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ABSTRACT
We establish representation types (finite, tame or wild) of finite dimensional
Munn algebras with semisimple bases. As an application, we establish rep-
resentation types of finite Rees matrix semigroups, in particular, 0-simple
semigroups, and their mutually annihilating unions.
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1. Introduction

Munn algebras appeared in the theory of semigroups as semigroup algebras of completely 0-simple
semigroups [1, 6]. They were immediately used for the study of representations of such semigroups. An
important input was made by Ponizovskĭı in the paper [7], where he established the cases when a finite
0-simple semigroup is representation finite, i.e., only has finitely many indecomposable representations,
over an algebraically closed fieldkwhose characteristic does not divide the order of the underlying group
of its Rees matrix presentation [1, Th. 3.5]. He also considered the case of semigroups that are unions of
mutually annihilating 0-simple semigroups with common zero.

The questions remained what happens if the field is not algebraically closed and when the represen-
tation type of such a semigroup is tame, i.e., indecomposable representations of each dimension form a
finite number of 1-parameter families. In this article we give a complete answer to these questions (also
for the fields of characteristics that does non divide the orders of the underlying groups). Of course,
in the case of an algebraically closed field our criterion of finiteness coincides with that of Ponizovskĭı.
Actually, we obtain criteria of finiteness and tameness for all Munn algebras with semisimple base, even
in a bit more wide context than they are considered in [1]. To prove these results, we establish a relation of
modules over Munn algebras with representations of valued graphs in the sense of [2] (in the algebraically
closed case they are just representations of quivers in the sense of [4]). Then we apply the criteria from
this paper.

It follows from [3] (and can be easily checked directly) that in all other cases the Munn algebra M
(or the corresponding semigroup) is representation wild over the field k, i.e., for every finitely generated
k-algebra A there is an exact functor A-Mod → M-Mod mapping non-isomorphic modules to non-
isomorphic and indecomposable to indecomposable.
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2. Munn algebras

In this paper algebra means an associative algebra over a commutative ring k. We do not suppose that
such an algebra is unital, but always suppose that modules over such algebra are also k-modules and the
multiplication by elements of the algebra is k-bilinear. We denote by A-Mod and Mod-A, respectively,
the categories of left and right A-modules. By A1 we denote the algebra obtained from an algebra A by
the formal attachment of unit. Then the categories of A-modules and unital A1-modules are equivalent.
So A and B are Morita equivalent if and only if so are A1 and B1. We consider the elements from A1 as
formal sums λ + a, where a ∈ A, λ ∈ k.

Definition 2.1.

(1) Let R be a k-algebra and μ : N → M be a homomorphism of R-modules. Define a mul-
tiplication on HomR(M, N) setting a · b = aμb. The resulting ring is called a Munn algebra
and denoted by M(R, M, N, μ).1 We say that this Munn algebra is based on the algebra R. We
denote by M1(R, M, N, μ) the algebra obtained from M(R, M, N, μ) by the formal attachment of
unit.

(2) A Munn algebraM(R, M, N, μ) is said to be regular if the homomorphism μ is von Neumann regular,
i.e., there is a homomorphism θ : M → N such that μθμ = μ. For instance, this is the case if R
is von Neumann regular, while M and N are finitely generated and projective and μ �= 0 (it follows
from [5, Th. 1.7]).

Remark 2.2. One can see that M(R, M, N, μ) has a unit if and only if there are decompositions M �
M1 ⊕ M2 and N � N1 ⊕ N2 such that HomR(M2, N) = HomR(M, N2) = 0 and the map μ̄ = pr1 ◦ μ|N1

is an isomorphism N1
∼→ M1. Then the unit u : M → N coincides with μ̄−1. Actually, in this case

M(R, M, N, μ) � M(R, M1, N1, μ̄) � EndR M1.

Proposition 2.3. Let M(R, M, N, μ) be a regular Munn algebra. There are isomorphisms M � L ⊕ M′
and N � L ⊕ N′ such that with respect to these decompositions μ = ( 1L 0

0 0
)
.

Proof. Let θ : M → N be such that μθμ = μ. Then μθ : M → M and θμ : N → N are idempotents.
Therefore, M = M1 ⊕ M2, where M1 = Im μθ , M2 = Ker μθ and N = N1 ⊕ N2, where N1 =
Im θμ, N2 = Ker θμ. One easily sees that Ker μ = Ker θμ and Im μ = Im μθ , so μ̄ = pr1 ◦ μ|N1 is an
isomorphism and μ̄−1 = pr1 ◦ θ |M1 , while μ|N2 = 0 and pr2 ◦ μ = 0, hence μ = (

μ̄ 0
0 0

)
with respect to

these decompositions. Obviously, it implies the claim.

Definition 2.4. We write M(R, L, M, N) instead of M(R, L ⊕ M, L ⊕ N, μ), where μ = ( 1L 0
0 0

)
, and call

such a Munn algebra normal. Thus every regular Munn algebra is isomorphic to a normal one. As above,
we denote by M1(R, L, M, N) the algebra obtained from M(R, L, M, N) by the formal attachment of unit.

Lemma 2.5. Let A and C be two rings, P be a right C-module, M be a right A-module and N be a right
A - left C-bimodule. Define the natural map φ : P ⊗C HomA(M, N) → HomA(M, P ⊗C N) mapping
p ⊗ f to the homomorphism x �→ p ⊗ f (x). If P is projective and either P or M is finitely generated, φ is an
isomorphism.

The proof is obvious.

1 This definition is a bit more general than that from [1, 6], where only the case of free modules is considered.
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Lemma 2.6. Let A be a unital ring, 1 = e1 + e2, where e1, e2 are orthogonal idempotents. We denote
Ai = eiA, Aij = eiAej � HomA(Aj, Ai) and identify A with the ring of matrices(

A11 A12
A21 A22

)
. (2.1)

Let P be a progenerator of the category Mod-A11. Then P� = (P ⊗A11 A1) ⊕ A2 is a progenerator of the
category Mod-A, hence A-Mod � B-Mod, where B = EndA P�. The ring B can be identified with the ring
of matrices

B =
(

B11 B12
B21 B22

)
, (2.2)

where B11 = EndA11 P, B12 = P ⊗A11 A12, B21 = HomA11(P, A21), B22 = A22.

Proof. For some m there is an epimorphism of A11-modules Pm � A11, which induces an epimorphism
(P ⊗A11 A1)m � A1. Hence, A is a direct summand of (P ⊗A11 A1)m ⊕ A2 and P� is a progenerator of
A-Mod. Using Lemma 2.5, we obtain:

HomA(P ⊗A11 A1, P ⊗A11 A1) �
� HomA11(P, HomA(A1, P ⊗A11 A1) �
� HomA11(P, P ⊗A11 A11) � EndA11 P;
HomA(A2, P ⊗A11 A1) � P ⊗A11 A12;
HomA(P ⊗A11 A1, A2) � HomA11(P, A21).

It gives the presentation (2.2) for EndA P�.

Theorem 2.7. Let M = M(R, L, M, N) be a normal Munn algebra, C = EndR L and P be a progenerator
of the category Mod-C. Then M is Morita equivalent to the normal Munn algebra M(R, P ⊗C L, M, N).

Proof. Let A = M1(R, L, M, N). Consider the idempotents e1 = ( 1 0
0 0

)
and e2 = 1−e1. The presentation

(2.1) of the algebra A is of the form(
C HomR(M, L)

HomR(L, N) k + HomR(M, N)

)
(2.3)

By Lemma 2.6, A is Morita equivalent to the algebra B of the matrices of the form (2.2), where, due to
Lemma 2.5,

B11 = HomC(P, P) � HomC
(
P, P ⊗C HomR(L, L)

)
� HomC(P, HomR(L, P ⊗C L) � HomR(P ⊗C L, P ⊗C L);

B12 = P ⊗C HomR(M, L) � HomR(M, P ⊗C L);
B21 = HomC(P, HomR(L, N)) � HomR(P ⊗C L, N);
B22 = k + HomR(M, N).

But it is just the matrix presentation of M1(R, P ⊗C L, M, N).

The following fact is evident.

Proposition 2.8.
∏s

k=1 M(Rk, Mk, Nk, μk) � M(R, M, N, μ), where R = ∏s
k=1 Rk, M = ⊕s

k=1 Mk, N =⊕s
k=1 Nk and μ|Nk = μk.

Remark 2.9. Note that
∏s

k=1 M
1(Rk, Mk, Nk, μk) �� M1(R, M, N, μ).
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Let now R be a semisimple ring. Then R = ∏s
k=1 Rk, where Rk = Mat(dk, Fk) for some integers dk

and some skewfields Fk. So any Munn algebra based on R is a product of Munn algebras based on the
simple algebras Rk. All of them are regular, so can be supposed normal.

Proposition 2.10. Let R = Mat(d, F), where F is a skewfield, U be the simple R-module, L = Ur , M =
Um, N = Un. The algebraM(R, L, M, N), up to isomorphism, only depends on r, m, n and does not depend
on d. In particular, it is isomorphic to M(F, Fr , Fm, Fl).

We denote the algebra M(F, Fr , Fm, Fn) by M(F, r, m, n).2

Proof. Indeed, HomR(Uk, Ul) � Mat(l × k, F) does not depend on d and with respect to such
isomorphisms M(R, L, M, N) = Mat((r + n) × (r + m), F) with the multiplication a · b = aμb, where
μ = ( I 0

0 0
)

(of size (r + m) × (r + n)) and I is the r × r unit matrix.

Theorem 2.11. Let M = ∏s
k=1 M(Fk, rk, mk, nk), where Fk are skewfields. Then M is Morita equivalent

to
∏s

k=1 M(Fk, 1, mk, nk).

Proof. Let R = ∏s
k=1 Fk, Lk = Frk

k and L = ∏s
k=1 Lk. Then Ck = EndR Lk � Mat(rk × rk, F). Let Pk

be the simple right Ck-module. It is a progenerator of the category Mod-Ck and Pk ⊗Ck Lk � Fk. Now
apply Theorem 2.7.

We denote the algebra M(F, 1, m, n) by M(F, m, n). It is the algebra of (n+1)× (m+1) matrices over
F with the multiplication a · b = aμb, where μ is the (m + 1) × (n + 1) matrix with 1 at the (1, 1)-place
and 0 elsewhere.

3. Representations

In this section we consider representations of finite dimensional regular Munn algebras over a field k
with a semisimple base. According to Theorem 2.11, such an algebra is Morita equivalent to a direct
product M = ∏s

k=1 Mk, where Mk = M(Fk, mk, nk) and Fk are skewfields. If mk = nk = 0,
M(Fk, mk, nk) = Fk and is a direct factor of M1. So we can and will suppose that there are no such
components in M. The algebra Mk contains an idempotent ek which is the (nk + 1) × (mk + 1) matrix
with 1 at the (1, 1)-place and 0 elsewhere. Let e0 = 1 − ∑s

k=1 ek. Then, if k �= 0, ekM
1ek = Fk,

e0M
1ek = Fnk

k , ekM
1e0 = Fmk

k , e0M
1e0 = k + ⊕s

k=1 Mk, where Mk � Mat(nk × mk, Fk), and
ekM

1el = 0 if 0 �= k �= l �= 0. Choose an Fk-basis {ak1, ak2, . . . , akmk} in each space ekM
1e0 and an

Fk-basis {bk1, bk2, . . . , bknk} in each space e0M
1ek. Then akiblj = 0 for all k, l, i, j, bkialj = 0 if k �= l

and {bkiakj} is a basis of Mk. For every M1-module V set Vk = ekV (0 ≤ k ≤ s). It is a vector space
over Fk. The multiplication by aki gives rise to a k-linear map αki : V0 → Vk and the multiplication
by bkj gives rise to a k-linear map βki : Vk → V0. Since Homk(V0, Vk) � HomFk(Fk ⊗k V0, Vk)) and
Homk(Vk, V0) � HomFk(Vk, Homk(Fk, V0)), both α and β can be considered as matrices over Fk of
appropriate sizes. So V is defined by the set of maps (or of matrices) {αki, βlj} such that αkiβlj = 0 for all
k, l, i, j. We present it by the diagram

V : {Vk}
0
�

{βkj}
�� V0,

{αki}��

2 Ponizovskiı̆ [7] denotes this algebra by A(Em+r,n+r,r , F).
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A homomorphism φ : V → V ′ is given by a set of Fk-linear maps φk : Vk → V ′
k (0 ≤ k ≤ s), where

F0 = k, such that φkαki = α′
kiφ0 and φ0βkj = β ′

kjφk, i.e. the following diagram is commutative:

{Vk}
0
�

{βkj}
��

{φk}
��

V0
{αki}��

φ0

��
{V ′

k}
0
�

{β ′
kj}

�� V ′
0

{α′
ki}��

(3.1)

φ is an isomorphism if and only if so are all φk.
Set V+ = ∑

l,j Im βlj ⊆ V0, V− = V0/V+. Then αki(V+) = 0. Hence αki can be considered as a map
V− → Vk and we obtain a diagram

Ṽ :

V−{αki}
�������

�����
��

{Vk}
{βkj} ������

�����
���

V+

with the condition
∑

k,j Im βkj = V+. Such diagram can be considered as a representation of the
realization (M, �) of the valued graph (	, d) in the sense of [2]. Namely the vertices of the graph 	

are {+, −, 1, 2, . . . , s}, dk = dimk Fk, dk+ = (mk, mkdk), d−k = (nkdk, nk) and dij = 0 otherwise. The
orientation � of the edge {k, +} is k → + and that of the edge {−, k} is − → k. The modulation M

of 	 is given by the algebras Fk and F± = k, Fk-F−-bimodules kM− = mkFk and F+-Fk-bimodules
+Mk = nkFk. Thus a representation of this realization is indeed given by a set of Fk-vector spaces Vk,
F0-vector spaces V± and a set of linear maps α̃k : nkV− → Vk and β̃l : mlVl → V+. There components
are just αki and βlj.

Theorem 3.1. Let Rep+(M, �) be the full subcategory of the category of representations of (M, �) such
that

∑s
l=1 Im β̃l = V+ and

⋂
k,i Ker α̃k = 0. Let also M-Mod+ be the full subcategory of M-Mod

consisting of such modules V that
∑

l,j Im βlj = ⋂
i Ker αki. Denote by I the ideal of the category M-Mod+

consisting of all morphisms φ : V → V ′ such that φk = 0 for k �= 0, φ0(V+) = 0 and Im φ0 ⊆ V ′+. Then
M-Mod+/I � Rep+(M, �) and I2 = 0.

Proof. We have already constructed, for any M-module V , the representation Ṽ . By definition, Ṽ ∈
Rep+(M, �). Given a homomorphism φ = {φk} : V → V ′ as in (3.1), we obtain linear maps φ+ :
V+ → V ′+ and φ− : V− → V ′− such that together with the maps φk they give a morphism φ̃ : Ṽ → Ṽ ′.
Obviously, φ̃ = 0 if and only if φ ∈ I . Thus we obtain a functor 
 : M-Mod+/I → Rep+(M, �).
Obviously I2 = 0.

Let W = (Wk, W+, W−, αk, βk | 1 ≤ k ≤ s) be a representation from Rep+(M, �). Set W̃0 =
W+ ⊕ W−, take for α̃ki : W0 → Wk the maps that are 0 on W+ and coincide with the components of
αk on W−, and take for β̃lj : Wl → W̃0 the components of βl : Wl → W+. It defines an M-module
W̃ ∈ M-Mod+. If ψ : W → W′ is a morphism of representations, set ψ̃0(w) = ψ+(w+) + ψ−(w−) if
w = w+ +w−, where w± ∈ W±. It gives a homomorphism ψ̃ : W̃ → W̃′. Taking its class modulo I , we
obtain a functor � : Rep+(M, �) → M-Mod+/I . One easily verifies that this functor is quasi-inverse
to 
.

Remark 3.2. Since I2 = 0, the isomorphism classes of objects in M-Mod+ are the same as in
M-Mod+/I . The only indecomposable representations not belonging to Rep+(M, �) are two trivial
representations such that V+ = k (or V− = k) and Vk = 0 for k �= + (respectively, for k �= −). The
only indecomposable M-module not belonging to M-Mod+ is the 1-dimensional vector space with zero
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multiplication by the elements of M. Therefore, the representation type of the algebra M (finite, tame or
wild) is the same as that of the realization (M, �) of the valued graph 	.

It is proved in [2] that the representation type of (M, �) actually only depends on the valued graph
itself. Namely, it is representation finite if and only if all its connected components are Dynkin graphs
and representation tame if and only if all of them are Dynkin or Euclidean (extended Dynkin) graphs
and at least one Euclidean graph occurs. For the list of these graphs see [2, p. 3]. In all other cases it is
representation wild.

Taking into account the construction of the valued graph 	 from the algebra M, we can establish
the representation type of any finite dimensional Munn algebra with a semisimple base. Actually it only
depends on the set of triples {(dk, mk, nk)}, where dk = dimk Fk. We use the following notations:

T(d1, . . . , dr | dr+1, . . . , ds) =
= {(d1, 1, 0), . . . , (dr , 1, 0), (dr+1, 0, 1), . . . , (ds, 0, 1)},

and, for T = T(d1, . . . , dr | dr+1, . . . , ds),

S−(T) =
∑r

k=1
dk,

S+(T) =
∑s

k=r+1
dk,

S(T) = S−(T) + S+(T).
Certainly, maybe r = 0 or r = s.

Theorem 3.3. Let M = ∏s
k=1 M(Fk, mk, nk), T = {(dk, mk, nk) | (mk, nk) �= (0, 0)}, where dk =

dimk Fk.

(1)3 M is representation finite if and only if T = T0 ∪ T1, where T0 = T(d1, . . . , dr | dr+1, . . . , ds) for
some dk and

(a) either T1 = ∅ and max{S−(T0), S+(T0)} ≤ 3
(b) or T1 = {(1, 1, 1)}, S(T0) ≤ 3 and max{S−(T0), S+(T0)} ≤ 2.

(2) M is representation tame if and only if T = T0 ∪ T1, where T0 = T(d1, . . . , dr | dr+1, . . . , ds) for
some dk and

(a) either T0 = ∅ and T is one of the sets
{(1, 1, 1), (1, 1, 1)}, {(2, 1, 1)}, {(1, 2, 0)}, {(1, 0, 2)},

(b) or T1 = ∅ and max{S−(T0), S+(T0)} = 4,
(c) or T1 = {(1, 1, 1)} and S−(T0) = S+(T0) = 2.

(3) In all other cases M is representation wild.

Proof.

(1a) In this case the graph 	 is a disjoint union of 2 graphs of the types A2, A3, D4, B2, or B3.
(1b) In this case 	 is of one of the types A3, A4, A5, D5, D6, B4, or B5.

In other cases 	 is not a disjoint union of Dynkin graphs.
From now on we only list the cases when M is not representation finite.

(2a) In these cases 	 is, respectively, of type Ã3, or B̃2, or Ã12.
(2b) In this case 	 is a disjoint union of two graphs, where either both are of types D̃4, B̃D3, B̃2, Ã11, or

G̃2 or one is of one of these types while the other is of a type cited in case (1a).

3If the field k is algebraically closed, hence all dk = 1, this result coincides with that of Ponizovskiı̆ [7, n◦ 5].
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(2c) In this case 	 is of type D̃6, B̃D5, or B̃4.
(3) In all other cases the graph 	 is not a disjoint union of Dynkin and Euclidean graphs.

4. Semigroups

We apply the obtained result to representations of finite Rees matrix semigroups. Recall [1, Section 3.1]
that such semigroupM(G, p, q, μ) is given by a finite group G and a matrix μ of size p×q with coefficients
from the group G. The elements of M(G, p, q, μ) are q × p matrices with coefficients from G0 = G � {0}
containing at most one non-zero element and the multiplication is defined by the rule a · b = aμb. If
the sandwich matrix μ is regular, i.e., every column and every row of μ contains a non-zero element, the
semigroup M(G, p, q, μ) is 0-simple (hence completely 0-simple) and every finite 0-simple semigroup is
isomorphic to a Rees matrix semigroup with a regular sandwich matrix [1, Th. 3.5]. We always suppose
that the matrix μ is non-zero; otherwise M(G, p, q, μ) is just a semigroup with zero multiplication.

Let k be a field, R = kG and M = M(G, p, q, μ). Obviously, kM = M(R, Rp, Rq, μ), where μ

is considered as an element of Mat(p × q, R) and is identified with an R-homomorphism Rq → Rp.
We suppose that chark � #(G). Then R is semisimple. Namely, let U1, U2, . . . , Us be all irreducible
representations of G over k, Fk = EndG Uk, dk = dimk Fk and uk = dimk Uk. Set ck = uk

dk
. Then

R � ∏s
k=1 Rk, where Rk = Mat(ck × ck, Fk), and Mat(p × q, Rk) = Mat(pck × qck, Fk). Denote by μk

the projection of μ onto Mat(pck × qck, Fk) and set rk = rk μk. As μ �= 0, also all μk �= 0 and the Munn
algebra kM is regular. Then kM � ∏s

k=1 M(Fk, rk, mk, nk), where mk = pck − rk and nk = qck − rk.
Theorem 2.11 now implies the following result.

Corollary 4.1. kM is Morita equivalent to
∏s

k=1 M(Fk, mk, nk).

Remark 4.2. Note that ck | mk − nk and mk−nk
ck

= p − q does not depend on k. In particular, if mk = nk,
or mk > nk, or mk < nk for some k, the same holds for all k.

From Corollary 4.1 and Theorem 3.3, taking into account Remark 4.2, we obtain a classification
of representation types of Rees matrix semigroups, in particular, of 0-simple semigroups. In the next
theorem we use the just introduced notations.

Theorem 4.3. Let M = M(G, p, q, μ) be a finite Rees matrix semigroup, k be a field such that char k �
#(G). Set T(M) = {(dk, mk, nk) | (mk, nk) �= (0, 0)}.

(1)4 M is representation finite over the field k if and only if

(a) either T = {(1, 1, 1)}
(b) or #(G) ≤ 3 and T contains either only triples (dk, 1, 0) or only triples (dk, 0, 1).

(2) M is representation tame over the field k if and only if

(a) either T(M) = {(1, 1, 1), (1, 1, 1)}, or T(M) = {(2, 1, 1)},
(b) or #(G) = 4 and T(M) contains either only triples (dk, 1, 0) or only triples (dk, 0, 1),
(c) G = {1} and T(M) = {(1, 2, 0)} or T(M) = {(1, 0, 2)}.

(3) In all other cases M is representation wild over the field k.

Note that in cases (1a) and (2a) p = q, while in cases (1b) and (2b) the group G is commutative.

4If the field k is algebraically closed, hence all dk = 1, this result was proved by Ponizovskiı̆ [7].
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Remark 4.4. According to Proposition 2.10, the algebra kM(G, p, q, μ) only depends on the ranks rk.
Elementary transformations of the matrix μ do not change these ranks. Obviously, using them one can
obtain a matrix μ′ such that there is a non-zero element in every row and in every column. Therefore,
kM(G, p, q, μ) � kM(G, p, q, μ′) and M(G, p, q, μ′) is a 0-simple semigroup [1, Thm.3.3]. Thus, for
every Rees matrix semigroup with a non-zero sandwich matrix there is a 0-simple semigroup with the
same representation theory.

If a finite semigroup S = ∨t
i=1 Mi is a union of pairwise annihilating Rees matrix semigroups Mi

with common 0, its semigroup algebra kS is a direct product of semigroup algebras kMi and all of them
are Munn algebras. So we obtain the following result.

Theorem 4.5. Let S = ∨t
i=1 Mi, where Mi = M(Gi, mi, ni, μi) are finite Rees matrix semigroups, k be

a field such that char k � #(Gi) for all i. Denote

T> =
∑

mi>ni

#(Gi),

T< =
∑

mi<ni

#(Gi),

T0 =
⋃

mi �=ni

T(Mi),

T1 =
⋃

mi=ni

T(Mi)

(1)5 S is representation finite over the field k if and only if

(a) either T1 = ∅, max{T>, T<} ≤ 3 and all triples from T0 are either (dk, 1, 0) or (dk, 0, 1)

(b) or T1 = {(1, 1, 1)}, T> + T< ≤ 3, max{T>, T<} ≤ 2 and all triples from T0 are either (dk, 1, 0)

or (dk, 0, 1).

(2) S is representation tame over the field k if and only if

(a) T0 = ∅, max{T>, T<} = 4 and all triples from T0 are either (dk, 1, 0) or (dk, 0, 1),
(b) or T1 = {(1, 1, 1)}, T> = T< = 2 and all triples from T0 are either (dk, 1, 0) or (dk, 0, 1),
(c) or T0 = ∅ and either T1 = {(1, 1, 1), (1, 1, 1)} or T1 = {(2, 1, 1)},
(d) or T1 = ∅ and T0 = {(1, 2, 0)} or T0 = {(1, 0, 2)}.

In the last case there is a unique index i such that mi �= ni and the corresponding group Gi = {1}.
(3) In all other cases S is representation wild over the field k.
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[6] Okniński, J. (1990). Semigroup Algebras. New York: Marcel Dekker, Inc.
[7] Ponizovskii, I. S. (1975). On the finiteness of type of a semigroup algebra of a finite fully prime semigroup. J. Sov.

Math. 3:700–709.


	1.  Introduction
	2.  Munn algebras
	3.  Representations
	4.  Semigroups
	Acknowledgments
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Adobe Gray - 20% Dot Gain)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


