HARISH—CHANDRA S-HOMOMORPHISM AND ®-MODULES GENERATED
BY A SEMIPRIMITIVE ELEMENT
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We define Harish—Chandra S-homomorphism which generalizes the classical Harish—
Chandra homomorphism and study its properties. For G-modules (G E, E). gener-
ated by semiprimitive elements we prove the existence of composition sequences.

In this article we construct a generalization of the classical Harish—Chandra homo-
morphism [1]. We then use our results to study the structure of modules generated by semi-
primitive elements {2, 3].

1. The Harish—Chandra S-Homomorphism and Its Properties. Let ¢ be a complex simple
finite-dimensional Lie algebra of rank n, $ its cartesian subalgebra, 4 a system of roots
of &, m a basis of the system of roots A AT = A" (n) the set of positive roots in A with
respect to m, W = W(A) the Weyl group of the system A, and @“ the root subspace correspond-
ing to a root «a.

Let m=f{a, &, @} ST{L,2 .0}, Bg={x;[1€S}. Denote by J\s=As(ny a subsystem of

roots in A generated by w§. Furthermore, let {Hzla€an} be a basis of the Cartesian subal-
gebra 9, such that a«(Hq) =2 for all a € n. Let 95 and $° be subalgebras (Hola€ng) and
{HeEDla(H)=0 for all a€ds} , respectively.

For every a € A choose Xa€®"\{0} and define the following subalgebras of &:

8s = (Xia|a€my), NE = Z &% N5 = E [ B
agat Ag aeA+\As

Let U(®) be the universal enveloping algebra of the algebra @, and let Z(@) be the center
of U(&). Let Q (respectively, Qg) be the group of radical weights of the system (respec-
tively, Ag). Then the &-module structure with respect to adjoint representation on U(®)
defines a Q-graduation on it: U(@)::é%U(@gr

LEMMA 1. Let L5==L/US)W§IWU(@DW Then 1) Lg is a two-sided ideal in U(®),, 2)
Ls =N5U@NU@) ;5 3) U®)y=LsDU(Bs), ® U(®°.

The lemma is proven analogously to Lemma 7.4.2 in [1].

Definition: A Harish—Chandra S-homomorphism (with respect to a basis 7) is a projec-

tion @g U (@)U (8s), ® S(9°).

Remarks. 1. Ker¢g_ =Ls . 2. A Harish—Chandra S-homomorphism @5, is uniquely
defined by a set <A+(nP\As(n5) 3. 95, is the classical Harish—Chandra homomorphism with

respect to the basis m. 4. Ker X (95.ly¢) =0 and 95,/2(@) < Z(®s)® S ($°) where Z(@s)
is the center of the universal enveloping algebra U (&s)

It is known that Harish—Chandra ¢-homomorphisms are in a one-to-one correspondence

with bases of the system of roots 4, i.e., their number is equal to [W|. Harish—Chandra
S-homomorphisms are described similarly.
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LEMMA 2. Let Sc{1,2,...n}, Q={A" (@1)\As(wng)| weW} . The group W acts on the set
{0 transitively.

The proof is obvious, since AT (wn)\ As(wng) =w X (AT (W\As(g) for all W e W.

Proposition 1. Let Sc=1{1,2,...,n} , Ws the Weyl group of the system of roots AS, and
N({Wsg) the normalizer of the group Wg in W. Then 1) Harish—Chandra S-homomorphisms are in
one-to-one correspondence with cosets W/WS, and 2) Harish—Chandra S-homomorphisms with a
fixed root subsystem Ag{m) are in one-to-one correspondence with cosets N (Ws)/Ws.

Proof: Define a set Q={A+(wn)\A5(w:t,’) X |w€EW}. The number of different Harish—Chandra
S-homomorphisms is equal to |Q|. Fix a set AT (n)\ As(@®)€Q. . Then st(AT ()N As (1)) = Ws with
respect to the action of the group W on Q. Therefore, assertion 1 follows from Lemma 2.
Furthermore, every element AT (wn)\As(@wn,) of the set Q uniquely defines a set Ag(wm,),
but this correspondence is not injective. This means that there exist two distinct @, u,eW
such that A (wl'ts)-_ A (Wyrty)- Consider the natural transitive action of the group W on
the set of pairs Q_{(A+(wn)\A (Wig), Ag(wng)|weW) We see that the number of different

Harish—Chandra S-homomorphisms with a fixed As(®) is equal to the number of different ele-
ments in O with As(n) at the second place, i.e., (st(As(m)): st(A+(n NAs(E)) =NV Ws):Ws) , which

proves statement 2.

Let V be some weight ®-module, i.e., V=x% Vi , where V; = {vcV|Hov=»MHv for all
E ®

HED} . Let suppV ={rA€H*|Va =0} The elements of supp V are called the weights of the
module V.

The following proposition plays an important role in the theory of weight H-modules.

LEMMA 3. 1. Let V be an irreducible weight @-module and A€suppV. Then V) is an
irreducible U(@®); module.

2. Let V' be an irreducible U (®),-module such that Huv=A(H)v for all HED, veV.
Then there exists a unique irreducible weight @-module V such that Vj ~V’.

Proof: Let Vi >U be a proper U(®),-submodule. Then, U(®U SV , which contradicts
the irreducibility of V. 2. A weight @&-moduleM = U(@) ® V'has only one maximal submodule
Mand (M/m), >V’ . If L is an irreducible ®-module and L ~ V' then there exists an epi-
morphism Y:M—>L | Therefore, M/m~L . Q.E.D.

LEMMA 4. Every irreducible U(@s)o®3(@s) -module V' such that Huv=MAMH)? for all
HE9, v€EV’'  extends to an irreducible weight ®-module V such that V;~V'.

Proof: It suffices to use the Harsh—Chandra S-homomorphism and Lemma 3 of section 2.
Lemma 4 allows us to extend irreducible weight ®&-modules to irreducible weight ®-modules.

Definition: 1. An S-primitive element of weight A w1th respect to a basis 7 is a non-
zero element v such that Hv=A(H)v for all HED and NTv=0. 2. An element v & V is
called semi-primitive of weight X if, for some basis 7 of the system of roots A and some
S={l,2, .., n, v is an S-primitive element of weight A with respect to m [3].

Remark. The definition of S-primitive elements in the case where S = ¢ coincides with
the well-known definition of primitive elements.

Proposition 2. Let V be some ®-module generated by an S-primitive element v of weight A
with respect to a basis 7, 0 a central character of the module V, and 95:2(@5)—»@, where
2w =0s(2) for all z€Z(®s) . Let AS be the restriction of A to §°. Then8(z)=(8s®15) (@ ,(2)

for all z€Z(@).

Proof: For every 2z€Z(®) there exist uy, Uy, ..., uy EU(B) and a,, ay, ..., a, ENT such that

kR kR
z=0qg.(2)+ E u;a;. Then 8(2Q)v =2v=1¢@g (2)v + Z U0 = g, (2)v =(0s ® ls)(ws,n(l))v- Since the

i=l i==i

module V is generated by the element v, we have e(z)=(95®7»s)(qjs'n(z)).
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Let 6:-%— Z a, 65=—;— 2 a, AT = ATNAs. Let vy be an automorphism of the algebra
acaT aéAg'

S(9) acting as y(p)(M)=p(A—8) , where AEDY and p is a polynomial function on ©*
We similarly define an automorphism yg of the algebra S(9g) by letting Y5 (p) (&) = p (b —bs).

Let 7°=7VlseSy
LEMMA 5. Suppose (Pg,n53U(@S)o*>S($)s) is a Harish—Chandra S-homomorphism with respect

to a basis mg* Then the following diagram commutes:

(1@v3lcog o
U (®)y————3U (B5), ® S (9°)
YoTg . | |(¥5 0 0p115) ® 1,
¥ M

S(§) e——— S(9s) ® S(H°)

where m is a natural isomorphism of S($) onto S(Hs) ® S(HV).
To prove the above lemma it suffices to note that ";’}5(55)=‘P5 . Thus, Y09, _ =mo
(V50 Tpa) @ 790 Py o

Let i be the restriction of a homomorphism (Il ® y)o®@s, to Z(®) and ig the restriction
of a homomorphism (V50@p,a) ® 1 to Z(Bs)® S(PS) . Let j be the natural imbedding of Z(@)

into U(®), and jg the natural embedding of Z(@5)®S(S;)S) into U(@S)(,@S(@S) . Consider
the following commutative diagram:

mol

Z(3) s Z () ® S (§) S S S(D)
il js | ” (1)
vl e veeg, ¥ mo((ysoPg,n) @1
U(@)y———> U (Bs)y ® S(9°) S (9)-

Lemma 5 implies that the image of the center Z(®) under the composition mapping moisjo! is
equal to S(®)Y.

LEMMA 6. Z(®s) ® S(9%)~ S(§)7S.

Proof: The commutativity of diagram (1) implies that Z(®s) ® S(@S)ZS(»@S)W’A‘S@S(@S) . How-

ever, for all He¢9® , we have weEWs w(H):s"ls,vz,...,s,-,z(H) » where s;. is a reflection by a root
@, f=1k , where all @;€As . Consequently, si,(H)=H for all j =1, k, so therefore w(H) =
H. Thus, S(9°) = S(5°)¥S and Z(Gs) @ S (9%) ~ S (95”5 @ S~ S(®YS . Q.E.D.

Denote an isomorphism Z(9s) ® S(§°) . S(9)¥s by ¥g. Let NX (Ws) be the normalizer of
the group Wg in W. Since for every weN X (Ws) we have w(S(@)WS)CS(.i))WS , for every

bEZ(@Q@S(S@S) we can define
wh = ¥ (w (b)) (2)
Equation (2) defines an action of N(Wg) on Z(@s)®5(.f>s)

THEOREM 1. 1) (Z@®)=(Z@)8S @V 2) 18v900; Jyq, =11 ® ¥9)00,,

!Z((z) for all

Proof: Since Z(®) ~S(9)” , assertion ! of theorem follows from Lemma 6 and Eq. (2).
Furthermore, since an isomorphism yo mg'n:Z(@)_ﬁ;S(@)Wdoes not depend on the choice of basis =
of the root system A and (] ® v 095, (Z(B) = Z(H)® S(©®% for all weN(Ws) , assertion 2 of
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the theorem from the commutativity of the following diagram:

Z(®)—s Z(®s) ® S (9°)
?oq)g-( I l\pS (9)
S@F —> S(©)5 S (©).

Given an algebra A, let A be the set of isomorphism classes of irreducible representa-
tions of A. Define a natural mapping on characters (:Z @s)@S(b} ) —> Z(@)

Proposition 3. For every GEAZ(@) the set i~ (0) is finite and |/;'—1 0| (W W)

Proof: The proof follows from the commutativity of diagram (3) and the fact that the
dimension of the quotient field S(§)*S over the quotient field S(f)" is equal to (W:Wg).

2. Properties of Weight ®-Modules Generated by Semiprimitive Elements. In this sec-
tion we use results of section 1 to study &-modules generated by semi-primitive elements.

Recall the construction of the universal ®-module generated by an S-primitive element
of weight A [2]. 1In the universal enveloping algebra U(®) define a subalgebra As= U (%5 @ H°)

+ U (Gs)y-

Let (ps, U) be an irreducible representation of the algebra Ag such that Og(a+ Hju=*i(H)u
for all a€MT, HeH,u€U . Defining an @-module M(S,n, %+ 8,05 =U(0) ®U. Clearly, the
module M(S,n, A +46,p5) is a weight @G-module, M (S, n, A4 8,pg), > U, and every element of this
subspace is a generating S-primitive element of weight A.

The universality of the module is characterized by the following proposition.

Proposition 4. Suppose V is a ®-module generated by an S-primitive element v of weight
A with respect to a basis m and V) is an irreducible U (@s)y-module. Then there exists a
unique @-epimorphism ¥%:M(S,m, A+ 8,p)=>V such that %(I ®v)=v , where (pg» V3) is the

corresponding representation of the algebra Ag

The proof follows from universal properties of the tensor product.

Proposition 5. 1) In M(S,n, A+ 6,p) there exists a maximal ®-submodule N which is

different from M(S.n, A +8,pg) , and 2) if V is an irreducible @&-module with an S-primitive
element of weight A with respect to a basis m then Vo~ M(S,n,4+0,p/N where (p5, Vi) is the

corresponding representation of the algebra Ag

The proposition is proven in [3].

Let L(S, n.)\.-i—é,ps)':M(S,n,?»—%—é,ps)/N.

Remark. If S = ¢ then M(ﬁ,ﬂJ».Pg)=M(M , where M) is a Verma module associated
with either m or A.

Proposition 6. Every simple subfactor of a module M(S,%®, A +8,p5) is isomorphic to
L(S.n,p-%-é,?)s) for some MEDH* and ESEK\S,

The above proposition is proven analogously to a similar result for Verma modules cited
in [1].

Fernando cites in [4] still another method of construction of ®-modules generated by
S-primitive elements. Let V be an irreducible weight P=@5®§R§G‘:®S-module such that
Psv=0 for all v € V. Clearly, V is irreducible as a @s-module. We construct a @-module
M, (S, V)= U((S) ® V , which also contains a maximal ®&-submodule N, In addition, M(S,
A+ 8,p)/N >~ M, (5 n V)/N, where AesuppV, (ps, Vi) is the correspondlng representation of Ag

Furthermore, Proposition 4 implies that there exists an epimorphim X M(S,,h+ 68, pg) =M (S, m, V).
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Suppose MED*. Let P.={A€O* A —u€Q} . TFor every TEFP, let Prs={LEP|A
—16€Qsi =P, . Suppose 0CZ(®) . Let Kues Dbe the category of weight W-modules V with a
central character 8 such that suppV < P, . Clearly, every module of the form AM(S.x, A 46, 0o
is contained in some category Kie. Given VE€ARue, let TsaX (V)= {rA€supoV| there exists an
S-primitive element v € V of weight A with respect to 7). Let

D(S,npm8) ={Pi s Pu|gVEeEKLs:Tsa(VINPrs5= D}

LEMMA 7. |D(S, 7, 0)|<(W:Ws) for all Sc{1,2,...,n), U€ p* 0¢Z(G)

Proof: Let V be an irreducible object of a category K,,s with an S-primitive element of
weight A with respect to the basis m. Then an algebra Z(®s) ® S(9°) acts on a s & H°-
module E Vy by means of a certain character €Z(Gs)® S(9°) . Using Proposition 3, we

XePy,s
conclude the proof.
Now we are ready to prove the main result of this section.

THEOREM 2. Suppose &==L; £gz and (og, U) is a finite-dimensional irreducible repre-
sentation of an algebra Ag. Then a ®-module M(S,n, A +38.py) has a composition sequence.
Proof: The theorem is proved by induction on fﬂi for all S simultaneously. In the case

7| = 1 the theorem coincides with the corresponding result for Verma modules [1]. Suppose
m| > 1 and [S| = p. Let N be a maximal submoduie of M(S,n,A+8,p). Then Ny = 0. Since

the algebra &s is of type Ap, Bp, Cp, or Dp, a @s-module E Nu and all its submodules

uEk’A,s
contain a semi-primitive element [3, Theorem 3.2]. Without loss of generality we can assume
that all semi-primitive elements are S'-primitive if |S'| = p = | and are not S"-primitive if

[$"| < p—=1. Lemma 7 and the finite-dimensionality of subspaces N, imply that there exists
an epimorphism from a finite direct sum of @s-modules of the form M(S  a", A + 8s,p..) into

Z N Applying the induction hypothesis to every module M(S',a',A +8s,ps) , we obtain
WEP, S

the following composition sequence for the @&s-module E Nu: E M2P 2. DP0.

, . HEPL S i}er.\;
The corresponding chain of ®&-submodules of N is as follows: NoN oSN, >...oN, . where

Ni4; is maximal in N; and ; (NJu=Pp i=T  In a module Ny we choose a maximal G-
RELY S
submodule Ng4,. Since the gs-module Py is irreducible, we have supp Ver N Pas= J.  Now the

assertion of the theorem follows from Lemma 7. Q.E.D.
Remark. The authors are convinced that above theorem holds even when Y E{L, E).
Suppose S {l,2,..,n} and {$| = 1. Then ®s2~s/(2,0) and dimL (S, n. A+6,p9, =1 Given
a module L=L(S,n,A+8.pg) , there is an associated character B(L)€ Z(@js)gS(@s) by a means of

which Z(@S)®S{@s) acts on a (85@:@3 -module z Ly . However, for every p€®* and
: KEPR,S

ﬁEZ(@s)gs(-@S) there exist no more than three irreducible weight &-modules V with S-primitive
elements for which suppV < Py and B(B) = B (see, for example, [5]). Therefore, Proposition 3
implies the following assertion.

THEOREM 3. Suppose that u€9* 0¢Z(6), S<{l,.2...,n}, and |s| = 1. Then the category
Ky ,g contains no more than 3/2 |W| irreducible objects V such that Tsa{V)s= Q.

Remark. 1) Theorem 3 is false in the case where §S[ > 1. This follows, for example,
from results cited in [6]. 2) Under the assumptions of Theorem 3 there are infinitely many
irreducible modules V in U Ku.e such that Tsa(ys=Z .

33
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