;® R°P-module. Call u good provided P; ~ P,/IP; where P, (resp. P,)isa projec-
tive A ® R°P-module (resp. 4’ ® R°”-module) and Coker u is flat over R. In this case
denote @i: P, —» P, some homomorphism for which u = ii(mod I).

Lemma 3. (@) If ue X(R) is good and M = Im i, then M € CM(A, R).
b) If {u;lie I, u;e X(R;)} is a strict set, all u; are good and M; = Im i, then
{M liel} is also a strict se.

Proof. (a) Remark that Cokeru ~ Coker i, so we have an exact sequence
0>M->P,5N-0
with R-flat N and hence an exact sequence
0>M®rL—>P,®gL—>N®gL -0

for any L e Rep(R) where P, ® gL is A’-projective. This does imply all properties
(M1)-(M4) for M.
(b) follows directly from Lemmas 1 and 2.

Lemma 4. Let ue X(R) for a finitely generated commutative domain R. Then there
exists a non-zero f€ R such that u, € X(R;) is good.

Proof. Denote by F the quotient field of R. Then (A/rad A)® F is semi-simple
[B1], hence rad(A® F) = (rad 1)® F and (A® F)/rad(A® F) ~ (A/rad A)® F.
Hence in A ® F idempotents can be lifted modulo radical and any projective
(A ® F)-module is of the form P& F for some projective A-module P. The same is
true for the aigebras A" and A;(i = 1, 2). As A; = A/l and I < rad 4, any projective
(4, ® F)-module is of the form (P® F)/I(P® F). Therefore, if P is a projective
A; ® R-module, there gxists a non-zero fe R such that P, ~ P/IP for a projec-
tive 4; @ R,-module P.Soifu € X(R), u:P; — P,, we can find fe R for which
(P;); ~ P;/IP;. But as A; are finite-dimensional, N = Coker u, is finitely generated
over R, and there exists a non-zero g € R such that N is flat [ B2], thus u,, is good.

Corollary 1. If X is wild, then A is wild.

Proof. Let ue X(R), R = K[x, y], be strict. Find f€ R such that u, is good and
a maximal ideal m = R such that f¢ m. As the m-adique completxon of R is
isomorphic to R =K[|x, y|] u, provides a good and strict element i € X(R). Then
Lemma 3 implies that A is CM-wild.

Corollary 2. If A" is hereditary and X is tame, then A is CM-tame.

Proof. Let {u;|i e I, u; € X(R;)} be a strict set satisfying conditions (4) of Theorem 2.
Remark that if R is a ratlonal algebra, then Rep,(R) — Rep,y(R,) is finite for any
non-zero f'e R and any dimension d. Therefore, Lemma 4 allows us to suppose all u;
good. But as A’ is hereditary, CM(A|A") = CM(A). Hence, Lemmas 1-3 imply that
the set {M;|ie I} with M; = Im #; satisfies condition (4) of Theorem 3.

Now (1) = (4) follows from Corollaries 1 and 2.
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