Minors and Categorical Resolutions
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Abstract We define minors of non-commutative schemes and study their proper-
ties. It is then applied to the study of a special class of non-commutative schemes,
called quasi-hereditary, and to a construction of categorical resolutions for singular
curves (maybe, non-commutative). In the rational case, this categorical resolution is
realized by a finite dimensional quasi-hereditary algebra.
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1 Introduction

When one compares the category of representations of the Kronecker quiver
X\

~— * (“matrix pencils”) and the category of coherent sheaves over the projective
line P!, one sees an astonishing resemblance. Indeed, the Auslander—Reiten quiver
(describing the subcategory of indecomposable objects) of the first category looks
like
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while that of the second is

= Tt — o Tubular fan}il_y
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Vector bundles Skyscraper sheaves
both with relations xy = yx. The tubular family here means a set of disjoint

subcategories 7, (tubes) parametrized by the points of the projective line and such
that every 7, is equivalent to the category of indecomposable finite dimensional
modules over the algebra of formal power series k[[f]]. Except the products of
arrows, there are only morphisms “from the left to the right,” also similar in both
cases. Note that if we move the preinjective component of the first quiver to the very

left and join it with the preprojective component by the arrows Q, we obtain the
second quiver.

This resemblance has now a rather simple explanation. Namely, the vector bundle
G = Op (=1)®Op is a so-called tilting object of the category CohP'. It means
that Ext},, (G, G) = 0 for all i > 0 and, for every nonzero morphism f : F — F' of
coherent sheaves, Homp1 (G, f) # 0 (equivalently, G generates the derived category
2(CohP')). Then it is known that the derived functor RHompi (G, _) establishes
an equivalence of the derived categories 2(CohP!) and 2(A-mod), where A =
End(G)°. In our case, A is just the path algebra of the Kronecker quiver. Moreover,
since both categories A-mod and Coh P! are hereditary (i.e., of global dimension 1),
every indecomposable object of the derived category is just a shift of a module.

Actually, Beilinson [3] proved that the category Coh P” has a tilting sheaf G =
@?:—n Opn (i), hence is equivalent to the category of representations of the finite
dimensional algebra A = End(G)°P, which can be explicitly described. Afterwards
analogues of these results were proved for a wide class of projective varieties. In
particular, Hille and Perling [21] constructed a tilting vector bundle for any smooth
rational surface.

Later on Greuel and the second author [18] noticed that there is a resemblance
between the categories of vector bundles over a class of singular curves and the
categories of representations of some finite dimensional algebras. In particular, it is
so for a nodal cubic C and the algebra A with the quiver

and relations da = ¢b = 0. Certainly, this correspondence could not be a corollary
of an equivalence of derived categories, since the algebra A is of global dimension
2, while O¢ is of infinite global dimension. An explanation of this phenomenon
was given by the first two authors [7]. For this purpose they considered a sheaf of
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non-commutative algebras A (called Auslander sheaf), which was already of global
dimension 2, and constructed a tilting sheaf over A such that its endomorphism
algebra was just the algebra mentioned in [18]. The category of coherent sheaves
over the initial curve turned to be a Serre quotient of the category of coherent
sheaves over A by a semi-simple subcategory; hence, their indecomposable objects
were almost the same.

This paper is devoted to a generalization of the results of Burban and Drozd
[7] to all singular curves. Namely, we construct for every curve X a sheaf of Ox-
algebras R, such that R is of finite global dimension and there is a functor F :
Coh’R — CohX, which defines Coh X as a bilocalization (i.e., both localization
and colocalization) of Coh R. The same is certainly true for their derived categories.
Moreover, R has rather special properties analogous to those of quasi-hereditary
algebras from [12, 14]. We call ‘R the Konig’s resolution of the curve X, since the
idea of its construction goes back to the Konig’s paper [23]. If X is rational, ‘R has
a tilting complex 7~ which establishes an equivalence between the derived category
of Coh R and that of a finite dimensional quasi-hereditary algebra. Altogether, this
construction can be considered as a categorical resolution of the category Z(Coh X)
in the sense of [24]. If the curve X is Gorenstein, this categorical resolution is weakly
crepant in the sense of [24]. We also show that this construction can also be applied
to non-commutative curves.

The main tool in our considerations is the notion of minors of non-commutative
schemes studied in Sect. 3. For the affine case (i.e., for rings), it was introduced in
[15]. A minor B of a sheaf of algebras A is the endomorphism sheaf of a locally
projective sheaf of .A-modules. Then the category Qcoh B is a bilocalization of
Qcoh A and the same is true for their derived categories. We establish the main
features of these bilocalizations and specialize them to the most important case
arising as endomorphism construction (Example 3.14). The general properties of
localizations and colocalizations used here are gathered in Sect.2. In Sect.4 we
apply this technique to a special class of non-commutative schemes called guasi-
hereditary. This notion generalizes that of quasi-hereditary algebras and has a lot of
similar features. In particular, a quasi-hereditary non-commutative scheme is always
of finite global dimension, and its derived category has good semi-orthogonal
decompositions (see Corollary 4.23). In Sect. 5 we study some general properties of
non-commutative curves and their minors, especially related with Cohen—Macaulay
(or, the same, torsion-free) modules. In Sect. 6 we construct the Konig’s resolution
and prove that it is quasi-hereditary. We also show that in the commutative case, the
functors of direct and inverse image arising from the normalization of the curve are
actually compositions of the functors arising from the Konig’s resolution. Finally, in
Sect. 7 we construct a tilting complex for the Konig’s resolution of a rational singular
curve (maybe, non-commutative). It gives a categorical resolution of Z(Qcoh X) by
a quasi-hereditary finite dimensional algebra. We also consider, as an example, the
case when all singularities of a curve are of ADE types in the sense of Arnold [2].

Most results of Sects. 1-5 are contained in [8]. Sections 6 and 7 generalize the
results of [9] to the non-commutative situation.
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2 Bilocalizations

We recall here some general facts concerning localizations and bilocalizations of
abelian and triangular categories. Their proofs are gathered in [8, Sect. 2].

Theorem 2.1 Let F : o/ — A be an exact functor between abelian categories,
F* : B — A be its right (left) adjoint such that the natural morphism FF* — 14
(respectively, 15 — FF*) is an isomorphism. Let € = ker F.

1. € is a thick subcategory in of and F = FIly, where Tl : of — of /€ is the
natural functor to the Serre quotient and F:of /€ — A is an equivalence. The
quasi-inverse functor to F is TIoF*.

2. F* is a full embedding and its essential image Im F* coincides with the right
(respectively, left) orthogonal subcategory to €, i.e., the full subcategory

¢+ = {A € Ob | Hom, (C,A) = Ext,,(C,A) = 0forall C € ¢}
(respectively,

1% = {A € Obo/ | Homy (A, C) = Ext.,(A,C) = 0 forall C € €}).

b

€ = H(€1) (respectively, € = (+€)*).
4. The embedding functor | : € — </ has a right (respectively, left) adjoint.

In this case they say that F is a localizing functor, € is a localizing subcategory,
and & ~ o/ /€ is a localization of the category o7 (respectively, F is a colocalizing
functor, € is a colocalizing subcategory, and B ~ of /€ is a colocalization of the
category 7).

Theorem 2.2 Let F : o/ — 9 be an exact functor between triangulated
categories, F* : B — A be its right (left) adjoint such that the natural morphism
FF* — 14 (respectively, 1 4 — FF*) is an isomorphism. Let € = ker F.

1. € is a thick subcategory in </ and F = |_:H_<g, where Il : &/ — o |C is the
natural functor to the Verdier quotient and F . o/ /¢ — 9 is an equivalence.
The quasi-inverse functor to F is T14F*.

2. F* is a full embedding and its essential image Im F* coincides with the right
(respectively, left) orthogonal subcategory to €, i.e., the full subcategory

%1+ ={A e Ob«Z | Hom,(C,A) = 0forall C € €}
(respectively,

1% = {A € Ob«/ | Homy (A, C) = 0forall C € €}).
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3. € = (€7 (respectively, € = (+€)*).
4. The embedding functor | : € — <f has a right (respectively, left) adjoint, which
induces an equivalence <7 / Im F* Sl

In this case they say that F is a localizing functor, € is a localizing subcategory,
and A ~ of /€ is a localization of the category o7 (respectively, F is a colocalizing
functor, € is a colocalizing subcategory, and  ~ of /€ is a colocalization of the
category 7).

Theorem 2.3 Suppose that an exact functor F : of — % between abelian (or
triangulated) categories has both left adjoint F* and right adjoint F'. Then F is a
localizing functor if and only if it is a colocalizing functor.

In this case we say that F is a bilocalizing functor, its kernel € = kerF is a
bilocalizing subcategory, and % is a bilocalization of the category .o7.

If F: o/ — 2 is an exact functor between abelian categories, we denote by DF
the functor between the derived categories Z.o/ — 2.9 which acts on complexes
componentwise. It is both right and left derived functor of F.

Theorem 2.4 Let F : o/ — A be a localizing (colocalizing) functor between
abelian categories, € = kerF. Suppose that right (left) adjoint F* of F has
right (respectively, left) derived functor. Then DF is also a localizing (respectively,
colocalizing) functor, RF* is its right adjoint (respectively, LF* is its left adjoint),

kerDF = Qyof = {F* € 9o/ | H'(F*) € € forall n}

and DB ~ Do | Dg .

Remark 2.5 1f o7 is a Grothendieck category, a right derived functor always exists,
so Theorem 2.4 can always be applied. We do not know any natural “categorical”
conditions for the existence of a left adjoint, though it is the case in the situation that
we consider nearby.

We recall that a semi-orthogonal decomposition ( 71, %, ..., I, ) of a triangu-
lated category <7 is a sequence of subcategories (71, 9, ..., Z,) such that

1. Hom.(A,B[m]) =0ifA € 9, Be Jandi > j.
2. For every A € &7, there is a sequence of morphisms

o=7,"71, " AL, =4

such that cone(f;) € 7; (1 <i < m) [25].

'In the case of abelian categories the functor .27/ Im F* — % induced by the right (respectively,
left) adjoint of | need not be an equivalence.
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In particular, if m = 2, it means that there is an exact triangle 7, — A — T}, where
T, € %, T, € e%

Corollary 2.6 Let F : o/ — A be a localizing (colocalizing) functor between
triangulated categories, F* be its right (respectively, left) adjoint. There is a
semi-orthogonal decomposition (Im F*,ker F) (respectively, (ker F,Im F*)) of the
category < .

3 Minors

In this paper a non-commutative scheme is a pair (X, A), where X is a scheme (called
the commutative background of the non-commutative scheme) and A is a sheaf of
Ox-algebras, which is quasi-coherent as a sheaf of Ox-modules. Sometimes we say
“non-commutative scheme .4” not mentioning its commutative background X. We
denote by X, the set of closed points of X. If A = Oy, we sometimes say that it
is a usual scheme. We denote by A-Mod (respectively, by .A-mod) the category of
quasi-coherent (respectively, coherent) sheaves of .A-modules. We call objects of
this category just .A-modules (respectively, coherent .A-modules).

A non-commutative scheme (X,.A) is said to be affine (separated, quasi-
compact) if so is its commutative background X. It is said to be reduced if A has
no nilpotent ideals. If X is noetherian and A is a coherent Ox-module, we say that
this non-commutative scheme is noetherian. We say that (X, A) is quasi-projective
if there is an ample Oyx-module L. Note that then X is indeed a quasi-projective
scheme over the ring R = P2, ['(X, L£®M). In this paper we always suppose that
the considered non-commutative schemes are separated and quasi-compact. In
this case .A-Mod is a Grothendieck category. In particular, every quasi-coherent
A-module has an injective envelope. We denote by .A-Inj the full subcategory of
A-Mod formed by injective modules.

A morphism of non-commutative schemes f : (Y, B) — (X, A) is a pair (fx,f"),
where fy : Y — X is a morphism of schemes and f* is a morphism of f; 1Ox-
algebras fy 'A — B. In what follows we usually write f instead of fx. Such
morphism defines the functor of inverse image f* : A-Mod — B-Mod which
maps an A-module M to the B-module B&;—1 4f ~I M. As the map fx is separated
and quasi-compact, the functor of direct image fx : B-Mod — .A-Mod is also
well-defined (cf. [20, § 0.1 and § 1.9.2]). Moreover, f* maps coherent modules to
coherent ones. Note that f* and fi do not coincide with (fx)* and (fx)«. It is
guaranteed only if B = f§ A, for instance, if Y is an open subset of X and B = Aly.

We call a non-commutative scheme (X, A) central if center(A) = Oyx. Actually,
we can only consider central non-commutative schemes as the following evident
results show.

Proposition 3.7 Let C = center(A), X = specC, vy : X — X be the corresponding
affine morphism, and A = vi'(A). Then vy extends to a morphism v : (X, A) —
(X, A) and vy induces equivalences A-Mod — A-Mod and A-mod — A-mod.
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We denote by Ip A the full subcategory of .A-mod consisting of locally projective
modules, i.e., such coherent modules P that all localizations P, are projective A,-
modules. We say that A has enough locally projective modules if for every coherent
A-module M, there is an epimorphism P — M, where P is locally projective. It
is the case, for instance, if the non-commutative scheme is quasi-projective.

We denote by 2.4 the derived category Z2(A-Mod), with subscripts *,~,°
denoting its full subcategories consisting, respectively, of left-, right-, and two-sided
bounded complexes. We also denote by PerfA the full subcategory of small objects
from 2 A, i.e., such complexes F* that Homg 4(F°, | |;G’) ~ ||, Homg 4 (F*,G’)
for any coproduct | |;G’. As X is separated and quasi-compact, small objects in
2.A are just perfect complexes, i.e., complexes F*° such that for every x € X the
complex F, is isomorphic to a finite complex of locally projective coherent modules.
Moreover, PerfA generates Z.A, i.e., for every complex G°, there is a nonzero
morphism from a perfect complex to G°. It is well-known in affine and commutative
cases and the proof in general case is quite analogous [8, Theorem 3.14].

Definition 3.8 Let P be a locally projective .4-module, B = (End 4 P)°P. We
call the non-commutative scheme (X, B) a minor of the non-commutative scheme

X, A).

This notion is just a globalization of the corresponding notion from [15].

We consider P as right B-module and denote PV = Hom 4(P, A); it is a right
A-module. It is known that for every P € Ip A, the natural map P — PV is an
isomorphism and &nd 4 PY >~ &nd 4P >~ PY®4P. The following functors play
the crucial role in this paper:

F = Homa(P,_) ~ P ®4_ : A-Mod — B-Mod,
F* = P®gs_ : B-Mod — A-Mod, (1)
F' = Homp(PY,_) : B-Mod — A-Mod.

The functor F is exact and both (F*, F) and (F, F') are adjoint pairs of functors. If
the non-commutative scheme (X, .A) is noetherian, so is also (X, I3) and the functors
F, F*, F' map coherent sheaves to coherent. Note that if Z is an injective B-module,
then F'(Z) is an injective .A-module. We denote by P-Inj the image F'(B-Inj). We
also denote by pp the natural map PRgPY — A such that u(p®f) = f(p) and
Zp = Im pup. If P = Ae, where e is an idempotent, then PV ~ e A, (énd 4 P)°P ~
eAe and Ip = AeA.
The following result plays a crucial role in this paper:

Theorem 3.9

1. F is a bilocalizing functor and its kernel € = Ker F consists of the modules M
such Ip M = 0, so can be identified with A/Zp-Mod.
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2. ImF* = 1€ consists of all A-modules M such that for every x € X there is an
exact sequence Py — Py — M — 0, where Py and P, are multiples (maybe
infinite) of P,. We denote this subcategory by P-Mod.

3. ImF' = €+ consists of all A-modules M such that there is an exact sequence
0 > M — Iy — I, where Iy and I, belong to P-Inj. We denote this
subcategory by P™-Mod.

Proof The results of the preceding section show that it is enough to prove the
following statements:

Proposition 3.10

1. The natural morphism ¢ : 1g-moa — FF* is an isomorphism.
2. ImF* = P-Mod.

3. ImF' = P™M_-Mod.

4. kerF ={M |ZIpM =0}.

Proof Evidently, all claims are local, so we can suppose that X = spec R for a com-
mutative ring R; A = A™ is the sheafification of an R-algebra A, P = P~, where P
is a finitely generated projective A-module; and B = B™, where B = End4 P. Then
we can replace A-Mod, B-Mod, and P-Mod, respectively, by A-Mod, B-Mod, and
P-Mod, where P-Mod is the full subcategory of A-Mod consisting of all modules
M such that there is an exact sequence P; — Py — M — 0, where Py and P, are
multiples of P.

Certainly, ¢ (B) is an isomorphism. Hence ¢ (F') is an isomorphism for every free
B-module F. For every B-module M, there is an exact sequence F| — F; - M — 0
with free modules Fy, F;. It induces a commutative diagram with exact rows

Fy  — Fy — M — 0
o) | o) | o) |
FF*(Fy) — FF*(Fy) — FF*(M) — 0
As ¢ (F1) and ¢ (F3) are isomorphisms, so is ¢ (M). It proves (7).

Moreover, we have an exact sequence F*(F;) — F*(Fy) — F*(M) — 0, where
F*(F;) are multiples of F*(B) = P, so F*(M) € P-Mod. On the contrary, let we
have an exact sequence P; — Py — N — 0, where P; are multiples of P. Consider
the natural morphism ¢ : F*F — 1 _4-poq. Obviously, ¥ (P) is an isomorphism, so

Y (P;) are also isomorphisms. Again we obtain a commutative diagram with exact
rows

F*F(P) —— F*F(Py) —— F*F(N) —— 0

wml wwl wml
PR —s P — N — 0
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It implies that ¥ (N) is an isomorphism, hence N € Im F*. It proves (2). The proof
of (3) is quite analogous.

To prove (4), note that IpP = P [10, Proposition VII.3.1], where Ip = Im pup. Let
M ¢ kerF and f : P — M be a nonzero homomorphism. Then IpM O Imf # 0.
On the contrary, if IpM # 0, there is an element z € M, elements p; € P,
and homomorphisms f; : P — A such that ) _.fi(p:)z # 0. Denote by g the
homomorphism A — M mapping 1 to z and set g; = gfi. Then at least one of
gi is nonzero, so M ¢ kerF. O

As the functor F is exact, it induces a functor DF : A4 — %B acting on
complexes componentwise. It is both left and right derived of F. There are also left
derived functor LF* and right derived functor RF', both B — 2.4 [29, Sect. 6].
Moreover, it follows from [29] that both (LF*, DF) and (DF, RF") are adjoint pairs
(see [8] for details). Obviously, DF maps 2° A to 2° B, where o € { +,—,b }; LF*
maps 2~ Bto 2~ A and RF' maps 2T Bto 27 A.

Theorem 3.11

1. DF is a bilocalizing functor and ker DF >~ 94,7, A, where 9 41, A is the full
subcategory of YA consisting of complexes with cohomologies annihilated by
Ip (i.e., belonging to (A/Zp)-Mod).

LF* maps PertB to PerfA.

3. ImLF* = + 94,7, A coincides with the full subcategory 9 P—, of 9.A consisting
of complexes quasi-isomorphic to K-flat complexes F* such that for every
component F' and every point x € X, the localization F'! is a direct limit of
modules from add Py. The same is true if we replace 9 by 9.

4. ImRF' = 247, At coincides with the full subcategory 2P"™ of 9A
consisting of complexes quasi-isomorphic to K-injective complexes 1* such that
every component IT' belongs to F'(B-Inj). The same is true if we replace 9

by 2%,

N

Note that the condition (4) can be verified locally at every point x € X.

We recall that a complex F*° is said to be K-flat (K-injective) if for every
acyclic complex of right (respectively, left) A-modules C*, the complex F*® 4C*
(respectively, Hom 4(C*, F*) is also acyclic [29].

Proof (1) follows from the results of the previous section.

As P is coherent and locally projective, the functor DF preserves arbitrary
coproducts. Therefore its left adjoint LF* maps small objects to small ones, which
gives (2).

(3) It follows from [1] that for every complex M* of B-modules, there is a quasi-
isomorphic K-flat complex F* with flat components. Then LF*(M?*) = F*(F*).
By Bourbaki [5, Chap. X, § 1, Theorem 1], every localization .7-"; is a direct limit

li_r)n L', where all £ are finitely generated and projective, hence belong to add B,.

As F* preserves direct limits and F*(B) >~ P, F*(F;) ~ h_r)n F*(L!) and F*(L!)
belongs to add P,. Therefore, F*(M?*) € 2P_,.
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On the contrary, let N'* € 2P_.. We can suppose that this complex is K-flat
and every localization N! is a direct limit hm P!, where P! € add P,. Then the

complex F(N*®) is also K-flat, so (LF*)(F(./\/ )) ~ F*F(N*). As the natural map
F*F(P) — P is an isomorphism, the same is true for F*F(P!) — P! hence also
for F*F(N) — N/. Therefore, the map (LF*)(DF)(N*®) — AN* is an isomorphism
and V' € ImLF*,

The proof of (4) is quite analogous. O

Corollary 3.12 There are semi-orthogonal decompositions (ker DF, Im LF*) and
(Im RF', ker DF) of the category 2 A.

Note that the subcategories Im LF* and Im RF' are equivalent (both are equiva-
lent to Z13) but usually do not coincide.
The following special case is rather important:

Theorem 3.13 Suppose that the ideal T = Ip is flat as right A-module. Set Q =
A/Z. ThenkerDF = 29A ~ 2Q.

Proof Let F* — G° be a quasi-isomorphism. As 7 is flat, then ZQ 4 F* —
T®4G* is also a quasi-isomorphism. Therefore, F*® 41Q — G*®4Q is also a
quasi-isomorphism. In particular, if G° consists of O-modules, we get a quasi-
isomorphism F°*® 4Q — G°. It implies that we can identify ZQ with the full
triangulated subcategory of Z.A. Obviously 2Q < %go.A. Moreover, 7> = T.
Let F* € Z9.A. We can suppose that F* is K-flat. Its tensor product with the
exact sequence 0 - Z — A — Q — 0 gives an exact sequence of complexes
0> ZRUF* > F* = QR F* — 0. AsZis flat, H*(ZQ 4 F*) ~ ZQ4H* (F*).
Since T 4 Q =~ I/I2 = 0, also Z® 4 M = 0 for every Q-module M. Therefore
H*(Z®aF*) = 0, ie., ZQ 4F* is acyclic, whence F* is quasi-isomorphic to
O® 4F, which belongs to ZQ. O

Example 3.14 (Endomorphism Construction) Let F be a coherent A-module and
Ar = (End A(ADF))°P. We identify A with the algebra of matrices

AF
Af_(ffg)’

where 7/ = Homy(F,A) and £ = (Endg F)°. Then P = Pr = (]“_f‘/) is a

locally projective Ax-module and A ~ (End 4,- P)°P. Hence A is a minor of Ar,
thus A-Mod and 2 .A are bilocalizations, respectively, of Ar-Mod and ZAx. The
corresponding functors are

Fr = Homu,(Pr,_),

Fr=Pr®a_.

F!]E = HomA(P]v:,_)
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and their derived functors. Note that PV ~ (A F) ~ A®F as A-Az-bimodule
and Zp is the ideal of matrices
A F
Tp =
= (rz,)

where 7' is the image of the map ' : F'®4F — & such that u'(f'®f)(v) =
f'()f forallf,v € F, f' € F'. Therefore, ker F r >~ (£/I-)-Mod and ker DF =
@8/1}-’4}—'

This construction is especially convenient when A is strongly Gorenstein in the
sense of the following definition:

Definition 3.15 A noetherian non-commutative scheme (X,.4) is said to be
strongly Gorenstein if X is equidimensional, A is a Cohen—Macaulay Ox-module,
and inj.dim 4 A = dim X.

Such non-commutative schemes possess almost all usual properties of Cohen—
Macaulay rings and (“usual”) schemes, and their proofs are quite analogous to those
from [6] (see [8, Sect. 5] for details). We need here the Cohen—Macaulay duality. For
a noetherian non-commutative scheme (X, .A) denote by CM A the full subcategory
of A-mod consisting of maximal Cohen—Macaulay A-modules, i.e., such coherent
A-modules M that each localization M, is a maximal Cohen—Macaulay Oy ,-
module. Let * : A-mod — A°’-mod be the functor mapping M to Hom 4 (M, A).
If A is strongly Gorenstein, so is also AP, and * defines an exact duality between
CM A and CM AP, It means that, for every M € CM A, Exti‘(./\/l, A) = 0 for
i > 0 and the natural map M — M™™ is an isomorphism. It also implies that
the natural map ML — Hom (M, L) is an isomorphism for every locally
projective A-module L.

Theorem 3.16 In the situation of Example 3.14, let A be strongly Gorenstein and
has enough locally projective modules and F € CM A. Then the restrictions of the
functors LF%. and RF!}- onto PerfA coincide. Thus these restrictions are both left
and right adjoint to DF .

Proof Note first that under the given conditions F*%.(£) ~ F'-(L) for every locally
projective .4-module L. As A has enough locally projective modules, any complex
from PerfA is quasi-isomorphic to a finite complex £* such that all £ are from Ip A.
Then LF%-(£*) = F*%(L*). On the other hand, R*F' (L) = &t (P, L) = 0 for
k # 0. Therefore, RF'-(L£*) = F'(L£®) ~ F%(L°). O

4 Quasi-Hereditary Schemes

In this section we generalize the notions of quasi-hereditary algebras and orders
[12, 22] to non-commutative schemes. It is closely related with minors and
bilocalizations. We start from the following facts. Let (X, .A) be a non-commutative
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scheme, M be an A-module. We call sup{i | Ext'y(M,_) # 0} the local pro-
jective dimension of the A-module M and denote it by lp.dim 4 M. If the
non-commutative scheme (X, A) is noetherian and the module M is coherent, then
Ip.dim 4 M = sup {pr.dimAx M, |xeX}.

Lemma 4.17 (Cf. [8, Lemma 4.9]) Let (X, A) be a non-commutative scheme, P
be a coherent locally projective A-module, B = (&nd o P)®, and A = A/ZLp.
Suppose that P is flat as right B-module,

Ip.dim 4 Zp = d,
gl.dim B = n,
gl.dim A = m.

Then gl.dim A <max{m+d+2,n}.

Proof Let A = A/Ip. Then Ip.dimy A = d + 1. The spectral sequence
Extf&(/\/l, 5xtf4(fl,_)) = Ext’j4+q(./\/l,_) implies that pr.dims M < m + d + 1
for every A-module M. Consider the functors F = Hom4(P,_) and F* = PRy .
As the morphism FF*F — F arising from the adjunction is an isomorphism, the
kernel and the cokernel of the natural map « : F*FM — M are annihilated by F,
so are actually A-modules. It implies that Ext'y (M, N) ~ Ext),(F*FM, N if i >
m+d+2,so pr.dim 4 M <max{m +d + 2, pr.dim 4 F*FAM }. As both functors
F and F* are exact, Ext'q(F*_,_) >~ Extys(_,F_), so pr.dim 4 F*FM <n. O

This result motivates the following definitions:
Definition 4.18 (Cf. [8, Definition 4.9])

1. Let (X, A) and (X, B) be two non-commutative schemes. A relating chain
between A and B is a sequence (A, P1, Az, P2, ..., Pr, Art1), where A} = A,
A,+1 = B;every P; (1 <i < r)isacoherentlocally projective .A;-module which
is also flat as right B;-module, where B; = (&nd 4, P;)°P; and A+ = A;/Zp, for
1<i<r.

2. The relating chain is said to be flat if, for every 1 < i < r, Ip, is flat as right
A;-module. Note that it is the case if the natural map u; : P,®p P’ — A;is a
monomorphism.

3. The relating chain is said to be heredity if, for every 1 < i < r, Ip, is locally
projective as left A;-module. In this case u; is a monomorphism (it can be proved
as in [14, Statement 7]), so this chain is flat.

4. If the relating chain is heredity and all non-commutative schemes B; are
hereditary, i.e., gl.dimB; < 1, we say that the non-commutative scheme A is
quasi-hereditary of level r. (Thus quasi-hereditary of level 0 means hereditary.)

The following result is obvious:

Proposition 4.19 If (A, Py, Ay, P2, ..., P., Ar+1) is a relating chain between A
and B, then (AT, PY, AL, PY,....PY, A(r)il) is a relating chain between A and
B°P with the same endomorphism algebras B,.
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Note that if A is noetherian, so are all A; and B;. As for noetherian non-
commutative schemes all flat coherent modules are locally projective, we obtain
the following corollary:

Corollary 4.20 If a noetherian non-commutative scheme (X, A) is quasi-
hereditary, so is also (X, AP).

We fix arelating chain (A;, Py, Az, Pa,. .., Pr, Ar41) between A and B and keep
the notations of Definition 4.18(1). Lemma 4.17 immediately implies an estimate for
global dimensions.

Corollary 4.21 Let gl.dimB; < n and lp.dim A Ip, <dforalll <i <r. Then
gl.dim A < r(d+2) +max { gl.dim B, n —d — 2 }. If this relating chain is heredity,
then gl.dim A < gl.dim B + 2r.

Using Corollary 3.12, Theorem 3.13, and induction, we obtain the following
result:

Corollary 4.22 [f this relating chain is flat, there are semi-orthogonal decompo-
sitions (7, Ty, ..., %) and (I, T ,.... T, T) of DA such that T; ~ T ~
9B, 1 <i<r)yand T ~ 9YB.

Note that, as arule, .J; # .7/'.

Corollary 4.23 If a non-commutative scheme A is quasi-hereditary of level r, then
gl.dim A < 2r+ 1, and there are semi-orthogonal decompositions (<, 7y, ..., T)
and (7, 7, .... 7. T) of DAsuchthat T, ~ 7' (1 <i < r) and all categories
T, as well as 7, are equivalent to derived categories of some hereditary non-
commutative schemes.

The following result is evident:

Proposition 4.24 [f there is a heredity relating chain between A and B such that
all B; are hereditary and B is quasi-hereditary, then A is quasi-hereditary too.

Corollary 4.25 Consider the endomorphism construction of Example 3.14 (with
the same notations). Suppose that F is flat as right E-module, F' is locally projective
as left E-module and the natural map ur : FQeF — A is a monomorphism. If
both & and A = A/ Im wr are quasi-hereditary, so is Ar.

Proof Let P = (% ). Then Z is the ideal of matrices

FQeF F
F&)

Its first row is F Qg (]-" rE ) and its first column is (? ) ®¢eF'. Under the prescribed
conditions, the first one is flat as right A r-module and the second one is locally
projective as left Az-module. Therefore (Az, P, A) is a heredity relating chain
relating between A and A, so we can apply Proposition 4.24. O
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One can show that the definition of quasi-hereditary non-commutative schemes is
indeed a generalization of the well-known definition for semiprimary rings [12, 14].

Theorem 4.26 Let (X, A) be affine: X = specR, A = A™, and the ring A
be semiprimary. This non-commutative scheme is quasi-hereditary in the sense of
Definition4.18(4) if and only if the ring A is quasi-hereditary in the sense of [12].

Proof Recall that a semiprimary ring A is called quasi-hereditary if there is a chain
of ideals 0 = I C L L C--ClI C I+ = A such that the following
conditions hold for I; = I;/I;—; as for anideal inA; = A/I,_:

1. il.z = 1. (As A; is semiprimary, it means that I, = A;e;A; for some idempotent e;.)

2. Ij(radA;)I; = 0. (It means that rad(e;A;e;) = 0.)

3. I; is projective as A;-module. (Under condition (2) it is equivalent to the claim
that the map A;e;®,.4,¢,€iAi — I; is bijective, see [14, Statement 7].)

In other words, it means that (A = A, P1,A,P>,..., A, P,,A,+1), where P; =
Aje; and A,+1 = A/I,, is a heredity relating chain between A with semisimple
endomorphism rings B; and semisimple ring A,4;. Thus A is a quasi-hereditary
affine non-commutative scheme. On the contrary, let A be quasi-hereditary as an
affine non-commutative scheme. To show that B is a quasi-hereditary ring, we can
use induction and the following result.

Recall that a ring A is said to be triangular if it has a set of idempotents
{e1,er,...,en} suchthat Y 1" e; = 1, e¢Ae; = 0if i > jand A; = eAe; are
prime rings, i.e., IJ # 0 for any two nonzero ideals of A;. If A is semiprimary,
then A; are simple artinian rings. For instance, every semiprimary hereditary ring is
triangular [16].

Lemma 4.27 Let A be a semiprimary ring, I = AeA be an idempotent ideal such
that I is projective as A-module, A /1 is quasi-hereditary, and E = eAe is triangular.
Then A is quasi-hereditary. In particular, any triangular semiprimary ring is quasi-
hereditary.

Proof According to [13], it is enough to find a heredity chain of ideals 0 = Iy C
I, I, C --- C I, = E in E such that each factor l;e/I;_je is projective as
E; = E/I,_-module. Since E is triangular, it can be considered as an algebra of
triangular matrices:

EnWEpE;z ... Ey
0 Ex Ey;... Eyy,
E = 0 0 Esz...E3,],

0 0 0 ...E,;,

where all rings E;; are simple artinian. Let ¢; (1 < j < m) be the standard diagonal
idempotents in this matrix ring, &; = Z,l'=1 ej and I; = Eg;E. Then I; is the ideal
of matrices such that their first m — i rows are zero. Therefore, E/I;—; is the matrix
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ring obtained from E by crossing out the first i — 1 rows and columns. Evidently,
O0=LhclL Cl, C---Cl, = Eisaheredity chain of ideals in E. One easily sees
that ej(/;M) = 0 for any E;-module M and any j > i. Then there is an epimorphism
kE;e; — I;M for some k. As the module E;e; is semisimple, this epimorphism splits,
so I;M is projective. In particular, /;e/I;—; e is projective, so A is quasi-hereditary.

O

Just in the same way, one can show that if X = spec R, where R is a discrete
valuation ring and A = A”™, where A is a semiprime R-order, then the non-
commutative scheme (X, A) is quasi-hereditary if and only if A is a quasi-hereditary
R-order in the sense of [22].

5 Non-commutative Curves

We call a curve a noetherian excellent reduced scheme such that all its irreducible
components are of dimension 1. We call a non-commutative curve a reduced non-
commutative scheme (X, .A) such that X is a curve and A is a torsion-free finitely
generated Ox-module. We can suppose, without loss of generality, that the Ox-
module A is sincere. In this section (X,.4) always denotes a non-commutative
curve and we suppose that A is a sincere Ox-module. We denote by X, and X,
respectively, the subsets of regular and singular points of X. As X is excellent and
reduced, the set X, 1s finite.

If (X, .A) is a non-commutative curve, the category CM A consists of coherent
A-modules which are torsion-free as Ox-modules. These modules can be defined
locally. Namely, let X = Kx be the sheaf of rational functions on X. Set CM =
K®o,M. Then KA is a sheaf of semisimple K-algebras and A is an Ox-order in
ICA, i.e., an Ox-subalgebra in KA which is coherent as Ox-module and generates
KA as K-module. If V is a coherent . A-module and M C V is its coherent .A-
submodule which generates V as K-module, we say that M is an A-lattice in V.
Then M € CM A and conversely, every M € CM A is a lattice in M. If M is
a lattice in V), then M, is a lattice in V, and M is completely defined by the set
of lattices { M, | x € X¢ }. The following result is an immediate consequence of its
affine variant, which can be proved like in [4, Chap. 7, § 4, Théoreme 3]:

Proposition 5.28

1. If M and N are lattices in V, then M, = N, for almost all x € X,.

2. Let M be a lattice in V, S C X be a finite set, and for every x € S, let N(x) be
an A-lattice in V. Then there is a lattice N in V such that N;, = N(x) for every
x € Sand Ny = M, for every x ¢ S.

Using this proposition, one can prove the following properties of non-
commutative curves (see [8] for details):
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Proposition 5.29 Let (X, A) be a non-commutative curve.

1. A has enough locally projective modules.

2. There is a canonical A-module, i.e., such module w, from CM A that
injdim wa = 1 and &ndgaws >~ A% (hence w4 is indeed an A-bimodule).
Moreover, also inj.dim 4o w4 = 1 and w 4 is isomorphic (as A-bimodule) to an
ideal of A.

3. The functor * : M + Hom (M, w4) defines an exact duality between CM A
and CM A®P. It means that, for every M € CM A, the natural map M — M**
is an isomorphism and &tiél (M,w4) =0ifi > 0.

Actually, one can choose for w4 the module Homo, (A, wx), and we always
do so. Then M?™ is identified with Homo, (M, wx). Note also that A is strongly
Gorenstein if and only if A is itself a canonical .A-module.

Let B be a minor of the non-commutative curve A, i.e., B = &d 4 P for some
coherent locally projective .A-module P, and let F, F*, F' denote the corresponding
functors (see formulae (1) on page 77).

=
F—— B-Mod

~ @@

!

F!

A-Mod

Obviously F and F' map torsion-free modules to torsion-free. It is not true for F*,
so we modify it, setting FT(M) = (F*(M))**. We also set P’ = (PV)*. Then
inj.dim 4P’ = 1 and Sxth(./\/l,P’ ) = 0 for every M € CM A; such A-lattices
are called locally injective A-lattices. In affine case they are indeed injective in the
exact category CM A. After this modification, we have results about the categories
of torsion-free modules quite analogous to Theorem 3.9.

Theorem 5.30

1. The functors F' and F define an equivalence of CM B and CM’ P, where CM' P
is the full subcategory of CM A consisting of all modules M such that for every
point x € X there is an exact sequence 0 — M, — Q — N — 0, where Q is a
multiple of the A,-module P, and N € CM A,.

2. The restriction of the functor F' onto CM B is left adjoint to the restriction of
F onto CM A. Moreover, if M € CM B, the natural map FF'(M) — M is an
isomorphism, and the functors F' and F define an equivalence of the categories
CM B and CM P, where CM P is the full subcategory of CM A consisting of all
modules M such that for every point x € X there is an epimorphism n'P, — M.

Proof
1. This statement is local, so we can suppose that X = spec R, where R is an
excellent local reduced ring of Krull dimension 1, A = A~ for some R-

order A, i.e., an R-algebra A without nilpotent ideals which is finitely generated
and Cohen—Macaulay as an R-module, P = P~ for some finitely generated
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projective A-module P. Moreover, we can suppose that P is sincere as A-module.
Then B = B™, where B = Endy P. If M € CM B, there is an exact sequence
mB — nB — M* — 0, which gives an exact sequence:

0 —- M — nB* - mB*. (2)

We denote by v the natural morphism 14-yvoq — F'F. One easily sees that F(P') ~
B* and F'(B*) ~ P, so ¥ (P’) is an isomorphism. The exact sequence (2) gives an
exact sequence 0 — F'(M) — nP’ — mP’, which shows that F'(M) € CM' P.

Let now M € CM'P. An exact sequence 0 — M — nP’ — N — 0, where
N € CMA, gives an exact sequence 0 — F(M) — F(nP’) — F(N) — 0. For any
A-module N, ¥ (N) is the homomorphism:

h: N — Homg(PY, Homa (P, N)) ~ Homa(PRgP", N)

such that 2(u)(¢®y) = y(a)u. Tensoring with KA, we obtain the map KN —
Homgs (KPRgpKP ,KN). As KA is semi-simple and KP is sincere, the natural map
KP®RygpKP¥ — A is surjective; therefore, Ky (N) is injective. If N is torsion-free,
hence embeds into KN, it implies that ¥ (N) is injective. So we have a commutative
diagram

0 M nP’ N

lw(m lw(nP’) lw(N)
0 —— F'F(M) —— F'F(nP') —— F'F(N).
Since ¥ (nP’) is an isomorphism and v (N) is a monomorphism, ¥ (M) is an

isomorphism. As the natural map FF' > 1p-mod is an isomorphism, it proves the
statement (/).

2. f M e CMBand N € CM A, then also FN € CM B, so
Hom 4 (FT M, N) ~ Hom 4 (F* M, N) ~ Hom 4 (M, FN),
which proves the first claim. Consider now the functors
FP = Hom4(P",_) : Qcoh A°® — Qcoh B,
(F°?)' = Homp(P,_) : Qcoh B — Qcoh A,

As we have just proved, they establish an equivalence between the categories
CM B° and CM’ PV, where CM’ PV consists of all right A-modules N such that
for every point x € X there is an exact sequence 0 — N, — Q — N’ — 0, where
Q is a multiple of P’ and N' € CM A,. Equivalently, there is an epimorphism
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Q* — N*, ie., N* € CM P. On the other hand,

(FP)' M* = Homp(P, Homp, (M, wx)) ~
~ Homo, (P®sM, wy) = (P@sM)* = (FTM)*.

Therefore, the statement (2) follows by duality. O

6 Konig’s Resolution

A non-commutative curve (X, A"), where A C A" C KA, is called an over-ring
of the non-commutative curve (X, .A). If A has no proper over-rings, it is called
normal. Since X is excellent and A is reduced, the set of over-rings of A satisfies
the maximality condition, i.e., there are no infinite ascending chains of over-rings. (It
follows, for instance, from [27, Chap. 5] or from [17].) In particular, there is always a
normal over-ring of .A. In non-commutative case, such a normal over-ring is usually
not unique, though all of them are locally conjugate inside C.A [27, Theorem 18.7],
and every normal non-commutative curve is hereditary [27, Theorem 18.1]. Thus
every non-commutative curve has a hereditary over-ring, and usually a lot of them.
Actually, there is one “special” hereditary over-ring which plays an important role
in this section.

Let (X, .A) be a non-commutative curve. Consider the ideal 7 = J defined by
its localizations as follows:

A, if A, is hereditary,

T = .
rad A, otherwise.
Let A* = &daw J (the endomorphism algebra of 7 as of right A-module).
Note that A" can (and will) be identified with the over-ring of A such that its x-
localization coincides with {1 € KA, | AJ: C J,} for each x € X. It is known
[27, Theorem 39.14] that A* = A if and only if A is hereditary. So there is a chain
of over-rings of A:

A=A CAHCAC--CA, C Ay = A,

where A;+; = .AE for1 <i < nand A is hereditary. We call n the level of A.
For instance, a usual (commutative) curve over an algebraically closed field is of
level 1 if and only if all its singular points are simple nodes or cusps. (The derived
categories of such curves were investigated in [7].)

Consider the endomorphism algebra R = R4 = (&ndy EBE 1] A;)°P. We call
it the Konig’s resolution of the non-commutative curve A, since it is analogous to
that considered in [23] (though does not coincide with it even in case if orders over
discrete valuation rings) and has analogous properties.
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We identify R 4 with the ring of matrices:

All AIZ cee Aln Al,n+1

A Axn oo A Asa
R=| )

-Anl An2 oo Ann An,n-i—l

»An-l-l,l An+1,2 . An+1,n -An+1,n+1

where A;; = Hom(A;, Aj). Note that 4; = A;if i < jand Aiy1; = Ja,. We
denote by ¢; the standard diagonal idempotents in R and set P = Re;, P = Rep+1.
Then (&ndr P)°P >~ A, so A is a minor of R and the categories A-Mod and 2.4
are bilocalization, respectlvely, of R-Mod and ZR. The correspondmg functors are
F = Homg (P,_) and its left derived functor LF. In the same way, A ~ (Endg P)°P
1s a minor of R, so the categories A-Mod and 2 A are bilocalization, respectively,
of R-Mod and ZR. The corresponding functors are F = Homp (73 _) and its left

derived functor LF. Thus we have a diagram of bilocalizations

) e e
A-Mod <——F R-Mod F— A-Mod
- - =
P F (3)
Since A is an over-ring of A, there is a morphism v : X, fl) X, A).

According to Proposition 3.7, we can replace here (X, A) by (X, A) where X =
spec(center(A)). In case of “usual” schemes, when A = Oy, X is the normalization
of X and v is the normalization map. The morphism v induces the functor of direct
image vx : A-Mod — A-Mod and its left and right adjoints v* and v', which are
functors A-Mod — A-Mod. It so happens that these functors, maybe up to twist,
are compositions of the functors from the diagram (3).

Theorem 6.31

1. FIE*Nv*andIEF ~ '
2. FF* ~ C® zv*_and FF!' ~ V+(C'® 5_), where C = 7—[0mA(A A) = A, 411 0s
the conductor of A in A and C' = Hom ;(C, A) is its dual A-module.

Proof We verify the equalities (/). Indeed, since e/P = A as A-A-bimodule,
FF*(M) = Homg (P, P® ;M) ~ ;P® zM =~ M
considered as A-module, which is just v« (M). Also

FF(N) = Homg (P, Homa(PY, N)) = ent1 Homa(PY,N)
~ Homa(PY eng1, N) = Homa(A,N) = v'(N).

The equalities (2) are proved analogously (see also [9]). O
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Theorem 6.32 Let & = Y i ¢j, T, = RexR, Qi = R/Lir1, and P = Qe
Then (R, P, 0w, Pus Onets Pucts - Pa, Q1) is a heredity relating chain between
R and Q) >~ A/ T a. Moreover, (Endg, Pi)°® ~ Ax/J 4, is a semi-simple algebra,

so R is a quasi-hereditary non-commutative scheme of level n and gl.dim R < 2n.

Proof A straightforward calculation shows that 7 is the ideal of matrices:

( A A oo A A A -An+1\
Ay A o0 A A A o An
=] Aa A ... A1 A A - Ap
Arvrn Aksr12 oo Akt Ak Ak - A

\An—i-l,l Anvi12 oo Anrii—t Anpik Anpikdr - An—i—l}

Hence, Oy is the algebra of k x k matrices (a;), where a; € A/ Akt
In particular, ay € Ai/Aiq1x = Ax/Ja, and this algebra is semi-simple.
Therefore, (&ndg, Pr)® =~ erQrex = Au/Aik+14 is semi-simple. Obviously,
Ip, = QerQr = Tiy1/Ii, hence Qi1 =~ Oi/Ip,, so we have indeed a
relating chain. Moreover, Z; is obviously projective as right /R-module, hence
T/ Ti+ is projective as right Q;-module and this relating chain is heredity. As
A = (&ndr P) is hereditary and all (End g, Pr)P are semi-simple, R is quasi-
hereditary and gl.dim R < 2n. O

Thus the functor DF : R — A defines a categorical resolution of the derived
category Z.A in the sense of [24]. If A is strongly Gorenstein, Theorem 3.13 shows
that this resolution is even weakly crepant, i.e., the restrictions of its left and right
adjoint functors coincide on perfect complexes (small objects in Z.A).

We denote by A the semi-simple algebra A/ 74, .

Corollary 6.33 The derived category YR has two semi-orthogonal decomposi-
tions: IR = (A, D, ..., T, T) _and IR = (T, 9),....7) . T), where
T~ T ~PAand T ~ T ~ DAy

Remark 6.34 Note that usually .7 # 7’ as well as J; # 7] for k > 1, though
N = I = 9(R/1,) naturally embedded into ZR.

7 Tilting on Rational Curves

We say that a non-commutative curve (X, A) is rational if X is a rational projective
curve over an algebraically closed field k and A is central. Since the Brauer group
of the field of rational functions k(¢) is trivial [26], then LA >~ Mat(m, K) for some
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m. In this case the structure of hereditary non-commutative curves is well-known
(see, for instance, [11] or [8]). Namely, if such a curve is connected, then X = P!,
and up to Morita equivalence, this curve is given by a functionr : X — N such that
r(x) = 1 for almost all points. A representative H(r) of the Morita class defined by
this function can be defined as follows. Choose m € N such that m > r(x) for all x €
X, and choose partitions m = Zz(i)l my for every x. Set myy, = ZLI my. Let H, be
the subalgebra in Mat(m, Ox ,) consisting of all matrices (a;) such that a;;(x) = 0
if i < my and j > My for some k. Then H(r) is the subsheaf of Mat(m, Ox) such
that its x-stalk equals H,.

It is also known that H(r) has a tilting module, i.e., a coherent H (r)-module 7
such that pr.dim7 < oo, Eth—[(r) (7,7) = 0 forall g > 0 and T generates the
derived category ZH(r). Namely, let H = H(r), L = Of considered as H-module
andS = {xe Xy |r(x) >1}.IfS = {x;,x,...,x;} with s > 1, we suppose that
x1=0:0),x=0:1)andx; = (1:A;)forl <i<s, where A € k\{0,1},
and set r; = r(x;). If #(S) = I, wesets =2, r =r(xy), » = 1.If S = @, then
H = Mat(m, Ox) is Morita equivalent to Oy, so LB L(1) is a tilting sheaf for H. In
this case we also set s = 2, r; = r, = 1. Consider the submodule £(x, k) € £ such
that L(x, k), = L, fory # x and L(x, k), consists of all vectors (a;)i<;<x such that

a;(x) = 0fori < my and set T = C@E(l)@(@r(x)>1 @;(31_1 L(x,k)).
Theorem 7.35 (See [8]°)

1. T is a tilting module for H.

2. (&ndy T)® >~ R(r,A), where R(r, L) is the canonical algebra defined by the
sequences ¥ = (ri,r,...,r5) and A = (A3,...,Ay), i.e, the algebra given by
the quiver

21 Qrq—1,1
y’é‘“"—>‘ Qril
. . e ... o . .
a1z Q22 Qry—1,2 Qry2
Q1s /’rss
e "0 ... @ —————> do
Q2 Aqprg—1,s

with relations o; = o + Ajay for 3 < j < s, where aj = Qpj - . 0t [28,
Sect. 3.7].

Note that if s = 2, it is just the quiver algebra of the quiver ;\r, s 1f, moreover,
rip = rp = 1, it is the Kronecker algebra. Note also that any canonical algebra is
triangular, hence quasi-hereditary.

%It also follows from [19], since H(r) is Morita equivalent to the weighted projective line C(r, S).
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Obviously, if a rational hereditary non-commutative scheme (X, ) is not
connected, it splits into a direct product of connected hereditary non-commutative
schemes. Therefore it has a tilting module 7 such that (&ndy )P is a direct product
of canonical algebras.

Let now (X, A) be a rational non-commutative curve, R be its Konig’s resolution.
We use the notations of the preceding section. The hereditary non-commutative
curve A has a tilting module 7 such that (énd 7 T)® = R is a direct product

of canonical algebras. Then T = |~:(T) generates ImF and EXt;]-t(r) (7.7) =0

for all ¢ > 0. As (kerl~: Im|~:) is a semi-orthogonal decomposition of IR,
also pr. dim7T < oco. As O generates 20, which can be identified with kerF
Q&7 generates ZR. Note that dimsupp Q = O; therefore, Exth (Q,.M) =

H(X, &th (Q, M)) for every quasi-coherent module M. A locally projective

resolution of Q is 0 — N R — O — 0. Thus pr. d1m72 Q = 1. Moreover,
Exty (Q,N) = 0 for any Q-module N/, because 7?2 = 7 and ZN = 0, thus
Homg (Z, N) = 0. Obviously, Homg (Q, 7)) = 0. It implies the following result:

Theorem 7.36 7+ = Q[-1]®T is a tilting complex for R, i.e., it belongs to
PerfR, generates 2R and Homgr (T, TT[k]) = 0 if k # 0. Therefore IR ~
9DE, where E = (éndgr T ).

Note that E can be considered as the algebra of triangular matrices:

E— (%;) @)

where R = (&nd 7 T)P is a direct product of canonical algebras and T =
Extl (Q, T) ~ Homg(Z,T)/* Homg (R, T). Note that Z ~ @"+1 FA.+1.,
whence T ~ @"+1 Hom z(Ap+1.4, T)-

Corollary 7.37 For every rational non-commutative curve (X, A), there is a finite
dimensional quasi-hereditary algebra E and a bilocalizing functor VE — 9 A.

Proof In the triangular presentation (4) of the algebra E, let e = (8 ?) Then I =
EeE = (8 zTe) is projective as E-module and eEe ~ R is triangular. Hence E is
quasi-hereditary by Lemma 4.27.

Thus every rational non-commutative curve has a categorical resolution by a
finite dimensional quasi-hereditary algebra. If the curve is strongly Gorenstein, this
resolution is weakly crepant. In particular, it is the case for “usual” (commutative)
rational curves. Note that Q = [], Q,, where x runs through all points such that A,
is not hereditary (in the commutative case through singular points of X).

Example 7.38 (See [9, Sect. 8]) We consider the input Q, for simple singularities
of (usual) plain curves in the sense of [2]. We present it as a quiver with relations.
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1. If x is of type A,,, m > 2, then

Q=17 227 23 (n-D__n
/81 BQ /anl

ﬁkOék = O‘k—l—lﬁk—i—l if 1<k<n-— 1,

Bn—lan—l = 0,

where n = [’"T"H] Note that for m < 2, the algebra Q, is semisimple.
2. If x is of type D,,,, m > 4, then

FN > as iy
T Tt e B
\_// 182 :83 /Bn—l
B

Brog = apy1Pr41 if 1<k <n—1,

Bn—lan—l - 07

ﬁlal - 07

525/ - 07

where n = [%].

3. If x is of type Eg, Q, is the same as for Dy, and if x is of type E7 or Eg, Q. is the
same as for Dg.

4. Finally, we consider a “global” example, where X has two irreducible rational
components X, X, and three singular points x; € X; of type Eg, x, € X; N X, of

type D7, and x3 € X, of type As. Then the algebra E has the quiver

aq
N\

—=1 B 21
&1 /ﬁy’ly;ﬁ E/I/
— / Y13 Bl
. e
M \’723\ A Q22
, 1o \ﬁ/ 2 3y
21 A S
/5_2\ / Y22 B21 Paz
/
1y 0, =
Y32
" \731 \ /Oéi\ /aii\
13 23 33
~ ~—
B31 B3z

It consists of “local parts” (formed by the vertices 1;,2;,3;) and “Kroneckgr
parts” (formed by the vertices 0;, —1;) arising from the components of X.
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One can also explicitly describe the relations for the arrows y;; between these
parts (they depend on the positions of the preimages of singular points on the
components of X).
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