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Abstract

For a semi-simple finite-dimensional complex Lie algebra g, we classify the representation type of
the associative algebras associated with the categories ∞

λH1
µ of Harish–Chandra bimodules for g.

1. Result

Let g be a simple finite-dimensional complex Lie algebra with a fixed triangular decomposition,
g = n− ⊕ h ⊕ n+, let λ and µ be two dominant and integral (but not necessarily regular) weights,
let U(g) be the universal enveloping algebra of g and let Z(g) be the centre of U(g). Denote by χλ

and χµ the central characters of the Verma modules �(λ) and �(µ), respectively. Let further ∞
λH1

µ

denote the full subcategory of the category of all U(g)-bimodules, which consists of all X satisfying
the following conditions [24, Kapitel 6]:

(1) X is finitely generated as a bimodule;
(2) X is algebraic, that is, X is a direct sum of finite-dimensional g-modules with respect to the

diagonal action g �→ (g, σ (g)), where σ is the Chevalley involution on g;
(3) x(z − χµ(z)) = 0, for all x ∈ X and z ∈ Z(g);
(4) for every x ∈ X and z ∈ Z(g), there exists k ∈ N such that (z − χλ(z))

kx = 0.

For regular µ, the category ∞
λH1

µ is equivalent to a block of the BGG category O, associated with the
triangular decomposition mentioned earlier; see [7]. For singular µ, the category ∞

λH1
µ is equivalent

to a block of the parabolic generalization O(p, �) of O, studied in [21]. Moreover, from [21, 29], it
follows that every block of O and O(p, �) is equivalent to some ∞

λH1
µ. Every ∞

λH1
µ is equivalent

to the module category of a properly stratified finite-dimensional associative algebra. The regular
blocks of ∞

λH1
µ can be used to categorify a parabolic Hecke module; see [26].

Let W be the Weyl group of g and ρ be the half of the sum of all positive roots of g. Then, W acts
on h∗ in the usual way, and we recall the following dot-action of W on h∗: w · ν = w(ν + ρ) − ρ.
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Let G ⊂ W be the stabilizer of λ with respect to the dot-action, and H ⊂ W be the stabilizer of µ

with respect to the dot-action. We will say that the triple (W, G, H) is associated to ∞
λH1

µ. In the
present article, we classify the categories ∞

λH1
µ according to their representation type in terms of the

associated triples, thus extending the results of [11, 22, 23]. Let (W, G, H) be the triple, associated
to ∞

λH1
µ, and (W, G′, H′) be the triple, associated to some ∞

λ′H1
µ′ . Then, from [6, Theorem 5.9; 29,

Theorem 11], it follows that ∞
λH1

µ and ∞
λ′H1

µ′ are equivalent if there exists an automorphism, ϕ,
of the Coxeter system (W, S), where S is the set of simple reflections associated to our triangular
decomposition, such that ϕ(G) = G′ and ϕ(H) = H′. The Coxeter type of a triple, (W, G, H), is the
triple, which consists of the Coxeter types of the corresponding components of (W, G, H). Note that,
in general, the Coxeter type of the triple does not determine the triple in a unique way (for example,
one can compare the cases (1e), (2d) and (2e) in the formulation of Theorem 1.1 below). Our main
result is the following statement.

THEOREM 1.1 (1) The category ∞
λH1

µ is of finite type if and only if the Coxeter type of the associated
triple is
(a) any and W = G;
(b) (An, An−1, An), (Bn, Bn−1, Bn), (Cn, Cn−1, Cn) or (G2, A1, G2);
(c) (A1, e, e);
(d) (An, An−1, An−1);
(e) (An, An−1, An−2), where An−2 is obtained from An by taking away the first and the last

roots;
(f) (B2, A1, A1) or (C2, A1, A1), and G = H (in both cases);
(g) (Bn, Bn−1, Bn−1) or (Cn, Cn−1, Cn−1), where n ≥ 3;
(h) (A2, A1, e).

(2) The category ∞
λH1

µ is tame if and only if the Coxeter type of the associated triple is
(a) (A3, A1 × A1, A3), (A2, e, A2), (B2, e, B2), (G2, e, G2), (B3, A2, B3), (C3, A2, C3) or

(Dn, Dn−1, Dn), where n ≥ 4;
(b) (B2, A1, A1) or (C2, A1, A1), and G �= H (in both cases);
(c) (An, An−1, A1 × An−2), n > 2;
(d) (An, An−1, An−2), n > 2, where An−2 is included into An−1 and contains either the first

or the last root of An;
(e) (An, An−1, An−2), n > 2, where An−2 is not included into An−1;
(f) (A3, A2, e), (B2, A1, e), (C2, A1, e).

(3) In all other cases, the category ∞
λH1

µ is wild.

For regular µ, Theorem 1.1 gives the classification of the representation type of the blocks of the
category O obtained in [22] (see [11] for a different proof). Formally, we do not use any results from
[22; 11], however, the main idea of our proof is similar to the one of [11].

In the case H = W (that is, µ is most singular), Theorem 1.1 reduces to the classification of the
representation type for the algebra C(W, G) of G-invariants in the coinvariant algebra associated
to W. This result was obtained in [23] and, in fact, our argument in the present article is based
on it.
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The last important ingredient in the proof of Theorem 1.1, the latter being presented in section 3, is
the classification of the representation type of all centralizer subalgebras in the Auslander algebra An

of k[x]/(xn). This classification is given in section 2. Two series of centralizer subalgebras, namely
those considered in Lemmas 2.7 and 2.8, seem to be rather interesting and non-trivial.

The article finishes with an extension of Theorem 1.1 to the case of a semi-simple Lie algebra g.
This is presented in section 4, where one more interesting tame algebra arises.

We would like to finish the introduction with a remark that just recently a first step towards the
classification of the representation type of the blocks of Rocha-Caridi’s parabolic analogue OS of
O was made in [8]. The next step would be to complete this classification and then to classify the
representation type of the ‘mixed’ version of OS and O(p, �). As the results of [8] and of the present
article suggest, this might give some interesting tame algebras in a natural way.

2. Representation type of the centralizer subalgebras in the Auslander algebra of k[x]/(xn)

In the article, we will compose arrows of the quiver algebras from the right to the left. Let k be
an algebraically closed field. Recall that, according to [18], every finite-dimensional associative
k-algebra has either finite tame or wild representation type. In what follows, we will call the latter
statement the Tame and wild theorem. The algebras, which are not of finite representation type, are
said to be of infinite representation type.

Let A = (Aob, Amor) be a k-linear category. An A-module, M , is a functor from A to the category
of k-vector spaces. In particular, for x ∈ Aob and α ∈ Amor we will denote by M(x) and M(α) the
images of x and α under M , respectively.

For a positive integer n > 1, let An be the algebra given by the following quiver with relations:

aibi = bi+1ai+1, i = 1, . . . , n − 2,

an−1bn−1 = 0.

The algebra An is the Auslander algebra of k[x]/(xn); see, for example, [14, Section 7]. For X ⊂
{2, 3, . . . , n}, let eX denote the direct sum of all primitive idempotents of An, which corrrespond to
the vertexes from {1} ∪ X. Set AX

n = eXAneX. The main result of this section is the following.

THEOREM 2.1 (i) The algebra AX
n has finite representation type if and only if X ⊂ {2, n}.

(ii) The algebra AX
n has tame representation type if and only if either n > 3 and X = {3}, {2, 3},

{n − 1}, {n − 1, n}, or n = 4 and X = {2, 3, 4}.
(iii) The algebra AX

n is wild in all other cases.

To prove Theorem 2.1, we will need the following lemmas.

LEMMA 2.2 The algebra A{m}
n has infinite representation type for m ∈ {3, . . . , n − 1} and n ≥ 4.
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Proof . The algebra A{m}
n is given by the following quiver with relations:

ax = ya, xb = by,

ab = ym−1, ba = xm−1,

yn−m+1 = 0,

(1)

where x = b1a1, y = bmam, a = am−1 · · · a1, b = b1 · · · bm−1. Modulo the square of the radical A{m}
n

gives rise to the following diagram of infinite type.

Hence, A{m}
n has infinite representation type as well.

LEMMA 2.3 The algebra AX
n is wild for X = {3, m}, where m > 4.

Proof . In this case, the algebra AX
n is given by the following quiver with relations:

ax = ya, xb = by,

sy = zs, yt = tz,

ab = y2, ba = x2,

st = zm−3, ts = ym−3,

zn−m+1 = 0,

where x = b1a1, y = b3a3, z = bmam, a = a2a1, b = b1b2, s = am−1 · · · a3, t = b3 · · · bm−1. Note
that z = 0 if m = n. Modulo the square of the radical AX

n gives rise to the following diagram:

(where the dashed line disappears in the case m = n). With or without the dashed line the diagram is
not an extended Dynkin quiver and hence is wild [13, 15]. Hence, AX

n is wild as well.

LEMMA 2.4 The algebra AX
n is wild for X = {2, n − 1} and n ≥ 5.
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Proof . To make the quivers in the proof below look better we set m = n − 1. The algebra AX
n is given

by the following quiver with relations:

sab = xs, abt = tx,

st = 0, ts = (ab)n−3,

x2 = 0,

where a = a1, b = b1, s = an−2 · · · a2, t = b2 · · · bn−2, x = bn−1an−1. The universal covering of AX
n

has the wild fragment (a hereditary algebra, whose underlined quiver is not an extended Dynkin
diagram, see [13, 15]) indicated by the dotted arrows in the following picture:

Hence, AX
n is wild as well.

LEMMA 2.5 The algebra A{3,4}
5 is wild.

Proof . The algebra A{3,4}
5 is given by the following quiver with relations:

ax = tsa, xb = bts,

ba = x2, ab = (ts)2,

(st)2 = 0,
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where a = a2a1, b = b1b2, s = a3, t = b3, x = b1a1. The universal covering of A{3,4}
5 has the wild

fragment (a hereditary algebra, whose underlined quiver is not an extended Dynkin diagram, see [13,
15]) indicated by the dotted arrows in the following picture.

Hence, A{3,4}
5 is wild as well.

LEMMA 2.6 The algebra A{m}
n is wild for m ∈ {4, . . . , n − 2} and n ≥ 6.

Proof . The algebra A{m}
n is given by (1). We consider its quotient B given by the additional rela-

tions x3 = y3 = ab = ba = 0 (which is possible because of our restrictions on m and n). Then, the
universal covering of B exists and has the following fragment:

which is wild by [31]. This implies that B and hence A{m}
n is wild.

LEMMA 2.7 The algebra A{2,n}
n , n ≥ 2, is of finite representation type.

Proof . For n = 2, 3, the statement follows from [14, section 7]. The algebra A{2,n}
n , n ≥ 4, is given

by the following quiver with relations:

uv = uab = abv = 0, vu = (ab)n−2, (2)

where a = a1, b = b1, u = an−1 · · · a2, v = b2 · · · bn−1. Note that these relations imply
(ab)n−1 = (ba)n = 0. The projective A{2,n}

n -module P(1) is injective, so we can replace A{2,n}
n by
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A′ = A{2,n}
n /soc(P (1)) = A{2,n}

n /((ba)n−1), which has the same indecomposable modules except
P(1); see [19, Lemma 9.2.2]. So, from now on, we consider the algebra A′, that is, add the rela-
tion (ba)n−1 = 0 to (2). The algebra A′ has a simply connected covering Ã, see [10], which is the
category, given by the following quiver with relations (we show the case n = 5, in the general case,
the arrow starting at nk ends at 2n−2+k).

We omit the indices at the arrows a, b, u, v. They satisfy the same relations as in A′, which
are shown by the dotted lines. Consider the full subcategory Bm of Ã with the set of objects
S = {1k, m ≤ k ≤ m + n − 1; 2k, m ≤ k ≤ m + n − 2; nm}. Let M be an Ã-module, Nm be its
restriction to Bm, Nm = ⊕s

i=1 Ki , where Ki are indecomposable Bm-modules. It is well known that
every Ki is completely determined by the subset of objects Si = {x | Ki(x) �= 0}, and if 1m ∈ Si ,
then 1m+n−1 /∈ Si . Moreover, all Ki(x) with x ∈ Si are one-dimensional and all arrows between these
objects correspond to the identity maps. Because uab = abv = 0, Ki splits out of the whole module
M whenever Si ⊇ {2m, 2m+n−2}. Suppose that for every integer m, Nm does not contain such direct
summands. This implies that M(vu) = 0. Therefore, M can be considered as a module over A, where
A is given by the following quiver:
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with relations uv = uab = abv = (ab)n−2 = 0. One easily checks that any indecomposable repre-
sentation of A is at most of dimension 2n − 5. Hence, A is representation (locally) finite, that is, for
every object x ∈ A, there are only finitely many indecomposable representations M with M(x) �= 0.
By [10], the algebra A{2,n}

n is representation (locally) finite as well, which completes the proof.

LEMMA 2.8 The algebra A{n−1,n}
n , n > 3, is tame.

Proof . For q = n − 1 the algebra A{q,n}
n is given by the following quiver with relations:

cn = ab = uv = 0, vu = cn−2, cv = vba, uc = bau,

where c = b1a1, a = aq, b = bq, u = an−2 · · · a1, v = b1 · · · bn−2. The projective module P(1) is
also injective; hence, using [19, Lemma 9.2.2] as it was done in the proof of Lemma 2.7, we can
replace A by A′ = A/soc(P (1)) = A/(cq). Let M be an A′-module. Choose a basis in M(1) so that
the matrix C = M(c) is in the Jordan normal form or, further,

M(c) =
q⊕

i=1

Ji ⊗ Imi
,

where Ji is the nilpotent Jordan block of size i × i and Imi
is the identity matrix of size mi × mi

(here, mi is just the number of Jordan blocks of size i). Thus,

Ji ⊗ Im =

⎛⎜⎜⎜⎜⎝
0 Im 0 · · · 0 0
0 0 Im · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 Im

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎠
i×i

(here, i × i means i boxes times i boxes, each of size mi). Choose bases in M(q) and M(n) such that
the matrices A = M(a) and B = M(b) are of the form

A =

⎛⎜⎜⎝
0 0 0 I 0
0 0 0 0 I

0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎝
0 I 0 0
0 0 0 I

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

where the vertical (horizontal) stripes of A are of the same size as the horizontal (respectively, vertical)
stripes of B, and I is the identity matrix; we do not specify these sizes here. Set r = nq/2; it is the
number of the horizontal and vertical stripes in C. Then M(u) and M(v) can be considered as block
matrices: M(u) = U = (U

ij

k )5×r and M(v) = V = (V k
ij )r×5, where k = 1, . . . , 5 correspond to the

kth horizontal stripe of B; i = 1, . . . , q, j = 1, . . . , i, and the stripe (ij) corresponds to the j th
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horizontal stripe of the matrix Ji ⊗ Imi
in the decomposition of C. The conditions uc = bau and

cv = vba imply that for i > 1, the only non-zero blocks U
ij

k and V k
ij can be

Uii
k and U

i,i−1
1 = Uii

5 ,

V k
i1 and V 5

i2 = V 1
i1.

Moreover, we also have U 11
5 = V 1

11 = 0. Changing bases in the spaces M(x), x = 1, q, n, so that the
matrices A, B and C remain of the same form, we can replace U and V , respectively, by T −1US

and S−1V T , where S, T are invertible matrices of the appropriate sizes such that SA = AS and
T U = UQ, QV = V T for an invertible matrix Q. We also consider S and T as block matrices:
S = (S

ij
st )r×r and T = (T k

l )5×5 with respect to the division of A, B, C. Then, the conditions mentioned
earlier can be rewritten as follows:

(1) S
ij
st can only be non-zero if i − j < s − t or i − j = s − t, s ≤ i;

(2) S
ij
st = S

ij ′
st ′ if t − j = t ′ − j ′;

(3) T is block triangular: T k
l = 0, if k < l, and T 1

1 = T 5
5 ;

(4) all diagonal blocks S
ij

ij and T k
k are invertible.

Especially for the vertical stripes Uii and for the horizontal stripes Uk of the matrix U , the following
transformations are allowed.

(1) Replace Uii by UiiZ.
(2) Replace Uk by ZUk , where k = 2, 3, 4.
(3) Replace U1 and U5 respectively by ZU1 and ZU5.
(4) Replace Uii by Uii + UjjZ, where j < i.
(5) Replace Uk by Uk + UlZ, where k < l.

Here, Z denotes an arbitrary matrix of the appropriate size; moreover, in the cases (1)–(3), it must
be invertible. One can easily see that, using these transformations, one can subdivide all blocks Uii

k

into subblocks so that each stripe contains at most one non-zero block, which is an identity matrix.
Note that the sizes of the horizontal substripes of U1 and U5 must be the same. Let �ii and �k be,
respectively, the sets of the vertical and the horizontal stripes of these subdivisions. Note that all
stripes Uij must be subdivided, respectively, to the subdivision of Uii , and recall that U

i,i−1
1 = Uii

5 .
Especially there is a one-to-one correspondence λ �→ λ′ between �5 and �1.

We make the respective subdivision of the blocks of the matrix V , in addition. The condition
UV = 0 implies that, whenever the λth vertical stripe of U is non-zero (λ ∈ �ii), the λth horizontal
stripe of V is zero. The conditions V U = Cq can be rewritten as

VijU
st =

{
I if (i, j, s, t) = (q, 1, q, q),

0 otherwise.

This implies that there are no zero vertical stripes in the new subdivision of Uq,q . Moreover, if λ ∈ �ii ,
µ ∈ �k and the block V λ

µ is non-zero, then the µth vertical stripe of U is zero if i �= q; if i = q,

this stripe contains exactly one non-zero block, namely, U
µ
λ = I . We denote by �

ii
and �k the set

of those stripes from �ii and �k that are not completely defined by these rules. Let λ ∈ �5, λ′ be
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the corresponding element of �1. If the blocks U
µ
λ and U

µ′
λ′ are both non-zero, write µ ∼ µ′. Note

that there is at most one element µ′ such that this holds, and µ′ �= µ.
One can verify that the sets �

ii
and �k can be linearly ordered, so that applying the transformations

of the types 1–5 above, we can replace a stripe V λ by V λ + V λ′
Z with λ′ < λ and a stripe Vµ by

Vµ + ZVµ′ , where λ′ < λ, µ′ < µ for any matrix Z (of the appropriate size). We can also replace
V λ by V λZ, where Z is invertible, and simultaneously replace Vµ and Vµ′ , where µ′ ∼ µ, by ZVµ

and ZVµ′ (if µ′ does not exist, just replace Vµ by ZVµ) with invertible Z. Therefore, we obtain a
special sort of the matrix problems considered in [9], which is known to be tame. Hence, the algebra
A{q,n}

n is tame as well.

Proof of Theorem 2.1. Lemma 2.7 and Lemma 2.2 imply Theorem 2.1(i). The statement of
Theorem 2.1(iii) follows from Theorem 2.1(i) and (ii) using the Tame and wild theorem. Hence,
we have to prove Theorem 2.1(ii) only.

It is known, see, for example, [14], that An has finite representation type for n ≤ 3, is tame for
n = 4 and is wild for all other n. This, in particular, proves Theorem 2.1(ii) for n ≤ 4.

If n ≥ 6, then from Lemma 2.6, it follows that if AX
n is tame, then X ⊂ {2, 3, n − 1, n}. From

Theorem 2.1(i), we know that X �⊂ {2, n}. From Lemma 2.3, it follows that {3, n − 1} �⊂ X and
{3, n} �⊂ X. From Lemma 2.4, it follows that {2, n − 1} �⊂ X. This leaves the cases X = {n − 1, n},
{n − 1}, {2, 3} and {3}. In the first two cases, AX

n is tame by Lemma 2.8. The algebra A{2,3}
n , n ≥ 3, is

given by the following quiver with relations:

ab = ts,

(st)n−2 = 0,

where a = a1, b = b1, s = a2, t = b2. For n ≥ 5, this algebra is tame as a quotient of the classical
tame problem from [27]. Hence, A{3}

n is tame as well.
For n = 5, Lemma 2.5 implies that AX

n is wild if X ⊃ {3, 4}, Lemma 2.3 implies that AX
n is wild

if X ⊃ {3, 5} and Lemma 2.4 implies that AX
n is wild if X ⊃ {2, 4}. We have already shown that the

algebra A{2,3}
5 is tame, and hence, A{3}

5 is tame as well. Finally, that the algebras A{4,5}
5 and A{4}

5 are
tame follows from Lemma 2.8. This completes the proof.

3. Proof of Theorem 1.1

We briefly recall the structure of ∞
λH1

µ. We refer the reader to [6, 21, 25, 29] for details. By [6,
Theorem 5.9], the category ∞

λH1
0 is equivalent to the block Oλ of the BGG category O [7]. Let

O(W, G) denote the basic associative algebra, whose module category is equivalent to Oλ. The
simple modules in Oλ are in natural bijection with the cosets W/G (under this bijection, the coset G
corresponds to the dominant highest weight). For w ∈ W, let L(w) denote the corresponding simple
module in Oλ, P(w) be the projective cover of L(w), �(w) be the corresponding Verma module and
I (w) be the injective envelope of L(w). Then, [29] implies that for the longest element w0 ∈ W, one
has EndOλ

(P (w0)) ∼= C(W, G) (recall that this is the subalgebra of G-invariants in the coinvariant
algebra associated to W). The left multiplication in W induces an action of H on the set W · λ. Let
P(λ, H) denote the direct sum of indecomposable projective modules that correspond to the longest
elements in all orbits of this action. The category ∞

λH1
µ is equivalent, by [25], to the module category

over B(G, H) = EndOλ
(P (λ, H)). From [29], it follows that B(G, H) depends on G rather than on λ.
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We start with Theorem 1.1(1), that is, with the case of finite representation type.
Note that P(w0) is always a direct summand of P(λ, H). Hence, C(W, G) is a centralizer sub-

algebra of B(G, H). In particular, for ∞
λH1

µ to be of finite representation type, C(W, G) must be of
finite representation type as well. According to [23, Theorem 7.2], C(W, G) is of finite representation
type in the following cases:

(I) W = G;
(II) W is of type An, and G is of type An−1;

(III) W is of type Bn, and G is of type Bn−1;
(IV) W is of type Cn, and G is of type Cn−1;
(V) W is of type G2, and G is of type A1.

Moreover, in all these cases,C(W, G) ∼= C[x]/(xr), where r = [W : G]. The last observation and [21,
Theorem 1] imply that in all the above cases, the category Oλ is equivalent to Ar -mod. In particular,
the algebra B(G, H) is isomorphic to AX

r for appropriate X, and in the notation of section 2, the
algebra C(W, G) is the centralizer subalgebra, which corresponds to the vertex 1.

The case (I) gives Theorem 1.1(1a). In the cases (II)–(V), it follows from Theorem 2.1(i) that we
have the following possibilities for B(G, H):

B(G, H) has one simple module. This implies W = H and gives Theorem 1.1(b);
B(G, H) has two simple modules. These simple modules correspond either to the dominant and the

anti-dominant weights in Oλ or to the anti-dominant weight and its neighbour. By a direct calculation,
we get the following: the case r = 2 gives Theorem 1.1(1c), and the case r > 2 gives Theorem 1.1(1d);

B(G, H) has three simple modules. These simple modules correspond to the following weights in
Oλ: the anti-dominant one, its neighbour and the dominant one. By a direct calculation, we get the
following: the case r = 3 gives Theorem 1.1(1h), and the case r > 3 gives Theorem 1.1(1e), (1f) and
(1g). This proves Theorem 1.1(1).

Let us now proceed with the tame case, that is, with Theorem 1.1(2). If C(W, G) is of finite
representation type, that is, in the cases (I)–(V), Theorem 2.1(ii) give us the following possibilities
for B(G, H):

B(G, H) has two simple modules. These simple modules correspond to the following weights in
Oλ: either the anti-dominant one and the neighbour of its neighbour or the anti-dominant one and the
neighbour of the dominant one. By a direct calculation, we get that these cases lead to Theorem 1.1(2b)
and (2c);

B(G, H) has three simple modules. These simple modules correspond to the following weights
in Oλ: either the anti-dominant one, its neighbour and the neighbour of its neighbour or the anti-
dominant, its neighbour and the dominant one. By a direct calculation, we get that these cases lead
to Theorem 1.1(2d) and (2e);

B(G, H) has four simple modules. In this case, r = 4 and a direct calculation gives Theorem 1.1(2f).

The rest (that is, Theorem 1.1(2a)) should correspond to the case whenC(W, G) is tame.According
to [23, Theorem 7.2], C(W, G) is tame in the following cases:

(VI) W has rank 2 and G = {e};
(VII) W is of type A3 and G is of type A1 × A1;

(VIII) W is of type B3 and G is of type A2;
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(IX) W is of type C3 and G is of type A2;
(X) W is of type Dn and G is of type Dn−1.

For W = H, the cases (VI)–(X) give exactly Theorem 1.1(2a). Let us now show that the rest is wild.
If W �= H, then ∞

λH1
µ has at least two non-isomorphic indecomposable projective modules, one

of which is P(w0) and the other one is some P(w). We first consider the cases (VII)–(X). In all these
cases, the restriction of the Bruhat order to W/G gives the following poset.

From [23, Theorem 7.3], it follows that in all these cases, the algebra C(W, G) has two generators.
We consider the centralizer subalgebra D(w) = EndOλ

(P (w0) ⊕ P(w)), and let Q(w) denote the
quotient of D(w) modulo the square of the radical. Recall that the algebra O(W, G) is Koszul, see
[4], and hence, the category Oλ is positively (Koszul) graded, see also [30]. Hence, D(w) is positively
graded as well. We are going to show that D(w) is always wild. We start with the following statement.

LEMMA 3.1 Let w ∈ {w1, . . . , ws, u1, u2, v0, . . . , vs}. Then

[P(v0) : L(w)] =
{

1, w ∈ {u1, u2, v0, . . . , vs, w0},
2, w ∈ {w1, w3, . . . , ws},

where [P(v0) : L(w)] denotes the composition multiplicity.

Proof . By [4], the category Oλ is Koszul dual to the regular block of the corresponding parabolic
category of Rocha-Caridi; see [28]. Hence, the multiplicity question for Oλ reduces, via the Koszul
duality, to the computation of the extensions in the parabolic case. The latter are given by Kazhdan–
Lusztig polynomials, and for the algebras of type (VIII)–(X), these multiplicities are computed in
[20, section 14]. The statement of our lemma follows directly from [20, section 14].

As L(w0) is a simple Verma module, it occurs exactly one time in the composition series of �(w),
which gives rise to a morphism, α: P(w0) → P(w). This morphism has the minimal possible degree
(with respect to our positive grading) and hence does not belong to the square of the radical. Further,
the unique (now by the BGG reciprocity) occurrence of �(w) in the Verma flag of P(w0) gives a
morphism, β : P(w) → P(w0), which does not belong to the square of the radical either because it
again has the minimal possible degree. Now, we will have to consider several cases.

Case A Assume that w ∈ {v0, v1, . . . , vs}. The quiver of Q(w) contains the arrows, corresponding
toα andβ. Moreover,Q(w) also contains two loops at the pointw0, which correspond to the generators
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of C(W, G). Passing, if necessary, to a quotient of Q(w), we obtain the following configuration.

Because the underlined diagram is not an extended Dynkin diagram, the configuration is wild; see
[13, 15]. This implies that D(w), and hence, ∞

λH1
µ is wild in this case.

Case B Consider now the case w = u1 (the case w = u2 is analogous). Lemma 3.1 implies that in
this case, the multiplicity of L(w) in �(v0) is 1. Hence, from [2, Proposition 2.12], it follows that
P(w) has simple socle L(w0), in particular, and P(w) is a submodule of P(w0) = I (w0). Injectivity
of P(w0) thus gives a surjection from EndOλ

(P (w0)) ∼= C(W, G) to EndOλ
(P (w)). Note that, by

[29], EndOλ
(P (w0)) is the centre of O(W, G) and hence is central in B(G, H). We still have the

elements α and β as mentioned earlier, which do not belong to the square of the radical. Further,
using the embedding P(w) ↪→ P(w0) one also obtains that α generates HomOλ

(P (w0), P (w)) as a
C(W, G)-module and β generates HomOλ

(P (w), P (w0)) as a C(W, G)-module.
With this notation, D(w) has the following quiver.

Note that α is surjective as a homomorphism from EndD(w)(P (w0)) to EndD(w)(P (w)) because P(w)

has simple socle. This and the fact that EndOλ
(P (w0)) is central implies the relations αx = yα and

βy = xβ. Using [23, 7.12–7.16], one also easily gets the following additional relations: ys+2 = 0,
αβ = cys+1 for some 0 �= c ∈ C, xβα = βαx = 0 and (βα)2 = x2s+3. Thus the universal covering
of D(w) has the following fragment (shown for s = 1):

(here, the dashed line indicates the commutativity of the corresponding square). Evaluating the Tits
form of this fragment at the point (1, 2, 2, 2, 2), where 1 is placed in the bold vertex, we obtain
−1 < 0 implying that the fragment (5) is wild; see, for example, [12, 17]. Hence, D(w) is wild as
well.

Case C Assume now that w = wi , i = 2, . . . , s − 1. Hence, by Lemma 3.1, the multiplicity of
L(w) in P(v0) is 2. We will need the following lemma.



332 YU. DROZD AND V. MAZORCHUK

LEMMA 3.2 Let A be a basic associative algebra, let e be an idempotent of A and f be a primitive
direct summand of e. Assume that there exist two non-isomorphic A-modules M and N satisfying the
following properties:

(1) both M and N have simple top and simple socles isomorphic to the simple A-module LA(f ),
corresponding to f ;

(2) e rad(M)/soc(M) = e rad(N)/soc(N) = 0.

Then, dim Ext1
eAe(L

eAe(f ), LeAe(f )) > 1.

Proof . Recall from [1; 2, section 5] that eAe-mod is equivalent to the full subcategory M of A-
mod, consisting of all Ae-approximations of modules from A-mod. Let M ′ and N ′ be the Ae-
approximations of M and N , respectively. Both M ′ and N ′ are indecomposable because M and
N are indecomposable by (1). Then, the eAe-modules eM ′ and eN ′ are indecomposable as well,
and, because of (1) and (2), both eM ′ and eN ′ have length 2 with both composition subquotients
isomorphic to the simple eAe-module LeAe(f ).

Assume that eM ′ ∼= eN ′. Then, by [1; 2, section 5], any eAe-isomorphism between eM ′ and eN ′
induces an A-isomorphism between M ′ and N ′. From (1), we also have that the canonical maps
N → N ′ and M → M ′ are injective, that is, we have

N ↪→ N ′ ∼= M ′ ←↩ M.

From (1), the definition of the Ae-approximation, and the fact that f is a direct summand of e,
it follows that the image of N in N ′ coincides with the trace of the projective module Af in N ′.
Analogously, the image of M in M ′ coincides with the trace of the projective module Af in M ′. This
implies M ∼= N , a contradiction. The statement follows.

As we are not in the multiplicity-free case, from the Kazhdan–Lusztig theorem, it follows that the
quiver ofO(W, G) contains more arrows than is indicated on the diagram (3). Namely, from the results
of [20, section 14], we have Ext1

Oλ
(L(w), L(vi−1)) �= 0. Note that Ext1

Oλ
(L(w), L(wi+1)) �= 0 also

follows from the Kazhdan–Lusztig theorem, because wi and wi+1 are neighbours (it follows from
[20, section 14] as well). Let now u ∈ {vi−1, wi+1}. Then, we can fix a non-zero element from
Ext1

Oλ
(L(w), L(u)). This means that L(u) occurs in degree 1 in the projective module P(w). The

module P(w) has a Verma flag, and the above occurrence of L(u) gives rise to an occurrence of �(u)

as a subquotient of P(w). Because L(u) is in degree 1 and Oλ is positively graded, we can factor all
the Verma subquotients of P(w) except �(w) and �(u) obtaining a non-split extension, N(u) say,
of �(u) by �(w). By duality, we have Ext1

Oλ
(L(u), L(w)) �= 0 as well, and as w < u, the module

L(w) occurs in degree 2 in the module N(u). This occurrence gives rise to a map from N to the
injective module I (w). Let N ′(u) denote the image of this map. By construction, the module N ′(u) is
an indecomposable module of Loewy length 3 with simple top and simple socle isomorphic to L(w).
Moreover, rad(N ′(u))/soc(N ′(u)) (the latter is considered as an object of Oλ) does not contain L(w)

as a subquotient because of the quasi-hereditary vanishing Ext1
Oλ

(L(w), L(w)) = 0. Because w �=
w0, w1, all occurrences of L(w0) in P(w) are in degrees at least 2. Hence, rad(N ′(u))/soc(N ′(u))

does not contain L(w0) as a subquotient either. Finally, we observe that rad(N ′(vi−1))/soc(N ′(vi−1))

contains L(vi−1) as a subquotient, Whereas rad(N ′(wi+1))/soc(N ′(wi+1)) does not contain L(vi−1)

as a subquotient. This implies that N ′(vi−1) �∼= N ′(wi+1). Hence, applying Lemma 3.2, we obtain that
the quiver of Q(w) contains at least two loops at the point w. This quiver also contains the elements
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α and β described earlier. Factoring, if necessary, the extra arrows out, Q(w) thus gives rise to the
following configuration.

Because this is not an extended Dynkin quiver, this configuration is wild, see [13, 15]. Hence, D(w),
and thus, ∞

λH1
µ is wild in this case.

Case D Let w = ws . In this case, from [20, section 14], we have Ext1
Oλ

(L(w), L(vs−1)) �= 0. We
also have Ext1

Oλ
(L(w), L(ui)) �= 0, i = 1, 2, as ws and ui are neighbours. Hence, the module P(w)

contains exactly three copies of L(w) in degree 2: each lying in the top of the radical of some of the
Verma modules �(x), x = u1, u2, vs−1, occurring in degree 1 in the Verma filtration of P(w). Note
that L(w) does not occur in degree 1 (see case C). Further, L(w0) occurs at most one time in degree 1
(this happens if s = 1, in which case the occurrence in degree 1 corresponds to the socle of �(w)). In
any case, because we have three occurrences of L(w) in degree 2, at most one occurrence of L(w0) in
degree 1, and since Ext1

Oλ
(L(w), L(w0)) ∼= C in the case s = 1, mapping the degree-2 occurrences

to I (w), we obtain at least two non-isomorphic modules, N1 and N2, which have simple top and
socle isomorphic to L(w) and no other occurrences of L(w) and L(w0). Taking into account α and
β, from Lemma 3.2, it now follows that some quotient of Q(w) gives rise to the wild configuration
(6). Hence, D(w), and thus, ∞

λH1
µ is wild in this case as well.

Case E Finally, let w = w1 and s > 1. In this case, both α and β have degree 1. From [20, section 14],
we have Ext1

Oλ
(L(w), L(v0)) �= 0, which gives two occurrences of L(w) in degree 2 of the module

P(w). One of them comes from the subquotient �(v0) in the Verma flag of P(w). But, v0 is dominant,
and hence, �(v0) is in fact a submodule. Denote by γ the endomorphism of P(w) of degree 2, which
corresponds to this occurrence of L(w) in �(v0). Because (βα)2 �= 0 by [23, 7.12–7.16], it follows
that the image of αβ contains some L(w0) in degree 3. However, �(v0) does not contain any L(w0) in
degree 2 (note that �(v0) itself starts in degree 1 in P(w)). Hence, αβ and γ are linearly independent
and thus γ does not belong to the square of the radical. Now, we claim that γ 2 = γαβ = αβγ = 0.
The first and the second equalities, that is, γ 2 = γαβ = 0, follow from the easy observation that
�(v0) does not have any L(w) in degree 3 = 1 + 2. The last one, that is, αβγ = 0, follows from the
fact that the degree-1 copy of �(v0) belongs to the kernel of β as P(w0) does not have any L(v0) in
degree 2. Now, P(w) has two copies of L(w) in the degree 2s, which correspond to the subquotients
�(u1) and �(u2) in the Verma flag of P(w). Hence, there should exist an endomorphism of P(w) of
degree 2s, which is linearly independent with αβ. Because γ 2 = γαβ = αβγ = 0, it follows that this
new endomorphism does not belong to the square of the radical of Q(w). Taking into account α and
β, from Lemma 3.2, it now follows that some quotient of Q(w) gives rise to the wild configuration
(6). Hence, D(w), and thus, ∞

λH1
µ is wild in this case as well.

This completes the cases (VII)–(X).
Finally, we consider the case (VI). Let t1 and t2 be the simple reflections in W, and θt1 and θt2 be

translation functors through the t1 and t2 walls, respectively. If H �= W, then ∞
λH1

µ necessarily con-
tains an indecomposable projective module, which corresponds to some w such that l(w0) − l(w) = 2.
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The modules θt1L(w0) and θt2L(w0) are indecomposable and have the following Loewy filtrations:

L(w0)

θt1L(w0) : L(t1
′w0)

L(w0)

L(w0)

θt2L(w0) : L(t2
′w0)

L(w0)

for some t ′1, t ′2 such that {t1, t2} = {t ′1, t ′2} (the exact values of t ′1 and t ′2 depend on the type of W).
In particular, θt1L(w0) �∼= θt2L(w0), both have simple top and simple socle isomorphic to L(w0),
and both do not contain any subquotient isomorphic to L(w) because l(w0) − l(w) = 2. Hence,
from Lemma 3.2 it follows that the quotient of the corresponding D(w) modulo the square of
the radical gives rise to the wild configuration (4). Hence, D(w) is wild in this case. This proves
Theorem 1.1(2).

To complete the proof we just note that Theorem 1.1(3) follows from Theorem 1.1(1) and
Theorem 1.1(2) using the Tame and wild theorem.

4. The case of a semi-simple algebra g

Theorem 1.1 is formulated for a simple algebra g. However, in the case of a semi-simple algebra, the
result is almost the same. In a standard way, it reduces to the description of the representation types
of the tensor products of algebras, described in Theorem 1.1.

THEOREM 4.1 Let k > 1 be a positive integer, and Xi , i = 1, . . . , k, be basic algebras associated to
non-semi-simple categories from the list of Theorem 1.1. Then, the algebra X1 ⊗ · · · ⊗ Xk is never of
finite representation type, and it is of tame representation type only in the following two cases:

(1) k = 2, and both X1 and X2 have Coxeter type (A1, e, A1);
(2) k = 2, one of X1 and X2 has Coxeter type (A1, e, A1) and the other one has Coxeter type

(A1, e, e).

Proof . The algebra in (1) is isomorphic to C[x, y]/(x2, y2) and hence is tame with well-known
representations. Let us thus consider the algebra X of the case (2). This algebra is given by the
following quiver with relations

LEMMA 4.2 The algebra of (7) is tame.

Proof . This algebra is tame by [5], however, because this paper is not easily available and does not
contain a complete argument, we prove the tameness of X. Consider the subalgebra X′ ⊂ X generated
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by x, y, u. Its indecomposable representations are as follows.

Here, the elements ei form a basis of the space corresponding to the vertex 1, the elements fj

form a basis of the space corresponding to the vertex 2, the vertical arrows show the action of
x and y and the arrows going from left to right show the action of u. Let M be an X-module.
Decompose it as an X′-module. Then, the matrix V describing the action of v divides into the blocks
Vij , i, j = 1, 2, . . . , 11, corresponding to the basic elements ei and fj from above. Moreover, as
uv = 0, the blocks Vij can only be non-zero if i ∈ {1, 2, 3, 5, 8}; as xv = vy, Vij = 0 if i > 4, j < 5
or i > 7, j < 8 and Vij = Vi+7,j+7 for i, j ∈ {1, 2, 3, 4}. If M ′ is another X-module, V ′ = (V ′

ij ) is the
corresponding block matrix, a homomorphism M → M ′ is given by a pair of matrices S, T , where
S : M(1) → M(1), T : M(2) → M(2). Divide them into blocks corresponding to the division of V :
S = (Sij ), T = (Tij ), i, j = 1, 2, . . . , 11. One can easily check that such block matrices define a
homomorphism M → M ′ if and only if the following conditions hold.

(1) S and T are block triangular, that is, Sij = 0 and Tij = 0 if i > j ;
(2) Sij = Si+7,j+7 and Tij = Ti+7,j+7 for i, j ∈ {1, 2, 3, 4};
(3) Sii = Tjj , if in the list (8), there is an arrow ei → fj ;
(4) Sij = Tkl , if in the list (8), there are arrows ei → fk and ej → fl ;
(5) Sij = 0, if (i, j) ∈ {(4, 5), (4, 6), (6, 8), (7, 8), (7, 9)};
(6) Tij = 0, if (i, j) ∈ {(3, 5), (4, 5), (4, 6), (7, 8)}.

Certainly, S, T define an isomorphism if and only if all diagonal blocks are invertible. In particular,
we can replace the part V1 = (V11 V12 V13 V14) by S−1

1 V1T1, where S1 is any invertible matrix and
T1 = (Tij ), i, j ∈ {1, 2, 3, 4} is any invertible block triangular matrix. Therefore, we can suppose
that V1 is of the form ⎛⎜⎜⎜⎜⎝

0 I (1) 0 0 0 0 0 0
0 0 0 I (2) 0 0 0 0
0 0 0 0 0 I (3) 0 0
0 0 0 0 0 0 0 I (4)

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

where the vertical lines show the division of V1 into blocks, I (k) denote identity matrices (of arbitrary
sizes). Denote the parts of the blocks V1j to the right of I (k) by V1k,j and those to the right of the zero
part of V1 by V5j . Using automorphisms, we can make zero all V11,j and V12,j , as well as the blocks
V13,j and V14,j , zero for j > 6. Note that V1j = V8,j+7, and we can also make zero all parts of the
blocks V1,j+7 over the parts I (j) of the blocks V8,j+7. Subdivide the blocks of S and T corresponding
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to this subdivision of V1. Note that as S22 = T99 = T33, we must also subdivide the blocks S2j into
S20,j and S21,j respective to the zero and non-zero parts of V13. Then, the extra conditions for the new
blocks are

S21,20 = 0 and S1k,1l = 0 if k > l.

Therefore, we get a matrix problem considered in [9]. It is described by the semichain

for the columns, the chain

e5 → e3 → e21 → e20 → e15 → e14 → e13

for the rows, and the unique equivalence e3 ∼ f6. This matrix problem is tame; hence, the algebra X
is tame as well.

If k > 2, then each of X1, X2 and X3 has at least one projective module with non-trivial
endomorphism ring and thus X1 ⊗ X2 ⊗ X3 contains a centralizer subalgebra, which surjects onto
C[x, y, z]/(x, y, z)2. The latter algebra is wild by [16], and hence X is wild.

If k = 2, but neither of the conditions (1), (2) is satisfied, then one of the algebras X1 and X2

has a projective module, whose endomorphism algebra surjects onto C[x]/(x3), and the other one
has a projective module, whose endomorphism algebra surjects onto C[y]/(y3). Hence, there is a
centralizer subalgebra in X, which surjects onto C[x, y]/(x3, y2), the latter being wild by [16]. This
shows that X1 ⊗ X2 is wild as well and completes the proof.
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