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Abstract We define minors of non-commutative schemes and study their proper-
ties. It is then applied to the study of a special class of non-commutative schemes,
called quasi-hereditary, and to a construction of categorical resolutions for singular
curves (maybe, non-commutative). In the rational case, this categorical resolution is
realized by a finite dimensional quasi-hereditary algebra.

Keywords Bilocalization • Categorical resolution • Derived categories •
Minors • Non-commutative schemes • Quasi-hereditary schemes

1 Introduction

When one compares the category of representations of the Kronecker quiver

(“matrix pencils”) and the category of coherent sheaves over the projective
line P1, one sees an astonishing resemblance. Indeed, the Auslander–Reiten quiver
(describing the subcategory of indecomposable objects) of the first category looks
like
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while that of the second is

both with relations xy D yx. The tubular family here means a set of disjoint
subcategories T! (tubes) parametrized by the points of the projective line and such
that every T! is equivalent to the category of indecomposable finite dimensional
modules over the algebra of formal power series kŒŒt"". Except the products of
arrows, there are only morphisms “from the left to the right,” also similar in both
cases. Note that if we move the preinjective component of the first quiver to the very

left and join it with the preprojective component by the arrows , we obtain the
second quiver.

This resemblance has now a rather simple explanation.Namely, the vector bundle
G D OP1 .!1/˚OP1 is a so-called tilting object of the category CohP1. It means
that ExtiP1 .G;G/ D 0 for all i > 0 and, for every nonzero morphism f W F ! F 0 of
coherent sheaves, HomP1.G; f / ¤ 0 (equivalently, G generates the derived category
D.CohP1/). Then it is known that the derived functor RHomP1 .G; _ / establishes
an equivalence of the derived categories D.CohP1/ and D.A-mod/, where A D
End.G/op. In our case, A is just the path algebra of the Kronecker quiver. Moreover,
since both categoriesA-mod and CohP1 are hereditary (i.e., of global dimension 1),
every indecomposable object of the derived category is just a shift of a module.

Actually, Beilinson [3] proved that the category CohPn has a tilting sheaf G DL0
iD!n OPn.i/, hence is equivalent to the category of representations of the finite

dimensional algebra A D End.G/op, which can be explicitly described. Afterwards
analogues of these results were proved for a wide class of projective varieties. In
particular, Hille and Perling [21] constructed a tilting vector bundle for any smooth
rational surface.

Later on Greuel and the second author [18] noticed that there is a resemblance
between the categories of vector bundles over a class of singular curves and the
categories of representations of some finite dimensional algebras. In particular, it is
so for a nodal cubic C and the algebra A with the quiver

and relations da D cb D 0. Certainly, this correspondence could not be a corollary
of an equivalence of derived categories, since the algebra A is of global dimension
2, while OC is of infinite global dimension. An explanation of this phenomenon
was given by the first two authors [7]. For this purpose they considered a sheaf of
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non-commutative algebrasA (called Auslander sheaf ), which was already of global
dimension 2, and constructed a tilting sheaf over A such that its endomorphism
algebra was just the algebra mentioned in [18]. The category of coherent sheaves
over the initial curve turned to be a Serre quotient of the category of coherent
sheaves overA by a semi-simple subcategory; hence, their indecomposable objects
were almost the same.

This paper is devoted to a generalization of the results of Burban and Drozd
[7] to all singular curves. Namely, we construct for every curve X a sheaf of OX-
algebras R, such that R is of finite global dimension and there is a functor F W
CohR ! CohX, which defines CohX as a bilocalization (i.e., both localization
and colocalization) of CohR. The same is certainly true for their derived categories.
Moreover, R has rather special properties analogous to those of quasi-hereditary
algebras from [12, 14]. We call R the König’s resolution of the curve X, since the
idea of its construction goes back to the König’s paper [23]. If X is rational, R has
a tilting complex T which establishes an equivalence between the derived category
of CohR and that of a finite dimensional quasi-hereditary algebra. Altogether, this
construction can be considered as a categorical resolution of the categoryD.CohX/
in the sense of [24]. If the curve X is Gorenstein, this categorical resolution is weakly
crepant in the sense of [24]. We also show that this construction can also be applied
to non-commutative curves.

The main tool in our considerations is the notion of minors of non-commutative
schemes studied in Sect. 3. For the affine case (i.e., for rings), it was introduced in
[15]. A minor B of a sheaf of algebras A is the endomorphism sheaf of a locally
projective sheaf of A-modules. Then the category QcohB is a bilocalization of
QcohA and the same is true for their derived categories. We establish the main
features of these bilocalizations and specialize them to the most important case
arising as endomorphism construction (Example 3.14). The general properties of
localizations and colocalizations used here are gathered in Sect. 2. In Sect. 4 we
apply this technique to a special class of non-commutative schemes called quasi-
hereditary. This notion generalizes that of quasi-hereditary algebras and has a lot of
similar features. In particular, a quasi-hereditary non-commutative scheme is always
of finite global dimension, and its derived category has good semi-orthogonal
decompositions (see Corollary 4.23). In Sect. 5 we study some general properties of
non-commutative curves and their minors, especially related with Cohen–Macaulay
(or, the same, torsion-free) modules. In Sect. 6 we construct the König’s resolution
and prove that it is quasi-hereditary.We also show that in the commutative case, the
functors of direct and inverse image arising from the normalization of the curve are
actually compositions of the functors arising from the König’s resolution. Finally, in
Sect. 7 we construct a tilting complex for the König’s resolution of a rational singular
curve (maybe, non-commutative). It gives a categorical resolution ofD.QcohX/ by
a quasi-hereditary finite dimensional algebra. We also consider, as an example, the
case when all singularities of a curve are of ADE types in the sense of Arnold [2].

Most results of Sects. 1–5 are contained in [8]. Sections 6 and 7 generalize the
results of [9] to the non-commutative situation.
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2 Bilocalizations

We recall here some general facts concerning localizations and bilocalizations of
abelian and triangular categories. Their proofs are gathered in [8, Sect. 2].

Theorem 2.1 Let F W A ! B be an exact functor between abelian categories,
F" W B ! A be its right (left) adjoint such that the natural morphism FF" ! 1B

(respectively, 1B ! FF") is an isomorphism. Let C D kerF.

1. C is a thick subcategory in A and F D NF…C , where …C W A ! A =C is the
natural functor to the Serre quotient and NF W A =C ! B is an equivalence. The
quasi-inverse functor to NF is…CF".

2. F" is a full embedding and its essential image ImF" coincides with the right
(respectively, left) orthogonal subcategory to C , i.e., the full subcategory

C? D
˚
A 2 ObA j HomA .C;A/ D Ext1A .C;A/ D 0 for all C 2 C

!

(respectively,

?C D
˚
A 2 ObA j HomA .A;C/ D Ext1A .A;C/ D 0 for all C 2 C

!
/:

3. C D ?.C?/ (respectively, C D .?C /?).
4. The embedding functor I W C ! A has a right (respectively, left) adjoint.

In this case they say that F is a localizing functor, C is a localizing subcategory,
andB ' A =C is a localization of the categoryA (respectively, F is a colocalizing
functor, C is a colocalizing subcategory, and B ' A =C is a colocalization of the
categoryA ).

Theorem 2.2 Let F W A ! B be an exact functor between triangulated
categories, F" W B ! A be its right (left) adjoint such that the natural morphism
FF" ! 1B (respectively, 1B ! FF") is an isomorphism. Let C D kerF.

1. C is a thick subcategory in A and F D NF…C , where …C W A ! A =C is the
natural functor to the Verdier quotient and NF W A =C ! B is an equivalence.
The quasi-inverse functor to NF is…CF".

2. F" is a full embedding and its essential image ImF" coincides with the right
(respectively, left) orthogonal subcategory to C , i.e., the full subcategory

C? D fA 2 ObA j HomA .C;A/ D 0 for all C 2 C g

(respectively,

?C D fA 2 ObA j HomA .A;C/ D 0 for all C 2 C g/:
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3. C D ?.C?/ (respectively, C D .?C /?).
4. The embedding functor I W C ! A has a right (respectively, left) adjoint, which

induces an equivalenceA = ImF"
#! C .1

In this case they say that F is a localizing functor, C is a localizing subcategory,
andB ' A =C is a localization of the categoryA (respectively, F is a colocalizing
functor, C is a colocalizing subcategory, and B ' A =C is a colocalization of the
categoryA ).

Theorem 2.3 Suppose that an exact functor F W A ! B between abelian (or
triangulated) categories has both left adjoint F" and right adjoint FŠ. Then F is a
localizing functor if and only if it is a colocalizing functor.

In this case we say that F is a bilocalizing functor, its kernel C D kerF is a
bilocalizing subcategory, andB is a bilocalization of the categoryA .

If F W A ! B is an exact functor between abelian categories, we denote by DF
the functor between the derived categories DA ! DB which acts on complexes
componentwise. It is both right and left derived functor of F.

Theorem 2.4 Let F W A ! B be a localizing (colocalizing) functor between
abelian categories, C D kerF. Suppose that right (left) adjoint F" of F has
right (respectively, left) derived functor. Then DF is also a localizing (respectively,
colocalizing) functor, RF" is its right adjoint (respectively, LF" is its left adjoint),

kerDF D DCA D fF! 2 DA j Hn.F!/ 2 C for all n g

and DB ' DA =DCA .

Remark 2.5 If A is a Grothendieck category, a right derived functor always exists,
so Theorem 2.4 can always be applied. We do not know any natural “categorical”
conditions for the existence of a left adjoint, though it is the case in the situation that
we consider nearby.

We recall that a semi-orthogonal decomposition hT1;T2; : : : ;Tm i of a triangu-
lated categoryA is a sequence of subcategories .T1;T2; : : : ;Tm/ such that

1. HomA .A;BŒm"/ D 0 if A 2 Ti; B 2 Tj and i > j.
2. For every A 2 A , there is a sequence of morphisms

0 D Tm
fm!! Tm!1

fm"1!!! : : : T2
f2!! T1

f1!! T0 D A

such that cone. fi/ 2 Ti .1 " i " m/ [25].

1In the case of abelian categories the functor A = ImF# ! C induced by the right (respectively,
left) adjoint of I need not be an equivalence.



76 I. Burban et al.

In particular, if m D 2, it means that there is an exact triangle T2 ! A! T1, where
T1 2 T1; T2 2 T2.

Corollary 2.6 Let F W A ! B be a localizing (colocalizing) functor between
triangulated categories, F" be its right (respectively, left) adjoint. There is a
semi-orthogonal decomposition .ImF"; kerF/ (respectively, .kerF; ImF"/) of the
categoryA .

3 Minors

In this paper a non-commutative scheme is a pair .X;A/, whereX is a scheme (called
the commutative background of the non-commutative scheme) and A is a sheaf of
OX-algebras, which is quasi-coherent as a sheaf ofOX-modules. Sometimes we say
“non-commutative scheme A” not mentioning its commutative background X. We
denote by Xcl the set of closed points of X. If A D OX , we sometimes say that it
is a usual scheme. We denote by A-Mod (respectively, by A-mod) the category of
quasi-coherent (respectively, coherent) sheaves of A-modules. We call objects of
this category just A-modules (respectively, coherentA-modules).

A non-commutative scheme .X;A/ is said to be affine (separated, quasi-
compact) if so is its commutative background X. It is said to be reduced if A has
no nilpotent ideals. If X is noetherian and A is a coherent OX-module, we say that
this non-commutative scheme is noetherian. We say that .X;A/ is quasi-projective
if there is an ample OX-module L. Note that then X is indeed a quasi-projective
scheme over the ring R D L1

nD0 $.X;L˝n/. In this paper we always suppose that
the considered non-commutative schemes are separated and quasi-compact. In
this case A-Mod is a Grothendieck category. In particular, every quasi-coherent
A-module has an injective envelope. We denote by A-Inj the full subcategory of
A-Mod formed by injective modules.

A morphism of non-commutative schemes f W .Y;B/! .X;A/ is a pair . fX; f #/,
where fX W Y ! X is a morphism of schemes and f # is a morphism of f!1X OX-
algebras f!1X A ! B. In what follows we usually write f instead of fX . Such
morphism defines the functor of inverse image f " W A-Mod ! B-Mod which
maps an A-moduleM to the B-module B˝f"1Af!1M. As the map fX is separated
and quasi-compact, the functor of direct image f" W B-Mod ! A-Mod is also
well-defined (cf. [20, § 0.1 and § 1.9.2]). Moreover, f " maps coherent modules to
coherent ones. Note that f " and f" do not coincide with . fX/" and . fX/". It is
guaranteed only if B D f "X A, for instance, if Y is an open subset of X and B D AjY .

We call a non-commutative scheme .X;A/ central if center.A/ D OX . Actually,
we can only consider central non-commutative schemes as the following evident
results show.

Proposition 3.7 Let C D center.A/, QX D spec C, %X W QX ! X be the corresponding
affine morphism, and QA D %!1X .A/. Then %X extends to a morphism % W . QX; QA/ !
.X;A/ and %" induces equivalences QA-Mod! A-Mod and QA-mod! A-mod.
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We denote by lpA the full subcategory ofA-mod consisting of locally projective
modules, i.e., such coherent modules P that all localizations Px are projective Ax-
modules. We say thatA has enough locally projective modules if for every coherent
A-module M, there is an epimorphism P !M, where P is locally projective. It
is the case, for instance, if the non-commutative scheme is quasi-projective.

We denote by DA the derived category D.A-Mod/, with subscripts C;! ;b

denoting its full subcategories consisting, respectively, of left-, right-, and two-sided
bounded complexes. We also denote by PerfA the full subcategory of small objects
fromDA, i.e., such complexesF! that HomDA.F!;

F
i G!

i / '
F

i HomDA.F!;G!
i /

for any coproduct
F

i G!
i . As X is separated and quasi-compact, small objects in

DA are just perfect complexes, i.e., complexes F! such that for every x 2 X the
complexFx is isomorphic to a finite complex of locally projective coherentmodules.
Moreover, PerfA generates DA, i.e., for every complex G!, there is a nonzero
morphism from a perfect complex to G!. It is well-known in affine and commutative
cases and the proof in general case is quite analogous [8, Theorem 3.14].

Definition 3.8 Let P be a locally projective A-module, B D .EndA P/op. We
call the non-commutative scheme .X;B/ a minor of the non-commutative scheme
.X;A/.

This notion is just a globalization of the corresponding notion from [15].
We consider P as right B-module and denote P_ D HomA.P ;A/; it is a right

A-module. It is known that for every P 2 lpA, the natural map P ! P__ is an
isomorphism and EndA P_ ' EndA P ' P_˝AP . The following functors play
the crucial role in this paper:

F D HomA.P ; _ / ' P_˝A_ W A-Mod! B-Mod;

F" D P˝B_ W B-Mod! A-Mod; (1)

FŠ D HomB.P_; _ / W B-Mod! A-Mod:

The functor F is exact and both .F";F/ and .F;FŠ/ are adjoint pairs of functors. If
the non-commutative scheme .X;A/ is noetherian, so is also .X;B/ and the functors
F;F";FŠ map coherent sheaves to coherent. Note that if I is an injective B-module,
then FŠ.I/ is an injective A-module. We denote by P-Inj the image FŠ.B-Inj/. We
also denote by &P the natural map P˝BP_ ! A such that &. p˝f / D f . p/ and
IP D Im&P . If P D Ae, where e is an idempotent, then P_ ' eA, .EndA P/op '
eAe and IP D AeA.

The following result plays a crucial role in this paper:

Theorem 3.9

1. F is a bilocalizing functor and its kernel C D kerF consists of the modules M
such IPM D 0, so can be identified with A=IP -Mod.
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2. ImF" D ?C consists of all A-modules M such that for every x 2 X there is an
exact sequence P1 ! P0 ! M ! 0, where P0 and P1 are multiples (maybe
infinite) of Px. We denote this subcategory by P-Mod.

3. ImFŠ D C? consists of all A-modules M such that there is an exact sequence
0 ! M ! I0 ! I1, where I0 and I1 belong to P-Inj. We denote this
subcategory by P Inj-Mod.

Proof The results of the preceding section show that it is enough to prove the
following statements:

Proposition 3.10

1. The natural morphism ' W 1B-Mod ! FF" is an isomorphism.
2. ImF" D P-Mod.
3. ImFŠ D P Inj-Mod.
4. kerF D fM j IPM D 0 g.
Proof Evidently, all claims are local, so we can suppose that X D specR for a com-
mutative ring R; A D A# is the sheafification of an R-algebra A, P D P#, where P
is a finitely generated projective A-module; and B D B#, where B D EndA P. Then
we can replace A-Mod; B-Mod, and P-Mod, respectively, by A-Mod; B-Mod, and
P-Mod, where P-Mod is the full subcategory of A-Mod consisting of all modules
M such that there is an exact sequence P1 ! P0 ! M! 0, where P0 and P1 are
multiples of P.

Certainly, '.B/ is an isomorphism. Hence '.F/ is an isomorphism for every free
B-moduleF. For everyB-moduleM, there is an exact sequenceF1 ! F1 ! M! 0
with free modules F0;F1. It induces a commutative diagram with exact rows

As '.F1/ and '.F2/ are isomorphisms, so is '.M/. It proves (1).
Moreover, we have an exact sequence F".F1/! F".F0/! F".M/! 0, where

F".Fi/ are multiples of F".B/ D P, so F".M/ 2 P-Mod. On the contrary, let we
have an exact sequence P1 ! P0 ! N ! 0, where Pi are multiples of P. Consider
the natural morphism  W F"F ! 1A-Mod. Obviously,  .P/ is an isomorphism, so
 .Pi/ are also isomorphisms. Again we obtain a commutative diagram with exact
rows
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It implies that  .N/ is an isomorphism, hence N 2 ImF". It proves (2). The proof
of (3) is quite analogous.

To prove (4), note that IPP D P [10, Proposition VII.3.1], where IP D Im&P. Let
M … kerF and f W P ! M be a nonzero homomorphism. Then IPM # Im f ¤ 0.
On the contrary, if IPM ¤ 0, there is an element z 2 M, elements pi 2 P,
and homomorphisms fi W P ! A such that

P
i fi. pi/z ¤ 0. Denote by g the

homomorphism A ! M mapping 1 to z and set gi D gfi. Then at least one of
gi is nonzero, so M … kerF. ut

As the functor F is exact, it induces a functor DF W DA ! DB acting on
complexes componentwise. It is both left and right derived of F. There are also left
derived functor LF" and right derived functor RFŠ, both DB ! DA [29, Sect. 6].
Moreover, it follows from [29] that both .LF";DF/ and .DF;RFŠ/ are adjoint pairs
(see [8] for details). Obviously,DFmapsD(A to D(B, where ( 2 fC;!; b g; LF"
maps D!B to D!A and RFŠ maps DCB to DCA.

Theorem 3.11

1. DF is a bilocalizing functor and kerDF ' DA=IPA, where DA=IPA is the full
subcategory of DA consisting of complexes with cohomologies annihilated by
IP (i.e., belonging to .A=IP/-Mod).

2. LF" maps PerfB to PerfA.
3. Im LF" D ?DA=IPA coincides with the full subcategoryDP! ofDA consisting

of complexes quasi-isomorphic to K-flat complexes F! such that for every
component F i and every point x 2 X, the localization F i

x is a direct limit of
modules from addPx. The same is true if we replace D by D!.

4. ImRFŠ D DA=IPA? coincides with the full subcategory DP Inj of DA
consisting of complexes quasi-isomorphic to K-injective complexes I! such that
every component I i belongs to FŠ.B-Inj/. The same is true if we replace D
by DC.

Note that the condition (4) can be verified locally at every point x 2 X.
We recall that a complex F! is said to be K-flat (K-injective) if for every

acyclic complex of right (respectively, left) A-modules C!, the complex F!˝AC!

(respectively,HomA.C!;F!) is also acyclic [29].

Proof (1) follows from the results of the previous section.
As P is coherent and locally projective, the functor DF preserves arbitrary

coproducts. Therefore its left adjoint LF" maps small objects to small ones, which
gives (2).

(3) It follows from [1] that for every complexM! of B-modules, there is a quasi-
isomorphic K-flat complex F! with flat components. Then LF".M!/ D F".F!/.
By Bourbaki [5, Chap.X, § 1, Theorem 1], every localization F i

x is a direct limit
lim!!n

Li
n, where all Li

n are finitely generated and projective, hence belong to addBx.

As F" preserves direct limits and F".B/ ' P , F".Fi/ ' lim!!n
F".Li

n/ and F".Li
n/

belongs to addPx. Therefore, F".M!/ 2 DP!.
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On the contrary, let N ! 2 DP!. We can suppose that this complex is K-flat
and every localization N i

x is a direct limit lim!!n
P i
n, where P i

n 2 addPx. Then the
complex F.N !/ is also K-flat, so .LF"/.F.N !// ' F"F.N !/. As the natural map
F"F.P/ ! P is an isomorphism, the same is true for F"F.P i

n/ ! P i
n, hence also

for F"F.N i
x/! N i

x. Therefore, the map .LF"/.DF/.N !/! N ! is an isomorphism
andN 2 ImLF".

The proof of (4) is quite analogous. ut
Corollary 3.12 There are semi-orthogonal decompositions .kerDF; ImLF"/ and
.ImRFŠ; kerDF/ of the categoryDA.

Note that the subcategories ImLF" and ImRFŠ are equivalent (both are equiva-
lent to DB) but usually do not coincide.

The following special case is rather important:

Theorem 3.13 Suppose that the ideal I D IP is flat as right A-module. Set Q D
A=I. Then kerDF D DQA ' DQ.

Proof Let F! ! G! be a quasi-isomorphism. As I is flat, then I˝AF! !
I˝AG! is also a quasi-isomorphism. Therefore, F!˝AQ ! G!˝AQ is also a
quasi-isomorphism. In particular, if G! consists of Q-modules, we get a quasi-
isomorphism F!˝AQ ! G!. It implies that we can identify DQ with the full
triangulated subcategory of DA. Obviously DQ $ DQA. Moreover, I2 D I.
Let F! 2 DQA. We can suppose that F! is K-flat. Its tensor product with the
exact sequence 0 ! I ! A ! Q ! 0 gives an exact sequence of complexes
0! I˝AF! ! F! ! Q˝AF! ! 0. As I is flat, H".I˝AF!/ ' I˝AH".F!/.
Since I˝AQ ' I=I2 D 0, also I˝AM D 0 for every Q-module M. Therefore
H".I˝AF!/ D 0, i.e., I˝AF! is acyclic, whence F! is quasi-isomorphic to
Q˝AF , which belongs to DQ. ut
Example 3.14 (Endomorphism Construction) Let F be a coherent A-module and
AF D .EndA.A˚F//op. We identifyAF with the algebra of matrices

AF D
"
A F
F 0 E

#
;

where F 0 D HomA.F ;A/ and E D .EndA F/op. Then P D PF D
$ A
F 0
%
is a

locally projective AF -module and A ' .EndAF P/op. Hence A is a minor of AF ,
thus A-Mod and DA are bilocalizations, respectively, of AF -Mod and DAF . The
corresponding functors are

FF D HomAF .PF ; _ /;

F"F D PF˝A_ ;

FŠF D HomA.P_F ; _ /
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and their derived functors. Note that P_ '
$
A F

%
' A˚F as A-AF -bimodule

and IP is the ideal of matrices

IP D
"
A F
F 0 I 0F

#

where I 0F is the image of the map &0 W F 0˝AF ! E such that &0. f 0˝f /.v/ D
f 0.v/f for all f ; v 2 F ; f 0 2 F 0. Therefore, kerFF ' .E=I 0F /-Mod and kerDFF D
DE=I0

F
AF .

This construction is especially convenient when A is strongly Gorenstein in the
sense of the following definition:

Definition 3.15 A noetherian non-commutative scheme .X;A/ is said to be
strongly Gorenstein if X is equidimensional, A is a Cohen–Macaulay OX-module,
and inj:dimA A D dimX.

Such non-commutative schemes possess almost all usual properties of Cohen–
Macaulay rings and (“usual”) schemes, and their proofs are quite analogous to those
from [6] (see [8, Sect. 5] for details).We need here theCohen–Macaulay duality. For
a noetherian non-commutative scheme .X;A/ denote by CMA the full subcategory
of A-mod consisting of maximal Cohen–Macaulay A-modules, i.e., such coherent
A-modules M that each localization Mx is a maximal Cohen–Macaulay OX;x-
module. Let " W A-mod! Aop-mod be the functor mappingM to HomA.M;A/.
If A is strongly Gorenstein, so is also Aop, and " defines an exact duality between
CMA and CMAop. It means that, for every M 2 CMA, ExtiA.M;A/ D 0 for
i > 0 and the natural map M ! M"" is an isomorphism. It also implies that
the natural map M˝AL ! HomA.M;L/ is an isomorphism for every locally
projectiveA-module L.

Theorem 3.16 In the situation of Example 3.14, let A be strongly Gorenstein and
has enough locally projective modules and F 2 CMA. Then the restrictions of the
functors LF"F and RFŠF onto PerfA coincide. Thus these restrictions are both left
and right adjoint to DFF .

Proof Note first that under the given conditions F"F .L/ ' FŠF .L/ for every locally
projectiveA-module L. As A has enough locally projective modules, any complex
fromPerfA is quasi-isomorphic to a finite complexL! such that allLi are from lpA.
Then LF"F .L!/ D F"F .L!/. On the other hand, RkFŠF .Li/ D ExtkA.PF ;Li/ D 0 for
k ¤ 0. Therefore,RFŠF .L!/ D FŠF .L!/ ' F"F .L!/. ut

4 Quasi-Hereditary Schemes

In this section we generalize the notions of quasi-hereditary algebras and orders
[12, 22] to non-commutative schemes. It is closely related with minors and
bilocalizations. We start from the following facts. Let .X;A/ be a non-commutative
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scheme, M be an A-module. We call sup
˚
i j ExtiA.M; _ / ¤ 0

!
the local pro-

jective dimension of the A-module M and denote it by lp:dimA M. If the
non-commutative scheme .X;A/ is noetherian and the moduleM is coherent, then
lp:dimA M D sup

˚
pr:dimAx

Mx j x 2 X
!
:

Lemma 4.17 (Cf. [8, Lemma 4.9]) Let .X;A/ be a non-commutative scheme, P
be a coherent locally projective A-module, B D .EndA P/op, and NA D A=IP .
Suppose that P is flat as right B-module,

lp:dimA IP D d;

gl:dimB D n;

gl:dim NA D m:

Then gl:dimA " max fmC dC 2; n g.
Proof Let NA D A=IP . Then lp:dimA NA D d C 1. The spectral sequence
ExtpNA.M; ExtqA. NA; _ // ) ExtpCq

A .M; _ / implies that pr:dimA M " m C d C 1
for every NA-moduleM. Consider the functors F D HomA.P ; _ / and F" D P˝B_ .
As the morphism FF"F ! F arising from the adjunction is an isomorphism, the
kernel and the cokernel of the natural map ˛ W F"FM !M are annihilated by F,
so are actually NA-modules. It implies that ExtiA.M;N / ' ExtiA.F

"FM;N / if i >
mC dC 2, so pr:dimA M " max fmC dC 2; pr:dimA F"FM g. As both functors
F and F" are exact, ExtiA.F

"_ ; _ / ' ExtiB._ ;F_ /, so pr:dimA F"FM " n. ut
This result motivates the following definitions:

Definition 4.18 (Cf. [8, Definition 4.9])

1. Let .X;A/ and .X;B/ be two non-commutative schemes. A relating chain
betweenA and B is a sequence .A1;P1;A2;P2; : : : ; Pr;ArC1/, whereA1 D A;
ArC1 D B; everyPi (1 " i " r) is a coherent locally projectiveAi-modulewhich
is also flat as right Bi-module, where Bi D .EndAi Pi/

op; andAiC1 D Ai=IPi for
1 " i " r.

2. The relating chain is said to be flat if, for every 1 " i " r, IPi is flat as right
Ai-module. Note that it is the case if the natural map &i W Pi˝BiP_i ! Ai is a
monomorphism.

3. The relating chain is said to be heredity if, for every 1 " i " r, IPi is locally
projective as leftAi-module. In this case &i is a monomorphism (it can be proved
as in [14, Statement 7]), so this chain is flat.

4. If the relating chain is heredity and all non-commutative schemes Bi are
hereditary, i.e., gl:dimBi " 1, we say that the non-commutative scheme A is
quasi-hereditary of level r. (Thus quasi-hereditary of level 0 means hereditary.)

The following result is obvious:

Proposition 4.19 If .A1;P1;A2;P2; : : : ;Pr;ArC1/ is a relating chain between A
and B, then .Aop

1 ;P_1 ;A
op
2 ;P_2 ; : : : ;P_r ;A

op
rC1/ is a relating chain betweenAop and

Bop with the same endomorphism algebras Bi.
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Note that if A is noetherian, so are all Ai and Bi. As for noetherian non-
commutative schemes all flat coherent modules are locally projective, we obtain
the following corollary:

Corollary 4.20 If a noetherian non-commutative scheme .X;A/ is quasi-
hereditary, so is also .X;Aop/.

We fix a relating chain .A1;P1,A2;P2,: : : ;Pr;ArC1/ betweenA and B and keep
the notations of Definition 4.18(1). Lemma 4.17 immediately implies an estimate for
global dimensions.

Corollary 4.21 Let gl:dimBi " n and lp:dimAi
IPi " d for all 1 " i " r. Then

gl:dimA " r.dC2/Cmax f gl:dimB; n ! d ! 2 g. If this relating chain is heredity,
then gl:dimA " gl:dimBC 2r.

Using Corollary 3.12, Theorem 3.13, and induction, we obtain the following
result:

Corollary 4.22 If this relating chain is flat, there are semi-orthogonal decompo-
sitions .T ;Tr; : : : ;T1/ and .T 01 ;T

0
2 ; : : : ;T

0
r ;T / of DA such that Ti ' T 0i '

DBi .1 " i " r/ and T ' DB.

Note that, as a rule, Ti ¤ T 0i .

Corollary 4.23 If a non-commutative scheme A is quasi-hereditary of level r, then
gl:dimA " 2rC1, and there are semi-orthogonal decompositions .T ;Tr; : : : ;T1/
and .T 01 ;T

0
2 ; : : : ;T

0
r ;T / ofDA such thatTi ' T 0i .1 " i " r/ and all categories

Ti, as well as T , are equivalent to derived categories of some hereditary non-
commutative schemes.

The following result is evident:

Proposition 4.24 If there is a heredity relating chain between A and B such that
all Bi are hereditary and B is quasi-hereditary, then A is quasi-hereditary too.

Corollary 4.25 Consider the endomorphism construction of Example 3.14 (with
the same notations). Suppose thatF is flat as right E-module,F 0 is locally projective
as left E-module and the natural map &F W F˝EF 0 ! A is a monomorphism. If
both E and NA D A= Im&F are quasi-hereditary, so is AF .

Proof Let QP D
$ F
E
%
. Then I QP is the ideal of matrices

"
F˝EF 0 F

F 0 E

#
:

Its first row is F˝E
$
F 0 E

%
and its first column is

$F
E
%
˝EF 0. Under the prescribed

conditions, the first one is flat as right AF -module and the second one is locally
projective as left AF -module. Therefore .AF ; QP; NA/ is a heredity relating chain
relating between A and NA, so we can apply Proposition 4.24. ut
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One can show that the definition of quasi-hereditary non-commutative schemes is
indeed a generalization of the well-known definition for semiprimary rings [12, 14].

Theorem 4.26 Let .X;A/ be affine: X D specR, A D A#, and the ring A
be semiprimary. This non-commutative scheme is quasi-hereditary in the sense of
Definition 4.18(4) if and only if the ring A is quasi-hereditary in the sense of [12].

Proof Recall that a semiprimary ring A is called quasi-hereditary if there is a chain
of ideals 0 D I0 % I1 % I2 % & & & % Ir % IrC1 D A such that the following
conditions hold for NIi D Ii=Ii!1 as for an ideal in Ai D A=Ii!1:

1. NI2i D NIi. (As Ai is semiprimary, it means that NIi D AieiAi for some idempotent ei.)
2. NIi.radAi/NIi D 0. (It means that rad.eiAiei/ D 0.)
3. NIi is projective as Ai-module. (Under condition (2) it is equivalent to the claim

that the map Aiei˝eiAiei eiAi ! NIi is bijective, see [14, Statement 7].)

In other words, it means that .A D A1;P1;A2;P2; : : : ;Ar;Pr;ArC1/, where Pi D
Aiei and ArC1 D A=Ir, is a heredity relating chain between A with semisimple
endomorphism rings Bi and semisimple ring ArC1. Thus A is a quasi-hereditary
affine non-commutative scheme. On the contrary, let A be quasi-hereditary as an
affine non-commutative scheme. To show that B is a quasi-hereditary ring, we can
use induction and the following result.

Recall that a ring A is said to be triangular if it has a set of idempotents
f e1; e2; : : : ; em g such that

Pm
iD1 ei D 1, eiAej D 0 if i > j and Ai D eiAei are

prime rings, i.e., IJ ¤ 0 for any two nonzero ideals of Ai. If A is semiprimary,
then Ai are simple artinian rings. For instance, every semiprimary hereditary ring is
triangular [16].

Lemma 4.27 Let A be a semiprimary ring, I D AeA be an idempotent ideal such
that I is projective asA-module,A=I is quasi-hereditary , andE D eAe is triangular.
Then A is quasi-hereditary. In particular, any triangular semiprimary ring is quasi-
hereditary.

Proof According to [13], it is enough to find a heredity chain of ideals 0 D I0 %
I1 % I2 % & & & % Im D E in E such that each factor Iie=Ii!1e is projective as
Ei D E=Ii!1-module. Since E is triangular, it can be considered as an algebra of
triangular matrices:

E D

0

BBBBB@

E11 E12 E13 : : : E1m
0 E22 E23 : : : E2m
0 0 E33 : : : E3m

: : : : : : : : :

0 0 0 : : : Emm

1

CCCCCA
;

where all rings Eii are simple artinian. Let ej .1 " j " m/ be the standard diagonal
idempotents in this matrix ring, "i D

Pi
jD1 ej and Ii D E"iE. Then Ii is the ideal

of matrices such that their first m ! i rows are zero. Therefore, E=Ii!1 is the matrix
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ring obtained from E by crossing out the first i ! 1 rows and columns. Evidently,
0 D I0 % I1 % I2 % & & & % Im D E is a heredity chain of ideals in E. One easily sees
that ej.IiM/ D 0 for any Ei-moduleM and any j > i. Then there is an epimorphism
kEiei ! IiM for some k. As the module Eiei is semisimple, this epimorphism splits,
so IiM is projective. In particular, Iie=Ii!1e is projective, so A is quasi-hereditary.

ut
Just in the same way, one can show that if X D specR, where R is a discrete

valuation ring and A D A#, where A is a semiprime R-order, then the non-
commutative scheme .X;A/ is quasi-hereditary if and only if A is a quasi-hereditary
R-order in the sense of [22].

5 Non-commutative Curves

We call a curve a noetherian excellent reduced scheme such that all its irreducible
components are of dimension 1. We call a non-commutative curve a reduced non-
commutative scheme .X;A/ such that X is a curve and A is a torsion-free finitely
generated OX-module. We can suppose, without loss of generality, that the OX-
module A is sincere. In this section .X;A/ always denotes a non-commutative
curve and we suppose that A is a sincere OX-module. We denote by Xreg and Xsng,
respectively, the subsets of regular and singular points of X. As X is excellent and
reduced, the set Xsng is finite.

If .X;A/ is a non-commutative curve, the category CMA consists of coherent
A-modules which are torsion-free as OX-modules. These modules can be defined
locally. Namely, let K D KX be the sheaf of rational functions on X. Set KM D
K˝OXM. Then KA is a sheaf of semisimple K-algebras and A is an OX-order in
KA, i.e., an OX-subalgebra in KA which is coherent as OX-module and generates
KA as K-module. If V is a coherent KA-module and M % V is its coherent A-
submodule which generates V as K-module, we say that M is an A-lattice in V .
Then M 2 CMA and conversely, every M 2 CMA is a lattice in KM. If M is
a lattice in V , then Mx is a lattice in Vx and M is completely defined by the set
of lattices fMx j x 2 Xcl g. The following result is an immediate consequence of its
affine variant, which can be proved like in [4, Chap. 7, § 4, Théorème 3]:

Proposition 5.28

1. If M and N are lattices in V , thenMx D Nx for almost all x 2 Xcl.
2. Let M be a lattice in V , S $ Xcl be a finite set, and for every x 2 S, let N.x/ be

anAx-lattice in Vx. Then there is a latticeN in V such thatNx D N.x/ for every
x 2 S andNx DMx for every x … S.

Using this proposition, one can prove the following properties of non-
commutative curves (see [8] for details):
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Proposition 5.29 Let .X;A/ be a non-commutative curve.

1. A has enough locally projective modules.
2. There is a canonical A-module, i.e., such module !A from CMA that

inj:dimA !A D 1 and EndA !A ' Aop (hence !A is indeed an A-bimodule).
Moreover, also inj:dimAop !A D 1 and !A is isomorphic (as A-bimodule) to an
ideal of A.

3. The functor " W M 7! HomA.M; !A/ defines an exact duality between CMA
and CMAop. It means that, for every M 2 CMA, the natural mapM!M""

is an isomorphism and ExtiA.M; !A/ D 0 if i > 0.
Actually, one can choose for !A the module HomOX .A; !X/, and we always

do so. Then M" is identified with HomOX .M; !X/. Note also that A is strongly
Gorenstein if and only if A is itself a canonicalA-module.

Let B be a minor of the non-commutative curve A, i.e., B D EndA P for some
coherent locally projectiveA-module P , and let F;F";FŠ denote the corresponding
functors (see formulae (1) on page 77).

Obviously F and FŠ map torsion-free modules to torsion-free. It is not true for F",
so we modify it, setting F).M/ D .F".M//"". We also set P 0 D .P_/". Then
inj:dimA P 0 D 1 and Ext1A.M;P 0/ D 0 for every M 2 CMA; such A-lattices
are called locally injective A-lattices. In affine case they are indeed injective in the
exact category CMA. After this modification, we have results about the categories
of torsion-free modules quite analogous to Theorem 3.9.

Theorem 5.30

1. The functors FŠ and F define an equivalence of CMB and CM0 P , where CM0 P
is the full subcategory of CMA consisting of all modulesM such that for every
point x 2 X there is an exact sequence 0 !Mx ! Q ! N ! 0, where Q is a
multiple of the Ax-module P 0x and N 2 CMAx.

2. The restriction of the functor F) onto CMB is left adjoint to the restriction of
F onto CMA. Moreover, if M 2 CMB, the natural map FF).M/ !M is an
isomorphism, and the functors F) and F define an equivalence of the categories
CMB and CMP , where CMP is the full subcategory of CMA consisting of all
modulesM such that for every point x 2 X there is an epimorphism nPx !M.

Proof

1. This statement is local, so we can suppose that X D specR, where R is an
excellent local reduced ring of Krull dimension 1, A D A# for some R-
order A, i.e., an R-algebra A without nilpotent ideals which is finitely generated
and Cohen–Macaulay as an R-module, P D P# for some finitely generated
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projective A-module P. Moreover, we can suppose that P is sincere as A-module.
Then B D B#, where B D EndA P. If M 2 CMB, there is an exact sequence
mB! nB! M" ! 0, which gives an exact sequence:

0! M ! nB" ! mB": (2)

We denote by  the natural morphism 1A-Mod ! FŠF. One easily sees that F.P0/ '
B" and FŠ.B"/ ' P0, so  .P0/ is an isomorphism. The exact sequence (2) gives an
exact sequence 0! FŠ.M/! nP0 ! mP0, which shows that FŠ.M/ 2 CM0 P.

Let now M 2 CM0 P. An exact sequence 0 ! M ! nP0 ! N ! 0, where
N 2 CMA, gives an exact sequence 0 ! F.M/ ! F.nP0/ ! F.N/ ! 0. For any
A-module N,  .N/ is the homomorphism:

h W N ! HomB.P_;HomA.P;N// ' HomA.P˝BP_;N/

such that h.u/.˛˝*/ D *.˛/u. Tensoring with KA, we obtain the map KN !
HomKA.KP˝KBKP_;KN/. As KA is semi-simple andKP is sincere, the natural map
KP˝KBKP_ ! A is surjective; therefore, K .N/ is injective. If N is torsion-free,
hence embeds into KN, it implies that  .N/ is injective. So we have a commutative
diagram

Since  .nP0/ is an isomorphism and  .N/ is a monomorphism,  .M/ is an
isomorphism. As the natural map FFŠ ! 1B-Mod is an isomorphism, it proves the
statement (1).

2. IfM 2 CMB and N 2 CMA, then also FN 2 CMB, so

HomA.F)M;N / ' HomA.F"M;N / ' HomA.M;FN /;

which proves the first claim. Consider now the functors

Fop D HomA.P_; _/ W QcohAop ! QcohBop;

.Fop/Š D HomB.P ; _/ W QcohBop ! QcohAop:

As we have just proved, they establish an equivalence between the categories
CMBop and CM0 P_, where CM0 P_ consists of all right A-modules N such that
for every point x 2 X there is an exact sequence 0 ! Nx ! Q ! N0 ! 0, where
Q is a multiple of P"x and N0 2 CMAx. Equivalently, there is an epimorphism
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Q" ! N "x , i.e.,N " 2 CMP . On the other hand,

.Fop/ŠM" D HomB.P ;HomOX .M; !X// '

' HomOX.P˝BM; !X/ D .P˝BM/" D .F)M/":

Therefore, the statement (2) follows by duality. ut

6 König’s Resolution

A non-commutative curve .X;A0/, where A $ A0 % KA, is called an over-ring
of the non-commutative curve .X;A/. If A has no proper over-rings, it is called
normal. Since X is excellent and A is reduced, the set of over-rings of A satisfies
the maximality condition, i.e., there are no infinite ascending chains of over-rings. (It
follows, for instance, from [27, Chap. 5] or from [17].) In particular, there is always a
normal over-ring ofA. In non-commutative case, such a normal over-ring is usually
not unique, though all of them are locally conjugate inside KA [27, Theorem 18.7],
and every normal non-commutative curve is hereditary [27, Theorem 18.1]. Thus
every non-commutative curve has a hereditary over-ring, and usually a lot of them.
Actually, there is one “special” hereditary over-ring which plays an important role
in this section.

Let .X;A/ be a non-commutative curve. Consider the ideal J D JA defined by
its localizations as follows:

Jx D
(
Ax if Ax is hereditary;

radAx otherwise:

Let A] D EndAop J (the endomorphism algebra of J as of right A-module).
Note that A] can (and will) be identified with the over-ring of A such that its x-
localization coincides with f! 2 KAx j !Jx $ Jx g for each x 2 Xcl. It is known
[27, Theorem 39.14] that A] D A if and only if A is hereditary. So there is a chain
of over-rings ofA:

A D A1 % A2 % A3 % & & & % An % AnC1 D QA;

where AiC1 D A]
i for 1 " i " n and QA is hereditary. We call n the level of A.

For instance, a usual (commutative) curve over an algebraically closed field is of
level 1 if and only if all its singular points are simple nodes or cusps. (The derived
categories of such curves were investigated in [7].)

Consider the endomorphism algebra R D RA D .EndA
LnC1

iD1 Ai/
op. We call

it the König’s resolution of the non-commutative curve A, since it is analogous to
that considered in [23] (though does not coincide with it even in case if orders over
discrete valuation rings) and has analogous properties.
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We identifyRA with the ring of matrices:

R D

0

BBBBB@

A11 A12 : : : A1n A1;nC1
A21 A22 : : : A2n A2;nC1

: : : : : : : : : : : : : : : :

An1 An2 : : : Ann An;nC1
AnC1;1 AnC1;2 : : : AnC1;n AnC1;nC1

1

CCCCCA
;

where Aij D HomA.Ai;Aj/. Note that Aij D Aj if i " j and AiC1;i D JAi . We
denote by ej the standard diagonal idempotents inR and set P D Re1, QP D RenC1.
Then .EndR P/op ' A, so A is a minor of R and the categories A-Mod and DA
are bilocalization, respectively, ofR-Mod andDR. The corresponding functors are
F D HomR.P ; _ / and its left derived functor LF. In the same way, QA ' .EndR QP/op
is a minor of R, so the categories QA-Mod and D QA are bilocalization, respectively,
of R-Mod and DR. The corresponding functors are QF D HomR. QP; _ / and its left
derived functor L QF. Thus we have a diagram of bilocalizations

(3)

Since QA is an over-ring of A, there is a morphism % W .X; QA/ ! .X;A/.
According to Proposition 3.7, we can replace here .X; QA/ by . QX; QA/ where QX D
spec.center. QA//. In case of “usual” schemes, whenA D OX , QX is the normalization
of X and % is the normalization map. The morphism % induces the functor of direct
image %" W QA-Mod ! A-Mod and its left and right adjoints %" and %Š, which are
functors A-Mod ! QA-Mod. It so happens that these functors, maybe up to twist,
are compositions of the functors from the diagram (3).

Theorem 6.31

1. F QF" ' %" and QFFŠ ' %Š.
2. QFF" ' C˝ QA%"_ and F QFŠ ' %".C 0˝ QA_ /, where C D HomA. QA;A/ D AnC1;1 is

the conductor of QA in A and C 0 D Hom QA.C; QA/ is its dual QA-module.

Proof We verify the equalities (1). Indeed, since e1 QP D QA as A- QA-bimodule,

F QF".M/ D HomR.P ; QP˝ QAM/ ' e1 QP˝ QAM 'M

considered as A-module, which is just %".M/. Also

QFFŠ.N / D HomR. QP;HomA.P_;N // ' enC1HomA.P_;N /

' HomA.P_enC1;N / ' HomA. QA;N / D %Š.N /:

The equalities (2) are proved analogously (see also [9]). ut
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Theorem 6.32 Let "k D
PnC1

jDk ej, Ik D R"kR, Qk D R=IkC1, and Pk D Qkek.
Then .R; QP ;Qn;Pn;Qn!1;Pn!1; : : : ;P2;Q1/ is a heredity relating chain between
R and Q1 ' A=JA. Moreover, .EndQk Pi/

op ' Ak=JAk is a semi-simple algebra,
soR is a quasi-hereditary non-commutative scheme of level n and gl:dimR " 2n.
Proof A straightforward calculation shows that Ik is the ideal of matrices:

Ik D

0

BBBBBBBBB@

Ak1 Ak2 : : : Ak;k!1 Ak AkC1 : : : AnC1
Ak1 Ak2 : : : Ak;k!1 Ak AkC1 : : : AnC1

: : : : : : : : : : : : : : : : : : : : : : : : :

Ak1 Ak2 : : : Ak;k!1 Ak AkC1 : : : AnC1
AkC1;1 AkC1;2 : : : AkC1;k!1 AkC1;k AkC1 : : : AnC1

: : : : : : : : : : : : : : : : : : : : : : : : :

AnC1;1 AnC1;2 : : : AnC1;k!1 AnC1;k AnC1;kC1 : : : AnC1

1

CCCCCCCCCA

Hence, Qk is the algebra of k ' k matrices .aij/, where aij 2 Aij=AkC1;j.
In particular, aik 2 Ak=AiC1;k D Ak=JAk and this algebra is semi-simple.
Therefore, .EndQk Pk/

op ' ekQkek D Akk=AkC1;k is semi-simple. Obviously,
IPk D QkekQk D IkC1=Ik, hence Qk!1 ' Qk=IPk , so we have indeed a
relating chain. Moreover, Ik is obviously projective as right R-module, hence
Ik=IkC1 is projective as right Qk-module and this relating chain is heredity. As
QA D .EndR QP/op is hereditary and all .EndQk Pk/

op are semi-simple, R is quasi-
hereditary and gl:dimR " 2n. ut

Thus the functorDF W DR! DA defines a categorical resolution of the derived
categoryDA in the sense of [24]. IfA is strongly Gorenstein, Theorem 3.13 shows
that this resolution is even weakly crepant, i.e., the restrictions of its left and right
adjoint functors coincide on perfect complexes (small objects in DA/.

We denote by NAk the semi-simple algebraAk=JAk .

Corollary 6.33 The derived category DR has two semi-orthogonal decomposi-
tions: DR D hT1;T2; : : : ;Tn;T i and DR D hT 0;T 0n ; : : : ;T 02 ;T 01 i, where
T ' T 0 ' D QA and Tk ' T 0k ' D NAk.

Remark 6.34 Note that usually T ¤ T 0 as well as Tk ¤ T 0k for k > 1, though
T1 D T 01 D D.R=I2/ naturally embedded into DR.

7 Tilting on Rational Curves

We say that a non-commutative curve .X;A/ is rational if X is a rational projective
curve over an algebraically closed field k and A is central. Since the Brauer group
of the field of rational functions k.t/ is trivial [26], thenKA ' Mat.m;K/ for some
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m. In this case the structure of hereditary non-commutative curves is well-known
(see, for instance, [11] or [8]). Namely, if such a curve is connected, then X D P1,
and up to Morita equivalence, this curve is given by a function r W Xcl ! N such that
r.x/ D 1 for almost all points. A representativeH.r/ of the Morita class defined by
this function can be defined as follows. Choosem 2 N such thatm ( r.x/ for all x 2
Xcl and choose partitionsm D

Pr.x/
kD1mxk for every x. Set Omxk D

Pk
lD1mxl. LetHx be

the subalgebra in Mat.m;OX;x/ consisting of all matrices .aij/ such that aij.x/ D 0
if i " Omxk and j > Omxk for some k. Then H.r/ is the subsheaf of Mat.m;OX/ such
that its x-stalk equalsHx.

It is also known that H.r/ has a tilting module, i.e., a coherent H.r/-module T
such that pr:dimT < 1, ExtqH.r/.T ; T / D 0 for all q > 0 and T generates the
derived categoryDH.r/. Namely, letH D H.r/, L D Om

X considered asH-module
and S D f x 2 Xcl j r.x/ > 1 g. If S D f x1; x2; : : : ; xs g with s > 1, we suppose that
x1 D .1 W 0/; x2 D .0 W 1/ and xi D .1 W !i/ for 1 < i " s, where ! 2 kn f 0; 1 g,
and set ri D r.xi/. If #.S/ D 1, we set s D 2; r1 D r.x1/; r2 D 1. If S D ;, then
H D Mat.m;OX/ is Morita equivalent toOX , so L˚L.1/ is a tilting sheaf forH. In
this case we also set s D 2; r1 D r2 D 1. Consider the submoduleL.x; k/ $ L such
that L.x; k/y D Ly for y ¤ x and L.x; k/x consists of all vectors .ai/1$i$k such that
ai.x/ D 0 for i " Omk and set T D L˚L.1/˚

$L
r.x/>1

Lr.x/!1
kD1 L.x; k/

%
.

Theorem 7.35 (See [8]2)

1. T is a tilting module forH.
2. .EndH T /op ' R.r;!/, where R.r;!/ is the canonical algebra defined by the

sequences r D .r1; r2; : : : ; rs/ and ! D .!3; : : : ;!s/, i.e., the algebra given by
the quiver

with relations ˛j D ˛1 C !j˛2 for 3 " j " s, where ˛j D ˛rjj : : : ˛2j˛1j [28,
Sect. 3.7].

Note that if s D 2, it is just the quiver algebra of the quiver QAr1;r2 ; if, moreover,
r1 D r2 D 1, it is the Kronecker algebra. Note also that any canonical algebra is
triangular, hence quasi-hereditary.

2It also follows from [19], since H.r/ is Morita equivalent to the weighted projective line C.r; S/.
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Obviously, if a rational hereditary non-commutative scheme .X;H/ is not
connected, it splits into a direct product of connected hereditary non-commutative
schemes. Therefore it has a tilting module T such that .EndH/op is a direct product
of canonical algebras.

Let now .X;A/ be a rational non-commutative curve,R be its König’s resolution.
We use the notations of the preceding section. The hereditary non-commutative
curve QA has a tilting module T such that .End QA T /op D R is a direct product
of canonical algebras. Then QT D QF.T / generates Im QF and ExtqH.r/.T ; T / D 0

for all q > 0. As h ker QF; Im QF i is a semi-orthogonal decomposition of DR,
also pr:dim QT < 1. As Q generates DQ, which can be identified with ker QF,
Q˚ QT generates DR. Note that dim suppQ D 0; therefore, ExtqR.Q;M/ D
H0.X; ExtqR.Q;M// for every quasi-coherent module M. A locally projective

resolution of Q is 0 ! QI +!! R ! Q ! 0. Thus pr:dimR Q D 1. Moreover,
Ext1R.Q;N / D 0 for any Q-module N , because QI2 D QI and QIN D 0, thus
HomR. QI;N / D 0. Obviously, HomR.Q; T / D 0. It implies the following result:

Theorem 7.36 T C D QŒ!1"˚ QT is a tilting complex for R, i.e., it belongs to
PerfR, generates DR and HomDR.T C; T CŒk"/ D 0 if k ¤ 0. Therefore DR '
DE, where E D .EndDR T C/op.

Note that E can be considered as the algebra of triangular matrices:

E D
"
Q T
0 R

#
; (4)

where R D .End QA T /op is a direct product of canonical algebras and T D
Ext1R.Q; QT / ' HomR. QI; QT /=+"HomR.R; QT /. Note that QI ' LnC1

iD1 QFAnC1;i,
whence T 'LnC1

iD1 Hom QA.AnC1;i; T /.

Corollary 7.37 For every rational non-commutative curve .X;A/, there is a finite
dimensional quasi-hereditary algebra E and a bilocalizing functor DE! DA.

Proof In the triangular presentation (4) of the algebra E, let e D
$
0 0
0 1

%
. Then I D

EeE D
$
0 T
0 R

%
is projective as E-module and eEe ' R is triangular. Hence E is

quasi-hereditary by Lemma 4.27.

Thus every rational non-commutative curve has a categorical resolution by a
finite dimensional quasi-hereditary algebra. If the curve is strongly Gorenstein, this
resolution is weakly crepant. In particular, it is the case for “usual” (commutative)
rational curves. Note that Q D QxQx, where x runs through all points such that Ax

is not hereditary (in the commutative case through singular points of X).

Example 7.38 (See [9, Sect. 8]) We consider the input Qx for simple singularities
of (usual) plain curves in the sense of [2]. We present it as a quiver with relations.
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1. If x is of type Am; m > 2, then

where n D
&mC1

2

'
. Note that for m " 2, the algebra Qx is semisimple.

2. If x is of type Dm; m ( 4, then

where n D
&m
2

'
.

3. If x is of type E6, Qx is the same as for D4, and if x is of type E7 or E8, Qx is the
same as for D6.

4. Finally, we consider a “global” example, where X has two irreducible rational
components X1;X2 and three singular points x1 2 X1 of type E6, x2 2 X1 \ X2 of
type D7, and x3 2 X2 of type A5. Then the algebra E has the quiver

It consists of “local parts” (formed by the vertices 1i; 2i; 3i) and “Kronecker
parts” (formed by the vertices 0j;!1j) arising from the components of QX.
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One can also explicitly describe the relations for the arrows *ij between these
parts (they depend on the positions of the preimages of singular points on the
components of QX).
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