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Introduction

It is now well-known that the category of coherent sheaves over the projec-
tive line is derived equivalent to that of modules over the Kronecker algebra,
i.e. the algebra of paths of the quiver •

''
77 • [6]. The origin of this

result is the existing of a tilting sheaf T = OP1 ⊕O(−1)P1 whose endomor-
phism ring is the Kronecker algebra. This result was extensively generalized
to other projective varieties. On the other hand in the paper [17] it was
mentioned that there is a close relations between the categories of coherent
sheaves over the nodal cubic C and the category of modules over the algebra
Λ given by the quiver with relations

•

α1
''

α2

77 •
β1
''

β2

77 • βiαi = 0 (i = 1, 2).

This time these categories cannot be derived equivalent, since gl.dimΛ = 2
while gl.dimOC = ∞. An explanation of this fact was given in [12], where
the curve C was extended to a non-commutative sheaf of algebras A such
that gl.dimA = 2 and the derived categories of coherent sheaves over A and
of modules over Λ are derived equivalent. Moreover, the categories CohC
and CohA are “very close” via natural functors between them.

The main goal of this preprint is to generalize the last construction to a
wide class of curves, including non-commutative curves. For this purpose we
establish several general facts concerning non-commutative schemes. Per-
haps, the most important tool is the technique of minors, especially, the
endomorphism construction, which gives possibility to find a “better” non-
commutative curve closely related to the original one, almost as in [12].

Using this technique we prove, in particular, the following result, giv-
ing categorical resolutions for the category of quasi-coherent sheaves over
rational non-commutative curves.

Theorem. (see Corollary 4.3.5). Let (X,A) be a rational non-commutative
curve. There is a finite dimensional algebra Λ of finite global dimension and
the functors F : D(QcohA) → D(Λ-Mod), H : D(QcohA) → D(Λ-Mod)
and G : D(Λ-Mod)→ D(QcohA) such that

(1) (F,G) and (G,H) are adjoint pairs.
(2) G is exact and the natural morphisms 1→ G ◦F and G ◦H→ 1 are

isomorphisms.
(3) KerG is both localizing and colocalizing subcategory of D(Λ-Mod)

and D(QcohA) ' D(Λ-Mod)/KerG.

In this situation we say that D(QcohA) is a bilocalization of D(Λ-Mod).

For special type of non-commutative curves (subhereditary ones), gener-
alizing the class of curves considered in [12], gl.dimΛ = 2. Moreover, in this
case Λ arises as an extension of a canonical algebra in the sense of Ringel
[41] (see subsection 4.4).
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1. Preliminaries

1.1. Categories and modules. If the opposite is not specially mentioned,
all categories A are supposed to be k-categories, where k is a commutative
ring. It means that all sets of morphisms A (A,B) are k-modules and the
multiplication is k-bilinear. In the same way, all functors are supposed to
be k-linear.

Let R be a k-linear category (for instance, a k-algebra). We denote by
R-Mod the category of (left) R-modules, i.e. functors R → k-Mod, the
category of k-modules. For an object A ∈ R we denote by A↑ the module
R(A, ). If Rop is the opposite category of R, we write Mod-R = Rop-Mod
and call Rop-modules right R-modules. We denote by A↓ the right module
R( , A). By Yoneda’s Lemma, the map A 7→ A↓ gives a full embedding
of R into Mod-R. We call A↑ (A↓) free (left) R-modules (respectively,
free right R-modules). R is said to be fully additive1 if it is additive and
every idempotent in R splits, i.e. originates from a decomposition of its
source into a direct sum. We denote by add R the smallest fully additive
category containing R. It can be identified with the category pro-R of
finitely generated projective right R-modules. For a subset S of objects of
a fully additive category R we denote by add S the full subcategory of R
consisting of direct summands of (finite) direct sums of objects from S. In
particular, addA consists of direct summands of (finite) multiples nA of
the object A. Note that add {A↑ | A ∈ Ob R } coincides with the category
R-pro of finitely generated projective R-modules.

An additive category R is said to be cocomplete if it contains coproducts
of arbitrary sets of objects. If S is a set of objects of a cocomplete category,
we denote by Add S the smallest fully additive subcategory containing all
coproducts of objects from S. If, moreover, R contains arbitrary filtered
direct limits, we denote by add−−→S the smallest fully additive subcategory

of R containing all filtered direct limits of objects from add S. Note that
add−−→S ⊇ Add S.

Any functor F : R → B, where B is a fully additive category can be
extended to a functor F̃ : add R → B and this extension is unique up to
isomorphism. In particular, it gives an equivalence of categories R-Mod '
(add R)-Mod and we usually identify these categories.

For a functor F : A → B we denote by Ker F the full subcategory of A
consisting of such objects A that FA = 0. By Im F we denote the essential
image of F, i.e. the full subcategory of B consisting of objects isomorphic
to those of the shape FA for A ∈ Ob A . If F is full and Im F = B, we say
that F is essentially surjective.

If R is cocomplete, we say that an object A ∈ R is compact if the functor
R(A, ) preserves arbitrary coproducts. For instance, the modules A↑ and,
more generally, those from R-pro are compact in R-Mod. An R-moduleM is
said to be finitely presented if there is an exact sequence P1 → P0 →M → 0

1 or idempotent complete, or Carubian.
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with Pi ∈ R-pro. All finitely presented modules are also compact in R-Mod.
We denote by Rc the full subcategory of R consisting of all compact objects.

A subset S ⊂ Ob R is said to be a set of generators of R if for every
non-zero morphism f : A → B there is a morphism g : C → A, where
C ∈ S, such that gf 6= 0. If R is abelian and cocomplete, it means that for
every A ∈ Ob R there is an epimorphism S → X, where S is a coproduct of
objects from S. For instance, the set of free modules {A↑ | A ∈ Ob R } is a
set of compact generators for R-Mod.

We will say that an abelian category A is of ext-dimension d = ext.dim A
if Exti(A,B) = 0 for any two objects A,B ∈ A and any i > d, while there
are such objects A,B that Extd(A,B) 6= 0. If ext.dim(R-Mod) = d for some
additive category R, we also say that R is of global dimension d and write
gl.dim R = d.2

A full subcategory C of an abelian category A is called thick (or Serre
subcategory) if, for any exact sequence 0 → C ′ → C → C ′′ → 0 in A , the
object C is in C if and only if both C ′ and C ′′ are in C . Then the quotient
category A /C is defined (see [19, Ch. III] for its definition and properties).
We denote by ΠC the canonical functor A → A /C . It is exact, essentially
surjective and Ker ΠC = C . For instance, if F : A → B is a semi-exact
functor among abelian categories, its kernel is a thick subcategory of A .

1.2. Triangulated categories. We denote by C (A ) the category of com-
plexes over A and by H (A ) the quotient C (A )/ ho(A ), where ho(A )
is the ideal of morphisms homotopic to zero. If A is abelian, we denote
by D(A ) its derived category, i.e. the category of fractions H (A )[Q−1],
where Q is the class of quasi-isomorphisms. We use the symbol  for
quasi-isomorphisms. As usually, we write C σ(A ), H σ(A ), Dσ(A ), where
σ ∈ {+,−, b } for the full subcategories of the corresponding categories
consisting of left, right and two-sided bounded complexes. If A is abelian
and has enough injectives, then D+(A ) can be identified with the category
H +(I ), where I is the full subcategory of injective objects. If, moreover,
A is of finite global dimension, then Db(A ) can be identified with H b(I ).
Dually, if A has enough projectives, then D−(A ) can be identified with
H −(P), where P denotes the full subcategory of projective objects. If,
moreover, A is of finite global dimension, then Db(A ) can be identified with
H b(P).

A full subcategory S of a triangulated category T is said to be a tri-
angulated subcategory if it is closed under shifts and extensions (or cones).
We call it thick, if, moreover, it is closed under direct summands (in par-
ticular, under isomorphic copies). For a triangulated category T and a
subset S ⊆ Ob T we denote by 〈S 〉 the smallest thick subcategory of T
containing S. For instance, if F : T → T ′ is an exact (or, the same,
triangulated) functor between triangulated categories, its kernel Ker F is

2 We prefer saying ext-dimension instead of more usual global dimension since other-
wise, for an abelian category, the latter term becomes ambiguous.
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a thick subcategory. The same is true if F : T → A is a homological
functor into an abelian category A . If 〈S 〉 = T , we say that S gener-
ates T or is a set of generators of T . If T is cocomplete, we denote by
〈S 〉ω the smallest thick subcategory of T containing S and closed under
arbitrary coproducts. If 〈S 〉ω = T , we say that S strongly generates T
or is a set of strong generators of T . If S consists of compact objects,
〈S 〉ω = T if and only if for any non-zero T ∈ Ob T there is a non-zero
morphism S → T [m] for some S ∈ S and m ∈ Z (see [35, Lemma 1.7]).
In this case 〈S 〉 = T c. For instance, if S is a set of compact generators
of an abelian category A , then 〈S 〉ω = D(A ), hence 〈S 〉 = Dc(A ), the
subcategory of compact objects. (The latter category is often called the
perfect derived category of A and denoted by Dperf(A ).) For a subcategory
T ′ of T we write 〈T 〉 and 〈T 〉ω instead of 〈Ob T ′ 〉 and 〈Ob T ′ 〉ω. We
also set 〈S1,S2, . . . ,Sm 〉 = 〈

⋃m
i=1 Si 〉 and 〈S1,S2, . . . ,Sm 〉ω = 〈

⋃m
i=1 Si 〉ω.

If A = R-Mod for some additive category R, we write DR instead of
D(R-Mod). Respectively, we write DσR, where σ ∈ {+,−, b, c }. We can
choose the set of free modules R↑ = {A↑ | A ∈ Ob R } as a set of compact
generators for R-Mod. Therefore, 〈R↑ 〉ω = DR and the perfect derived
category DcR consists of complexes of modules quasi-isomorphic to finite
complexes of finitely generated projective modules.

If S ⊂ T is a thick subcategory of a triangulated category T , the
quotient category T /S is defined (see [37, Ch. 2] for its definition and
properties). Again the canonical functor ΠS : T → T /S is exact (or, the
same, triangulated), essentially surjective and Ker ΠS = S .

1.3. Adjoints and quotients. We need the following facts from the gen-
eral theory of localizations in abelian and triangulated categories proved in
[19, 21, 37].

Theorem 1.3.1. (1) Let A ,B be abelian categories, G : A → B be an
exact functor and F : B → A be its left adjoint (right adjoint) such
that the natural morphism 1B → G ◦F (respectively, G ◦F → 1B) is
an isomorphism. Let C = KerG.
(a) G = Ḡ ◦ΠC , where Ḡ is an equivalence A /C

∼→ B and its quasi-
inverse functor is F̄ = ΠC ◦F.

(b) F is a full embedding and the essential image of F coincides
with the left (respectively, right) orthogonal subcategory of C ,
i.e. the full subcategory

⊥C =
{
A ∈ Ob A | Hom(A,C) = Ext1(A,C) = 0 for all C ∈ Ob C

}
(respectively,

C⊥ =
{
A ∈ Ob A | Hom(C,A) = Ext1(C,A) = 0 for all C ∈ Ob C

}
.)

(c) C = (⊥C )⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right)

adjoint.
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(2) Let A ,B be triangulated categories, G : A → B be an exact (tri-
angulated) functor and F : B → A be its left adjoint (right ad-
joint) such that the natural morphism 1B → G ◦F (respectively,
G ◦F→ 1B) is an isomorphism. Let C = KerG.

(a) G = Ḡ ◦ΠC , where Ḡ is an equivalence A /C
∼→ B and its quasi-

inverse functor is F̄ = ΠC ◦F.
(b) F is a full embedding and the essential image of F coincides

with the left (respectively, right) orthogonal subcategory of C ,
i.e. the full subcategory3

⊥C = {A ∈ Ob A | Hom(A,C) = 0 for all C ∈ Ob C }
(respectively,

C⊥ = {A ∈ Ob A | Hom(C,A) = 0 for all C ∈ Ob C } .)
(c) C = (⊥C )⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right)

adjoint, which induces an equivalence A /⊥C
∼→ C (respectively,

A /C⊥
∼→ C ).

Proof. The statement (1a) is proved in [19, Ch. III, Proposition 5] if F is
right adjoint of G. The case of left adjoint is just a dualization. The proof
of the statement (2a) is quite analogous. Therefore, from now on we can
suppose that B = A /C . Then the statements (1b) and (2b) are just [19,
Ch. III, Lemma 2 et Corollaire] and [37, Theorem 9.1.16]. The statements
(1c) and (2c) are [21, Corollary 2.3] and [37, Corollary 9.1.14]. Thus the
statement (2d) also follows from [37, Theorem 9.1.16]. In the abelian case
the left (respectively, right) adjoint J to the embedding C → A is given
by the rule A 7→ Cok Ψ(A) (respectively, A 7→ Ker Ψ(A) ), where Ψ is the
natural morphism F ◦G→ 1A (respectively, 1A → F ◦G). �

Remark. Note that in the abelian case the composition Π⊥C
◦ J (respectively,

ΠC⊥
◦ J) need not be an equivalence. The reason is that the subcategory ⊥C

(C⊥) need not be thick (see [21]).

Corollary 1.3.2. Let A ,B be abelian or triangulated categories, G : A →
B be an exact functor having both left adjoint F and right adjoint H. The
canonical morphism 1B → G ◦F is an isomorphism if and only if so is the
canonical morphism G ◦H→ 1B.

Proof. If, say, 1B → G ◦F is an isomorphism, then B can be identified with
the quotient category A /C , where C = KerG, and G with ΠC . As H is the
right adjoint of G, the morphism G ◦H→ 1B is an isomorphism by [19, Ch.
III, Proposition 3] or [37, Lemma 9.1.7]. �

3 Note that in the book [37] the notations for the orthogonal subcategories are opposite
to ours. The latter seems more usual, especially in the representation theory, see, for
instance, [2, 21]. In [19] the objects of the right orthogonal subcategory C⊥ are called
C -closed.



NON-COMMUTATIVE SCHEMES AND CATEGORICAL RESOLUTIONS 7

A thick subcategory C of an abelian or triangulated category A is said
to be localizing (colocalizing) if the canonical functor G : A → A /C has
a right (respectively, left) adjoint F. Neeman [37] calls F a Bousfield lo-
calization (respectively, a Bousfield colocalization). In this case the natural
morphism G ◦F→ 1A /C (respectively, 1A /C → G ◦F) is an isomorphism [19,
Ch.III,Proposition 3], [37, Lemma 9.1.7]. If C is both localizing and colocal-
izing, we call it bilocalizing and call the category A /C (or any equivalent)
a bilocalization of A .

Corollary 1.3.3. Let C be a localizing (colocalizing) thick subcategory of
an abelian category A , DC (A ) be the full subcategory of D(A ) consisting
of all complexes C• such that all cohomologies H i(C•) are in C . Suppose
that the Bousfield localization (respectively, colocalization) functor F has
right (respectively, left) derived functor. Then DC (A ) is also a localizing
(colocalizing) subcategory of A and D(A )/DC (A ) ' D(A /C ).

Proof. We consider the case of a localizing subcategory C , denote by G
the canonical functor A → A /C and by F its right adjoint. As G is ex-
act, it induces an exact functor D(A ) → D(A /C ) acting on complexes
componentwise. We denote it by DG; it is both right and left derived of
G. Obviously, KerDG = DC (A ). Since G ◦F → 1A /C is an isomorphism,
the morphism DG ◦RF → 1D(A /C ) is also an isomorphism, so we can apply
Theorem1.3.2 (2). �

Remark 1.3.4. (1) If C is localizing and A is a Grothendieck category,
the right derived functor RF exists [2], so D(A /C ) ' DC (A ). We
do not know general conditions which ensure the existence of the
left derived functor LF in the case of colocalizing categories, though
it is the case when A is a category of quasi-coherent modules over
a quasi-compact separated non-commutative scheme and F is tensor
product or inverse image, see Section 2.2.

(2) Miyatchi [34] proved that always Dσ(A /C ) ' Dσ
C (A ), where σ ∈

{+,−, b }.
1.4. Categorical resolutions.

Definition 1.4.1. Let T be a triangulated cocomplete category with a
set of compact strong generators. A resolution of T is an exact functor
G : D(A )→ T such that

(1) A is locally noetherian [19, III.2].
(2) ext.dim A <∞.
(3) G has both left adjoint F and right adjoint H.
(4) The canonical morphisms G ◦F → 1T and 1T → G ◦F are isomor-

phisms. (Note that we only have to check one of these two condi-
tions, see Corollary 1.3.2.)

If, moreover, the restrictions of the functors F and G onto the subcategory
T c of compact objects are isomorphic, we call G, following [28], a weakly
crepant resolution of T .
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Theorem 1.3.1 implies the following properties of resolutions.

Corollary 1.4.2. Let G : D(A ) → T be a resolution of a triangulated
category T , as in Definition 1.4.1.

(1) The kernel S = KerG is a bilocalizing subcategory of D(A ). So T
is a bilocalization of D(A).

(2) G = Ḡ ◦ΠS , where Ḡ : D(A )/S
∼→ T .

(3) The functors F and H are full embeddings with essential images,
respectively, ⊥S and S ⊥.

(4) F(T c) ⊆ Dc(A ).

So we are in the situation of “six gluing functors” of [37, 9.2]. Note that the
essential images of F and H usually do not coincide.

Proof. We only have to prove the statement (4). As G has right adjoint, it
preserves coproducts. Then, for a compact object A ∈ T and an arbitrary
coproduct B =

∐
i∈IBi in B = D(A ),

B(FA,B) ' T (A,GB) ' T (A,
∐
i∈IGBi) '

'
∐
i∈IT (A,GBi) '

∐
i∈IB(FA,Bi),

so FA is compact. �

1.5. Realization theorem. We recall the following “realization theorem”
(see [25, 4.3] or [31, 2.6]).

Theorem 1.5.1. Let A be an abelian cocomplete category with enough in-
jective objects, S be a set of compact generators of A and I•A be an injective
resolution of A ∈ S. Denote by A the DG-category with the set of objects S,
the sets of morphisms An(A,B) =

∏
k A (IkA, I

k+n
B ) and the differential

d(fk) = (dB ◦ fk − (−1)nfk+1 ◦ dA),

where dA is the differential in the complex I•A. Then D(A ) ' D(A), the
derived category of the DG-category A in the sense of [25], and Dc(A ) '
Dc(A).4

Certainly, when we speak about equivalences of triangulated categories,
we always mean that they are compatible with the triangulated structure.

A cocycle from An(I•A, I
•
B) is evidently a morphism of complexes I•A →

I•B[n], while coboundaries are morphisms homotopic to zero. Therefore
H∗(A) coincides with the category E = Ext∗(S) whose set of objects is
S and the set of morphisms A → B of degree i is Exti(A,B). The latter
is a graded category (with zero differential), so its derived category in the
sense of Keller is just the derived category D(Eop-GrMod) of graded (left)
Eop-modules. Usually this derived category is not equivalent to D(A). One

4 Dc(A) is equivalent to the category H b
p (A) in Keller’s notations [25, 4.2]. Note also

that Keller considers right A-modules when constructing D(A).
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needs to consider E as an A∞-algebra in order to obtain a derived equiva-
lence [24, 33]. Nevertheless, the following simple partial case often occurs in
calculations.

Corollary 1.5.2. Suppose that there is a subcategory H ⊆ A such that, for
every i and every A,B ∈ S, ZiA(I•A, I

•
B) = Hi(I•A, I

•
B)⊕BiA(I•A, I

•
B). Then

D(A ) ' D(Eop-GrMod) and Dc(A ) ' Dc(Eop-GrMod).

Proof. Under these conditions the embedding H→ A is a quasi-isomorphism
and H ' E. �

Obviously, there are dual results concerning projective resolutions. We
prefer injectives, since our main goal is the study of categories of coherent
sheaves.

1.6. Rouquier dimension. We recall the definition of the dimension of a
triangulated category T by Rouquier [42].

Let S be a set of objects from a triangulated category T . We define 〈S 〉k
recursively, setting

〈S 〉1 = add {A[n] | A ∈ S, n ∈ Z },
〈S 〉k+1 = add {Cf | f : A→ B, B ∈ 〈S 〉1, A ∈ 〈S 〉k },

where Cf is the cone of f , i.e. the third object of a triangle A
f−→ B → C →

A[1]. We write 〈C 〉k, where C ∈ Ob T , instead of 〈 {S} 〉.
The dimension dim T of T equals d if d is the minimal integer such that

〈C 〉d+1 = T for an object C. If such d does not exist, we set dim T =
∞. For instance, if A is a hereditary (but not semi-simple) ring, then
dim Db(A-mod) = 1. If Λ is a finite dimensional algebra over a perfect field
and gl.dimΛ = d, then dim Db(Λ-mod) ≤ d [42, Proposition 7.4]. If X is a
smooth quasi-projective variety of dimension n, then dim Db(QcohX) ≤ 2n
[42, Proposition 7.9]. If X is a smooth curve, then dim Db(QcohX) = 1 [38].

Proposition 1.6.1. Let A ,B be abelian categories, G : A → B be an exact
functor, F : B → A be a functor such that G ◦F ' 1B. Then dim Db(B) ≤
dim Db(A ).

Proof. Let Db(A ) = 〈C• 〉d+1. As G is exacts, G(〈C• 〉k) ⊆ 〈G(C•) 〉k.
Consider any complex B• from Db(B). Then the complex F(B•) obtained by
componentwise action of F belongs to Db(A ), hence to 〈C• 〉d+1. Therefore,
the complex G ◦F(B•) ' B• belongs to 〈G(C•) 〉d+1. Hence 〈G(C•) 〉d+1 =
Db(B). �

1.7. Semi-orthogonal decompositions. Let T be a triangulated cocom-
plete category with a set of compact generators. A sequence of subsets
(S1,S2, . . . ,Sm) of Ob T c is said to be a semi-orthogonal collection if Sj ⊆
S⊥i for j < i. If, moreover, 〈S1,S2, . . . ,Sm 〉 = T c, they say that 〈S1,S2, . . . ,Sm 〉
is a semi-orthogonal decomposition of T . Certainly, then 〈S1,S2, . . . ,Sm 〉ω =
T .
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Suppose that T is a k-category for some field k. A compact object C is
said to be exceptional if T (C,C[n]) = 0 for n 6= 0, while T (C,C) = k. A
semi-orthogonal collection (C1, C2, . . . , Cm) of exceptional objects is called
an exceptional collection. If, moreover, 〈C1, C2, . . . , Cm 〉 = T c, they say
that this exceptional collection is full, or 〈C1, C2, . . . , Cm 〉 is an exceptional
decomposition of T .

1.8. Tilting. Recall that a triangulated category T is said to be algebraic
if there is a fully faithful exact functor T → H (A ) for some additive
category A [25, 27]. A set of compact objects T of an algebraic triangulated
cocomplete category is said to be pre-tilting if T (T, T ′[n]) = 0 for all objects
T, T ′ ∈ T and all integers n 6= 0. If, moreover, T strongly generates T , the
set T is said to be tilting. The results of [25, Section 4.3] (see also [27,
Section 7.5]) give the following property of such sets.

Theorem 1.8.1. Let T be an algebraic triangulated cocomplete category
and T be a pre-tilting set of objects from T . We consider T as a full sub-
category of T . There is an exact equivalence 〈T 〉ω ' DTop. In particular,
if T is a tilting set, T ' DTop.

Note that if a pre-tilting set T is finite, then Top-Mod ' Λ-Mod, where
Λ = (End

⊕
T∈TT )op. Note also that if gl.dim T <∞, then 〈T 〉 ' DbTop.
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2. Non-commutative schemes and their derived categories

2.1. Non-commutative schemes. Let X be a scheme and A be an OX-
algebra, i.e. a sheaf ofOX -algebras, which is quasi-coherent as a sheaf of OX -
modules. We call the pair (X,A) a non-commutative scheme. We call this
non-commutative scheme affine (separated, quasi-compact, projective) if so is
the scheme X. We call it reduced if A has no nilpotent ideals. For instance,
an affine non-commutative scheme is just a sheafification (SpecR,A˜) of
an algebra A over a commutative ring R. A morphism of non-commuta-
tive schemes f : (X,A)→ (Y,B) is a pair (fX , f

#), where fX : X → Y is a
morphism of schemes and f# : f−1

X B → A is a morphism of f−1
X OY -algebras.

In what follows we always suppose that all considered non-commutative
schemes are quasi-compact and separated.

We denote by QcohA and CohA the categories, respectively, of quasi-
coherent and coherent A-modules. In this context QcohA consists of the
sheaves of A-module which are quasi-coherent as sheaves of OX -modules. If
A is coherent as an OX -module, then CohA consists of A-modules which are
coherent as OX -modules. As we suppose X quasi-compact and separated,
the category QcohA is a Grothendieck category. In particular, every quasi-
coherent A-module has a quasi-coherent injective envelop. A morphism of
non-commutative schemes f : (X,A)→ (Y,B) induces the functors of direct
image f∗ : QcohA → QcohB and inverse image f∗ : QcohB → QcohA.
Namely, f∗F = A ⊗f−1

X B
f−1
X F . As usually, (f∗, f∗) is an adjoint pair, i.e.

there is an isomorphism of functors HomA(f∗F ,G) ' HomB(F , f∗G). Note
that f∗ does not coincide with the inverse image under the underlying mor-
phism X → Y . We write QcohX, CohX etc. instead of QcohOX , CohOX
etc. If (X,A) = (SpecR,A˜) is affine, we usually identify QcohA with the
category A-Mod of A-modules. If A is noetherian, CohA is identified with
the category A-mod of finitely generated A-modules.

Proposition 2.1.1. Let C = cen(A), the center of A, X ′ = Spec C be the
spectrum of the (commutative) OX-algebra C, φ : X ′ → X be the structural
morphism, and A′ = φ−1A.

(1) A′ is an OX′-algebra, so (X ′,A′) is a non-commutative scheme.
(2) For any F ∈ QcohA the natural map F → φ∗φ

−1F an isomorphism.
(3) For any F ′ ∈ QcohA′ the natural map φ−1φ∗F ′ → F ′ is an isomor-

phism.
(4) The functors φ−1 and φ∗ establish an equivalence of the categories

QcohA and QcohA′ as well as of CohA and CohA′.

Thus we can suppose, when necessary, that our non-commutative scheme
(X,A) is central, i.e. OX = cenA, in particular, that A is a sincere OX -
module, i.e. annOX A = 0. In this case, if (X,A) is reduced, so is also the
scheme X.
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Proof. All claims are obviously local, so we can suppose that X = SpecR
and X ′ = SpecR′, where R′ is the center of the R-algebra A = Γ(X,A).
Then all claims are trivial. �

We say that a central non-commutative scheme (X,A) is noetherian if X
is noetherian andA is coherent as anOX -module. If (X,A) is not necessarily
central, we say that it is noetherian if so is the central scheme (X ′,A′), where
X ′ = Spec(cenA) and A′ = φ−1(A), where φ : X ′ → X is the structural
morphism. In particular, an affine non-commutative scheme (SpecR,A˜)
is noetherian if and only if A is a noetherian algebra, i.e. C = cenA is
noetherian and A is a finitely generated C-module.

We call ext.dimQcohA = ext.dimCohA the (left) global dimension of
the non-commutative scheme (X,A) and denote it by gl.dimA. If (X,A)
is noetherian, then gl.dimA = sup { gl.dimAx | x ∈ X } and gl.dimA =
gl.dimAop [11, § 8.3].

Let (X,A) be noetherian. We denote by lpA the full subcategory of
CohA consisting of locally projective modules, i.e. such A-modules P that
Px is a finitely generated projective Ax-module for every point x ∈ X. For
instance, if F is a locally free coherent OX -module, then the A-module
A ⊗OX F is locally projective and locally finitely generated. We say that
(X,A) has enough locally projective modules if for every coherent A-module
M there is an epimorphism P → M for some module P ∈ lpA. Since any
quasi-coherent module is the sum of its coherent submodules, then for any
quasi-coherent A-module M there is an epimorphim P →M, where P is a
coproduct of modules from lpA. An important example arises as follows.

We say that a non-commutative scheme (X,A) is quasi-projective if it
is noetherian and there is an ample OX -module L [22, Section 4.5]. Note
that in this case X is indeed a quasi-projective scheme over the ring R =⊕∞

n=0Γ(X,L⊗n).

Proposition 2.1.2. Any quasi-projective non-commutative scheme (X,A)
has enough locally projective modules.

Proof. Let L be an ample OX -module,M be any coherent A-module. There
is an epimorphism of OX -modules nOX →M⊗OX L⊗m for some m, hence

also an epimorphism F = nL⊗(−m) → M. Since HomA(A ⊗OX F ,M) '
HomOX (F ,M), it gives an epimorphism of A-modules A ⊗OX F → M,
where A⊗OX F ∈ lpA. �

We define an invertible A-module as an A-module I such that EndA I '
Aop and the natural map HomA(I,A) ⊗A I → (EndA I)op ' A is an iso-
morphism. For instance, the modules constructed in the preceding proof are
invertible. On the contrary, one easily proves that, if A is noetherian and
cenA = OX , any invertible A-module I is isomorphic to A ⊗OX L, where
L = HomA-A(I, I) and L is an invertible OX -module. (We will not use this
fact.)
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We call a noetherian non-commutative scheme (X,A) strongly Goren-
stein5 if inj.dimAA = dimX. Since a quasi-coherent sheaf is injective if
and only if all its stalks are injective and a localization of an injective mod-
ule is injective,

inj.dimAA = sup
{

inj.dimAx Ax | x is a closed point of X
}
.

So (X,A) is strongly Gorenstein if and only if all localizations Ax are
strongly Gorenstein for the closed points of X. Moreover, we can replace
Ax here by its completion Âx in the mx-adic topology.

2.2. Derived categories and functors. We denote by CA, H A and DA
respectively the category of complexes over QcohA, the category of com-
plexes modulo homotopy and the derived category of QcohA. If (X,A) =
(SpecR,A˜) is affine, we also write CA, H A and DA instead of CA, H A
and DA. They are equivalent to the corresponding categories for complexes
of A-modules and usually identified with them. By DcA we denote the
full subcategory of compact objects C• from DA. If X is quasi-compact
and separated, DcA consists of perfect complexes, i.e. the complexes locally
quasi-isomorphic to finite complexes of finitely generated locally projective
modules. It is proved in [36] for the commutative case. The proof in the
non-commutative case is the same, since we have the crucial ingredient:

Proposition 2.2.1. Let R be a commutative ring, A be an R-algebra and
I = (f1, f2, . . . , fm) be a finitely generated ideal of R. Denote by A-ModI
the full subcategory of A-Mod consisting of all modules M such that for
every element v ∈ M there is an integer k such that Ikv = 0. Let DIA
be the full subcategory of DA consisting of all complexes C• such that
H i(C•) ∈ R-ModI for all i. Then the Koszul complex K•(f1, f2, . . . , fm) =⊗m

i=1(A
fi−→ A) is a compact generator of DIA.

Here ⊗ denotes ⊗A and A is naturally considered as A-bimodule.

Proof. It just repeats the proof of [7, Proposition 6.1], since the elements
f1, f2, . . . , fm act centrally on A. �

If (X,A) is noetherian and has enough locally projective modules (for in-
stance, is quasi-projective), the set P of coherent locally projective modules
is a set of compact generators for QcohA. Therefore, 〈P 〉ω = DA, hence
DcA consists of complexes quasi-isomorphic to finite complexes of locally
projective modules.

Recall that a complex I• is said to be K-injective [43] if for every acyclic
complex C• the complex Hom•(C•, I•) is acyclic too. We denote by K-injA
the full subcategory of H A consisting of K-injective complexes and by
K-inj0A its full subcategory consisting of acyclic K-injective complexes.

5 We use this term to avoid the ambiguity, since there are several versions of “Goren-
stein” in non-commutative case. Note that according to our definition Aop is strongly
Gorenstein if so is A.If A = OX , strongly Gorenstein is the same as Gorenstein in the
usual sense of the commutative algebra.



14 IGOR BURBAN, YURIY DROZD, AND VOLDYMYR GAVRAN

Corollary 2.2.2. Let (X,A) be a non-commutative scheme.

(1) For every complex C• in CA there is a K-injective resolution, i.e.
a K-injective complex I• ∈ CA together with a quasi-isomorphism
C•  I•.

(2) DA ' K-injA/K-inj0A.

Proof. As the category QcohA is a Grothendieck category, (1) follows im-
mediately from [2, Proposition 5.3] (see also [43, Lemma 3.7 and Proposition
3.13]). Then (2) follows from [43, Proposition 1.5]. �

A complex F• is said to be K-flat [43] if for every acyclic complex S• of
right A-modules the complex F• ⊗A S• is acyclic. The next result is quite
analogous to [1, Proposition 1.1] and the proof just repeats that of the cited
paper.

Proposition 2.2.3. Let (X,A) be a non-commutative scheme. Then for
every complex C• in CA there is a K-flat replica, i.e. a K-flat complex F•
quasi-isomorphic to C•.

Remark 2.2.4. If (X,A) is noetherian and has enough locally projective
modules, every complex from C−A has a locally projective (hence flat) res-
olution. Then [43, Theorem 3.4] implies that for every complex C from AA
there is an Lp-resolution, i.e. a K-flat complex F• consisting of locally pro-
jective modules together with a quasi-isomorphism F•  C•. For instance,
it is the case if (X,A) is quasi-projective (Proposition 2.1.2).

A complex I• is said to be weakly K-injective if for every acyclic K-flat
complex F• the complex Hom•(F•, I•) is exact.

Proposition 2.2.5 ([43, Propositions 5.4 and 5.15]). Let f : (X,A) →
(Y,B) be a morphism of non-commutative scheme.

(1) If F• ∈ CB is K-flat, then so is also f∗F•. If, moreover, F is flat
and acyclic, then f∗F is acyclic too.

(2) If I ∈ CA is weakly K-injective, then f∗I is weakly K-injective. If,
moreover, I is weakly K-injective and acyclic, then f∗I is acyclic
too.

Proposition 2.2.6 (cf. [43, Section 6]). Let (X,A) be a non-commutative
scheme.

(1) The derived functors RHom•A(F•,G•) and RHom•A(F•,G•) exist and
can be calculated using a K-injective resolution of G• or a weakly
K-injective resolution of G• and a K-flat replica of F•.

(2) The derived functor F•
L
⊗A G•, where G• ∈ DAop, exists and can be

calculated using a K-flat replica either of F or of G. Moreover, if G
is an A-B-bimodule, where B is another sheaf of OX-algebras, there



NON-COMMUTATIVE SCHEMES AND CATEGORICAL RESOLUTIONS 15

are isomorphisms of functors

RHomB(F•
L
⊗A G•,M•) ' RHomA(F ,RHomB(G•,M•))

RHomB(F•
L
⊗A G•,M•) ' RHomA(F ,RHomB(G•,M•)).

(3) For every morphism f : (X,A) → (Y,B) the derived functors Lf∗ :
DB → DA and Rf∗ : DA → DB exist. They can be calculated using,
respectively, K-flat replicas in CB and weakly K-injective resolutions
in CA. Moreover, there are isomorphisms of functors

RHom•B(F•,Rf∗G•) ' RHom•A(Lf∗F•,G•)
RHom•B(F•,Rf∗G•) ' Rf∗RHom•A(Lf∗F•,G•).

(4) If g : (Y,B) → (Z, C) is another morphism of non-commutative
schemes, then L(g ◦ f)∗ ' Lf∗ ◦Lg∗ and R(g ◦ f)∗ ' Rg∗ ◦Rf∗.

If the considered non-commutative schemes have enough locally projective
modules (for instance, are quasi-projective), one can replace in these state-
ments K-flat replicas by Lp-resolutions.

In particular, let f : A→ B be a homomorphism of rings. We consider B
as an algebra over a subring S (an arbitrary one) of its center and A as an
algebra over the subringR = cenA∩f−1(S). Then we can identify f with its
sheafification f˜ : (SpecS,B˜)→ (SpecR,A˜). In this context the functors
(f˜)∗ and (f˜)∗ are just sheafifications of the, respectively, the “back-up”
functor BM 7→ AM and the “change-of-scalars” functor AN 7→ BB ⊗A N .

2.3. Minors.

Definition 2.3.1. Let (X,B) be a non-commutative scheme, P be a locally
projective and locally finitely generated B-module, A = (EndB P)op. The
non-commutative scheme (X,A) is called a minor of the non-commutative
scheme (X,B).6

In this situation we consider P as B-A-bimodule (left over B, right over
A). Let P∨ = HomB(P,B). It is an A-B-bimodule, locally projective and
locally finitely generated over B. The following statements are evidently
local, then they are well-known.

Proposition 2.3.2. The natural homomorphism P → HomB(P∨,B) is an
isomorphism. Moreover, A ' EndB P∨ ' P∨ ⊗B P.

We consider the following functors:

F = P ⊗A : QcohA → QcohB,
G = HomB(P, ) : QcohB → QcohA,

H = HomA(P∨, ) : QcohA → QcohB.
(2.3.1)

6 In the affine case this notion was introduced in [16]. Actually, the main results of this
section are just global analogues of those from [16].
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Note that G is exact and G ' P∨⊗B , so both (F,G) and (G,H) are adjoint
pairs of functors. If the non-commutative scheme (X,B) is noetherian, so is
also (X,A) and these functors map coherent sheaves to coherent ones.

Theorem 2.3.3. (1) QcohA ' QcohB/C , where C = KerG = P⊥ is
a bilocalizing subcategory of QcohB. Thus QcohA is a bilocalization
of QcohB.

(2) The natural morphism φ : 1QcohA → G ◦F is an isomorphism.
(2′) The natural morphism φ′ : G ◦H→ 1QcohA is an isomorphism.
(3) The functor F is a full embedding and its essential image is ⊥C . So

the pair (F,G) induces an equivalence between QcohA and ⊥C .
(3′) The functor H is a full embedding and its essential image is C⊥. So

the pair (H,G) induces an equivalence between QcohA and C⊥.
(4) ⊥C coincides with the full subcategory QcohP of QcohB consisting

of all modules M such that for every point x ∈ X there is an exact
sequence P1 → P0 → Mx → 0, where P0, P1 are multiples (maybe,
infinite) of Px.

Proof. Theorem 1.3.1 and Corollary 1.3.2 show that it is enough to prove
the following statement.

Proposition 2.3.4. The natural morphism φ : 1QcohA → G ◦F is an iso-
morphism and the essential image of F coincides with QcohP.

As both claims are local, we can suppose that the non-commutative
scheme (X,B) is affine, so replace QcohB by B-Mod, where B = Γ(X,B).
Then P = P˜ for some finitely generated projective B-module and A = A˜,
where A = (EndB P )op. Hence we can also replace QcohA by A-Mod and
QcohP by P -Mod, the full subcategory of B-Mod consisting of all modules
N such that there is an exact sequence P1 → P0 → N → 0, where Pi are
multiples (maybe infinite) of P .

Obviously, φ(A) is an isomorphism. Since F and G preserve arbitrary
coproducts, φ(F ) is an isomorphism for any free A-module F . Let M ∈
A-Mod. There is an exact sequence F1 → F0 →M → 0, which gives rise to
a commutative diagram with exact rows

F1
//

φ(F1)
��

F0
//

φ(F0)
��

M //

φ(M)
��

0

G ◦F(F1) // G ◦F(F0) // G ◦F(M) // 0

As the first two vertical arrows are isomorphisms, so is φ(M), which proves
the first claim. Moreover, we get an exact sequence F(F1) → F(F0) →
F(N) → 0, where F(Fi) are direct multiples (maybe infinite) of F(A) = P .
Therefore, F(A) ∈ P -Mod.

Consider now the natural morphism ψ : F ◦G→ 1B-Mod. This time ψ(P )
is an isomorphism. Let now N be a B-module such that there is an exact
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sequence P1 → P0 → N , where Pi are multiples (maybe infinite) of P . Hence
there is a commutative diagram with exact rows

F ◦G(P1) //

ψ(P1)

��

F ◦G(P0) //

ψ(P0)

��

F ◦G(N) //

ψ(N)

��

0

P1
// P0

// N // 0

The first two vertical arrows are isomorphisms, so ψ(N) is also an isomor-
phism. Thus the essential image of F is indeed P -Mod. �

Actually, we can describe the kernel of this bilocalization explicitly.

Theorem 2.3.5. Let IP = Im{µP : P⊗AP∨ → B}, where µ(p⊗γ) = γ(p).
Then KerG = {M ∈ QcohB | IPM = 0 } ' Qcoh(B/IP).

Proof. Again the statement is local, so we only have to prove it for a ring
B, a finitely generated projective B-module P and the ideal IP = ImµP .
It follows from [13, Proposition VII.3.1] that IPP = P . Therefore, if f :
P → M is non-zero, then IP Im f = Im f 6= 0, hence IPM 6= 0. On the
contrary, if IPM 6= 0, there is an element u ∈ M , elements pi ∈ P and
homomorphisms γi : P → B such that

∑
i γi(pi)u 6= 0. Let β : B → M

maps 1 to u and γui = βγi. Then at least one of the homomorphisms γui is
non-zero. �

The functor G is exact, so it induces a functor DG : DB → DA mapping
a complex F• to GF•. It is both left and right derived functor of G. We can
also consider the left derived functor LF of F and the right derived functor
RH of H, both being functors DA → DB. Obviously, DG maps DσB to
DσA, where σ ∈ {+,−, b }, LF maps DσA to DσB for σ ∈ {−, b }, and RH
maps DσA to DσB for σ ∈ {+, b }.

Theorem 2.3.6. (1) The functors (LF,DG) and (DG,RH) form adjoint
pairs.

(2) DA ' DB/DCB, where C = KerG = P⊥, as in Theorem 2.3.3.
Moreover, DCB is a bilocalizing subcategory of DB, so DA is a bilo-
calization of DB.

(3) The natural map 1DA → DG ◦ LF is an isomorphism.
(3′) The natural map DG ◦RH→ 1DA is an isomorphism.
(4) The functor LF is a full embedding and its essential image is ⊥C .

So the pair (LF,DG) defines an equivalence DA ' ⊥C .
(4′) The functor RH is a full embedding and its essential image is C⊥.

So the pair (RH,DG) defines an equivalence DA ' C⊥.
(5) The functor LF maps DcA to DcB.
(6) ⊥C coincides with the full subcategory DP−→ of DB consisting of com-

plexes quasi-isomorphic to K-flat complexes F• such that for every
x ∈ X and every component F i the localization F ix belongs to add−−→Px.

The same is true if we replace D by D−.
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(7) If A and B have enough locally projective modules (for instance,
X is quasi-projective), ⊥C coincides with the full subcategory DP
of DB consisting of complexes quasi-isomorphic to K-flat complexes
F• such that F ix ∈ AddPx for every i ∈ Z and every point x ∈ X.
The same is true if we replace D by D−.

Proof. (1) Let F• be a K-flat replica of M• ∈ DA and I• be an injective
resolution of N • ∈ DB. Then LFM• = FF• and DGN • = GI•. As P ∈
lpB, the complex FF• is K-flat and the complex GI• is K-injective. By
Proposition 2.2.6 (2),

HomB(FF•, I•) = RHomB(FF•, I•) '
' RHomA(F•,GI•) = HomA(F•,GI•).

Hence LF is left adjoint to DG.
Choose now a K-flat replica G• of N • and a K-injective resolution J • of

M•. Then DGN • = GG• and RHM• = HJ •. By [43, Proposition 5.14], HJ •
is weakly K-injective. By Proposition 2.2.6 (2) and [43, Proposition 6.1],

HomA(GG•,J •) = RHomA(GG•,J •) '
' RHomB(G•,HJ •) = HomB(G•,HJ •).

Hence RH is right adjoint to DG.

The statements (3) and (3′) follow from the statements (2) and (2′) of The-
orem 2.3.3. Then the statements (2),(4) and (4′) follow from Theorem 1.3.1
and Corollary 1.3.2.

(5) As the right adjoint DG of LF preserves arbitrary coproducts, LF maps
compact objects to compact ones.

(6) The construction of [1, Proposition 1.1] gives for any complex M• ∈
DA a quasi-isomorphic K-flat complex F• such that all its components F i
are flat. Moreover, F• is left bounded if so isM•. By [11, Ch. X, § 1, Théorème 1],
F ix ' lim−→L

i
n, where Lin are projective finitely generated Ax-modules, hence

belong to addAx. Then LFM• ' FF•. As F preserves direct limits and
FA ' P, FF ix ' lim−→FLin and FLin ∈ addPx. Hence M• ∈ DP−→.

On the contrary, let N • ∈ DP−→. We can suppose that it is K-flat and

for every i ∈ Z and every x ∈ X we can present N i
x as lim−→N

i
n, where

N i
n ∈ addPx. Then the complex GN • is also K-flat [43, Proposition 5.4], so

LF ◦DG(N •) ' FG(N •). As the natural map FG(P)→ P is an isomorphism,
the same is true for any module from add−−→Px. Therefore, the natural map

LF ◦DG(N )→ N is also an isomorphism.
The proof of (7) is quite analogous to the proof of (6), taking into account

that in this situation every complex is quasi-isomorphic to a K-flat complex
of locally projective modules. �
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3. Non-commutative curves

3.1. Non-commutative curves. We call a curve a noetherian excellent
reduced scheme such that all its irreducible components are of dimension
1. We call a non-commutative curve a reduced non-commutative scheme
(X,A) such that X is a curve and A is a torsion free finitely generated OX -
module. Note that, due to Proposition 2.1.1, we can suppose, without loss of
generality, that the OX -module A is sincere. In what follows (X,A) always
denotes a non-commutative scheme and we suppose that A is a sincere OX -
module. We denote by Xcl the set of closed points of X, by Xreg and Xsg,
respectively, its subsets of regular and singular points. As X is excellent
and reduced, the set Xsg is finite.

We denote by tfA the full subcategory of CohA consisting of modules
which are torsion free or, the same, maximal Cohen–Macaulay over OX .
Recall that modules from tfA can be defined locally. Namely, let K = KX
be the OX -algebra which is locally the full ring of quotients of OX and
KM = K ⊗OX M. Then KA is a sheaf of semi-simple K-algebras and A is
an OX-order in KA. It means that A is an OX -subalgebra of KA coherent
as OX -module and such that it generates KA as K-module. If V is a coherent
KA-module,M⊂ V is its coherent A-submodule and KM = V, we say that
M is an A-lattice in V. Obviously, then M ∈ tfA, and any M ∈ tfA can
(and will) be considered as an A-lattice in KM. If M is an A-lattice in
V and x is a closed point of X, then Mx is an Ax-lattice in Vx and M is
completely defined by the set of Ax-lattices {Mx | x ∈ Xcl }.

Lemma 3.1.1. (1) If M and N are lattices in a coherent KA-module
V, then Mx = Nx for almost all closed points x ∈ X.

(2) Let M ∈ tfA, V = KM, S be a finite set of closed points of X and
for each x ∈ S be given a KAx-lattice N(x) ⊂ Vx. Then there is an
A-lattice N ⊂ V such that Nx = N(x) for all x ∈ S and Nx =Mx

for all x /∈ S.

Proof. The first statement is evident. The second one is easily reduced to
the affine case. Then one can repeat the proof of [10, Ch. 7, §4, Théorème 3]
almost without changes. �

Lemma 3.1.2. Any non-commutative curve (X,A) has enough invertible
modules. Namely, the set

LA = {A ⊗OX L | L is an invertible ideal of OX }
is a set of generators for QcohA.

Proof. It is enough to prove this statement for the curve X. Moreover, we
can suppose X irreducible. We have to show that for any quasi-coherent
OX -module M there is a non-zero homomorphism L → M, where L is an
invertible submodule of OX . Evidently, we can suppose thatM is coherent
and either torsion or torsion free. If M is torsion and x ∈ suppM, there
is a non-zero map φ : OX,x → Mx. There is an ideal N ⊂ OX such that
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Nx = Kerφ and Ny = OX,y for y 6= x. Then OX/N ' Imφ ⊆ M which
gives a non-zero map OX →M.

Let nowM be torsion free, soM⊂ KM. ReplacingM by its intersection
with a simple submodule of KM, we can suppose that M ⊂ K′, where K′
is a simple direct summand of K. Let O′ be the projection of OX onto
K′. Then both modules M/M∩O′ and O′/M∩O′ are torsion. Let S =
(suppM/M∩O′) ∪ (suppO′/M∩O′). It is a finite set. For each x ∈ S
there is a submodule L′(x) ⊆ Mx ∩ O′x isomorphic to O′x. We can find a
submodule L(x) ⊆ OX,x such that L′(x) is the projection of L(x) onto K′ and
L(x) ' OX,x. Using Lemma 3.1.1, construct a submodule L ⊂M such that
Lx = L(x) if x ∈ S and Lx = OX,x if x /∈ S. Then L is an invertible ideal and
the projection of L onto K′ gives a non-zero homomorphism L →M. �

We will use the duality for left and right coherent torsion free A-modules
established in the following theorem.

Theorem 3.1.3. (1) There is a canonical A-module, i.e. such a mod-
ule ωA ∈ tfA that inj.dimA ωA = 1 and EndA ωA ' Aop (so ωA can
be considered as an A-bimodule). Moreover, ωA is isomorphic as a
bimodule to an ideal of A.

We denote by M∗, where M ∈ QcohA (or M ∈ QcohAop) the
Aop-module (respectively, A-module) HomA(M, ωA) (respectively,
HomAop(M, ωA)).

(2) The natural map M→M∗∗ is an isomorphism for every M∈ tfA
(or M ∈ tfAop) and the functors M 7→ M∗ establish an exact
duality of the categories tfA and tfAop. Moreover, if M ∈ CohA,
then M∗∗ ' M/ torsM, where torsM denotes the maximal OX-
periodic submodule of M.

Proof. Each local ring Ox = OX,x is excellent, so its integral closure in Kx
is finitely generated and its completion Ôx is reduced. Therefore Ox has a
canonical module ωx which can be considered as an ideal in Ox [23, Korol-
lar 2.12]. Moreover, Ox is normal for almost all x ∈ Xcl and in this case we
can take ωx = OX,x. By Lemma 3.1.1, there is an ideal ωX ⊆ OX such that

ωX,x = ωx for each x ∈ X. Then inj.dimOX ωX = sup
{

inj.dimOX,x ωx

}
=

1. As the natural map OX,x → EndOX,x ωx is an isomorphism for each
x ∈ X, the natural map OX → EndOX ωX is an isomorphism too. There-
fore, ωX is a canonical OX -module. Then it is known that the functor
M 7→M∗ = HomOX (M, ωX) is an exact self-duality of tfOX and the nat-
ural map M → M∗∗ is an isomorphism. Set now ωA = HomOX (A, ωX).
Then HomA(M, ωA) ' HomOX (M, ωX) for any A-module M, whence all
statements of the theorem follow. �

3.2. Minors for curves. In this subsection (X,B) denotes a non-commuta-
tive curve, P is a locally projective coherent A-module and A = (EndB P)op

is the corresponding minor of B. We supplement the results of Section 2.3
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for the functors F,G,F defined by the rules (2.3.1) and their derived functors.
All these functors map coherent sheaves to coherent ones. The functor G
maps tf B to tfA and H maps tfA to tf B. It is not true for F, so we modify
it setting F†M = (FM)∗∗. Then F† also maps tfA to tf B. We denote by
P ′ the B-module (P∨)∗.

Theorem 3.2.1. (1) The functors H and G establish an equivalence of
tfA and tf∗ P, where tf∗ P is the full subcategory of tf B consisting
of all torsion free B-modules M such that for every point x ∈ X
there is an exact sequence 0 → Mx → Q → N → 0, where Q is a
multiple of the Bx-module P ′x and N ∈ tfAx.

(2) The restriction of functor F† onto tfA is left adjoint to the restriction
of G onto tf B. Moreover, if M∈ tfA, the natural map G ◦F†(M) is
an isomorphism and the functors F† and G define an equivalence of
the categories tfA and tf P, where tf P is the full subcategory of tf B
consisting of all sheaves M such that for every point x ∈ X there is
an epimorphism nPx →M.7

Proof. (1) This statement is local, so we can suppose that X = SpecR,
where R is an excellent local reduced ring of Krull dimension 1, B = B˜
for some R-order B, i.e. an R-algebra B without nilpotent ideals which
is finitely generated and torsion free as an R-module, P = P˜ for some
finitely generated projective B-module P . Moreover, we can suppose that
P is sincere as B-module. Then A = A˜, where A = EndB P . If L ∈ tfA,
there is an exact sequence mA → nA → L∗ → 0, which gives an exact
sequence

(3.2.1) 0→ L→ nA∗ → mA∗.

We denote by ψ the natural morphism 1B-Mod → H ◦G. For M = A∗ we
have

H(A∗) = HomA(P ∨,HomR(A, ωR)) '
' HomR(P ∨, ωR) = P ′,

G(P ′) = HomB(P,HomR(P ∨, ωR)) '
' HomR(P ∨ ⊗B P, ωR) ' A∗,

since P ∨ ⊗B P ' A. Hence ψ(P ′) is an isomorphism. The exact sequence
(3.2.1) gives an exact sequence 0→ H(L)→ nP ′ → mP ′, which shows that
H(L) ∈ tf∗ P . Let now M ∈ tf∗ P . An exact sequence 0 → M → nP ′ →
N → 0, where N ∈ tfB, gives an exact sequence 0 → GM → G(nP ′) →
GN → 0. For any B-module N , ψ(N) maps x ∈ N to the homomorphism

N → HomA(P ∨,HomB(P,N)) ' HomB(P ⊗A P ∨, N)

mapping x ∈ N to the homomorphism P ⊗A P ∨ → N which maps α ⊗ γ
to γ(α)x. Tensoring with the full ring of quotient K of B, we obtain the

7 In affine case, under some restrictions, it was also established in [16].
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map KN → HomKB(KP ⊗KA KP ∨,KN). As KB is semi-simple and
KP is sincere, the natural map KP ⊗KA KP ∨ → B is surjective, hence
Kψ(N) is injective. If N is torsion free, hence embeds into KN , it implies
that ψ(N) is injective. So we have a commutative diagram

0 // M //

ψ(M)
��

nP ′ //

ψ(nP ′)
��

N

ψ(N)
��

0 // H ◦G(M) // H ◦G(nP ′) // H ◦G(N).

Since ψ(nP ′) is an isomorphism and ψ(N) is a monomorphism, ψ(M) is an
isomorphism, so M ∈ ImH.

(2) If M∈ tfA and N ∈ tf B, then also GN ∈ tfA, so

HomB(F†M,N ) ' HomB(FM,N ) ' HomB(M,GN ),

which proves the first claim. Consider now the functors

H′ = HomA(P, ) : QcohAop → QcohBop,

G′ = HomB(P∨, ) : QcohBop → QcohAop.

As we have just proved, they establish an equivalence between the categories
tfAop and tf∗ P∨, where tf∗ P∨ consists of all right B-modules N such that
for every point x ∈ X there is an exact sequence 0 → Nx → Q → N ′ → 0,
where Q is a multiple of P∗x and N ′ ∈ tf Bx. Equivalently, there is an
epimorphism Q∗ → N ∗x , i.e. N ∗ ∈ tf P. On the other hand,

H′M∗ = HomA(P,HomOX (M, ωX)) '

' HomOX (P ⊗AM, ωX) = (P ⊗AM)∗ = F†M.

Hence the statement about F† and G follows by duality. �

3.3. Morita equivalence. We call two non-commutative schemes (X,A)
and (Y,B) Morita equivalent if QcohA ' QcohB. From Theorem 2.3.3 it
follows that (X,A) and (Y,B) are Morita equivalent if there is a locally pro-
jective and locally finitely generated A-module P such that B ' (EndA P)op

and Px is a generator of Ax-Mod for every point x ∈ X. In this case we say
that P is a local progenerator for A. It so happens that for curves we can
check Morita equivalent locally.

First of all we recall some facts concerning normal curves. An over-ring
of a non-commutative curve (X,A) is, by definition, a non-commutative
curve (X,A′), where A ⊆ A′ ⊂ KA and A′ is coherent as OX -module (or,
the same, as A-module). Note that, due to Lemma 3.1.1, over-rings can be
constructed locally. Namely, given a finite subset S ⊂ Xcl and an over-ring
A′(x) of Ax for every x ∈ S, there is an over-ring A′ of A such that A′x = Ax
if x /∈ S, while A′x = A′(x) for all x ∈ S.

We say that a non-commutative curve (X,A) is normal if it has no proper
over-rings. Then, if (X,A) is central, X is also normal, hence regular. If
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(X,A) is normal, every module M ∈ tfA is locally projective [15, Theo-
rem 26.12]. If it is sincere, it is a local progenerator for A, so A is Morita
equivalent to B = (EndAM)op.

As a non-commutative curve (X,A) is noetherian, excellent and reduced,
there is a normal over-ring (X,A′) of A.

Theorem 3.3.1. Let (X,A) and (X,B) be non-commutative curves such
that the rings Ax and Bx are Morita equivalent for every point x ∈ Xcl.
Then these non-commutative curves are Morita equivalent.

Proof. From the Morita theorem for rings it follows that for every point
x ∈ Xcl there is a progenerator Px for Ax such that Bx ' (EndAx Px)op.
There is a KA-module V such that Vx = KxPx for all x. In particular, Vx is
a sincere KA-module. Choose a normal over-ring A′ of A an A-lattice M
in V. Then M is a local progenerator for A′ and B′ = (EndA′M is Morita
equivalent to A′. We set Px =Mx for all points x such that Ax = A′x and
Bx = B′x. These are almost all points of X. By Lemma cur-1, there is an
A-lattice P such that Px = Px for all x. Then P is a local progenerator for
A and B ' (EndA P)op. �

Corollary 3.3.2. Let (X,A) and (X,B) be two normal non-commutative
curves. If the K-algebras KA and KB are Morita equivalent, so are A and
B.

Proof. If KA and KB are Morita equivalent, there is a sincere KA-module
V such that KB ' (EndKA V)op. Then it is known [15] that Ax and Bx
are Morita equivalent for all points x ∈ X. Thus A and B are Morita
equivalent. �

Let Γ(X,KA) =
∏s
i=1 Mat(mi,Di), where Di are skew fields. Corol-

lary 3.3.2 implies that a normal non-commutative curve (X,A) is defined
up to Morita equivalence by the set {D1,D2, . . . ,Ds }.

3.4. Hereditary non-commutative curves. We call a non-commutative
curve (X,A) hereditary if gl.dimAx = 1 for every x ∈ Xcl. Then Ext iA(M,N ) =
0 if i > 1 or i = 1 and M ∈ tfA. Hence Ext iA(M,N ) = 0 for i > 2 and
Ext1
A(M,N ) has finite support for any coherent modulesM and N . There-

fore, ExtiA = 0 for i > 1, so gl.dimA = 1, and Ext1
A(M,N ) = 0 ifM∈ tfA

and N is torsion. It means that any coherent A-module is a direct sum of
a torsion free module and a torsion one. A torsion free coherent A-module
L is said to be irreducible if KA is a simple KA-module.

As we have already mentioned, a normal non-commutative curve is hered-
itary [15, Theorem 26.12]. Moreover, any hereditary (X,A) coincides with
the intersection of its maximal over-rings [18, Theorem 1.1]. Therefore, if
(X,A) is hereditary and central, X is normal.

Existence of normal over-rings implies important homological properties
of non-commutative curves.
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Proposition 3.4.1. Let (X,A) be a non-commutative curve, M and N be
coherent A-modules.

(1) If i > 1, then ExtiA(M,N ) = H0(X, Ext iA(M,N )) for i > 1. In
particular, ExtiA(M,N ) = 0 if i > 1 and M is locally projective.

(2) IfM is locally projective, then Ext1
A(M,N ) ' H1(X,HomA(M,N )).

Proof. We use the spectral sequence

Hp(X, ExtqA(M,N ))⇒ Extp+qA (M,N ).

Let A′ be a normal over-ring of A. As it is hereditary and Ax = A′x for
almost all x ∈ X, the modules Ext iA(M,N ) have finite support for any i > 0,
which implies (1). If M is locally projective, Ext iA(M,N ) = 0 for i > 0,
whence (2). �

3.5. Endomorphism construction. We use the results on minors in the
following situation. Let (X,A) be a non-commutative curve, F be a co-
herent torsion free A-module, F+ = A ⊕ F and AF = (EndAF+)op. If
E = (EndAF)op, then AF can be identified with the algebra of matrices of
the form (

A F
F ′ E

)
, where F ′ = HomA(F ,A).

Thus F+ is identified with the locally projective right AF -module eAF =(
A F

)
, where e = ( 1 0

0 0 ), and F∨+ = HomAF (F+,AF ) is identified with the

locally projective AF -module AFe =
( A
F ′
)
' HomA(F+,A). Moreover,

A ' eAFe ' (EndAF F
∨
+)op

Let also P = AF (1− e) =
( F
E
)
. Then P ′ = HomAF (P,AF ) ' (1− e)AF '(

F ′ E
)

and (EndAF P)op ' (1 − e)AF (1 − e) ' E . So we can apply the
previous results to the functors

F = F∨+ ⊗A : QcohA → QcohAF ,
G = HomAF (F∨+, ) : QcohAF → QcohA,
H = HomA(F+, ) : QcohA → QcohAF ,

as well as to the functors

F′ = P ⊗E : Qcoh E → QcohAF ,
G′ = HomAF (P, ) : QcohAF → Qcoh E ,
H′ = HomE(P ′, ) : Qcoh E → QcohAF

and for modifications F† and F′† of the functors F and F′, which map torsion
free sheaves to torsion free ones. QcohA is a bilocalization of QcohB and
DA is a bilocalization of DB. Namely, QcohA ' QcohAF/C , where C =
(F∨+)⊥ is bilocalizing in QcohAF , and DA ' DAF/DCAF , where DCAF is
bilocalizing in DAF . The functors F and F′ define full embeddings of the
categories, respectively, QcohA and Qcoh E (CohA and Coh E) into QcohAF
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(CohAF ). Their left derived functors LF and LF′ define full embeddings of
the categories, respectively, DA and DE (DcA and DcE) into DAF (DcAF ).
The next statement is an immediate consequence of Theorem 2.3.5.

Proposition 3.5.1. The category C = (F∨+)⊥ is equivalent to Qcoh Ē, where
Ē = E/I, where I is the image of the natural map µF : F ′ ⊗A F → E.

Proof. Indeed, the components A, F and F ′ of the matrix presentation of
AF are contained in ImµP and ImµP ∩ E = ImµF . �

Lemma 3.5.2. (1) Let M ∈ QcohAF , φM : F ◦G(M)→M and φ′M :
F′ ◦G′(M) → M be the natural homomorphisms arising from the
adjunction. Then Imφ+ Imφ′ =M.

(2) Σ = F(LA) ∪ F′(LE) is a set of compact generators of QcohAF ,
hence a set of compact strong generators for DAF . Therefore, DcAF
consists of complexes quasi-isomorphic to finite complexes of modules
from addΣ.

(3) If L is an ample OX-module, the set

ΣL =
{
F∨+ ⊗OX L

⊗n | n ∈ Z
}
∪
{
P ⊗OX L

⊗n | n ∈ Z
}
.

is a set of compact generators of QcohAF , hence a set of compact
strong generators of DAF . Therefore, DcAF consists of complexes
quasi-isomorphic to finite complexes of modules from addΣL.

Proof. Let M be a quasi-coherent AF -module, M1 = eM ' GM and
M2 = (1 − e)M ' G′M. Then M = M1 ⊕M2 (as OX -module), FM1 =
M1 ⊕ F ′ ⊗AM1, F′M2 = M2 ⊕ F ⊗E M2, ImφM = M1 ⊕ Imµ1 and
Imφ′M = Imµ2 ⊕M2, where µ1 : F ′ ⊗AM1 →M2 and µ2 : F ⊗EM2 →
M1 arise from the multiplication AF ×M → M. It proves (1). Then (2)
follows immediately from Lemma 3.1.2 and (3) from Proposition 2.1.2. �

Theorem 3.5.3. If A is strongly Gorenstein, the restrictions of LF and RH
onto DcA are isomorphic. Hence the restriction of LF onto DcA is both left
and right adjoint to the restriction of DG onto DbAF .

Proof. Note first that if M is a locally projective coherent A -module, then
the natural map F∨+⊗AM→HomA(F ,M) is an isomorphism. Indeed, this
claim is local, so it is enough to verify it for M = A, and we have already
mentioned that F∨+ ' HomA(F+,A).

As A has enough locally projective modules, DcA consists of complexes
quasi-isomorphic to finite complexes of locally projective coherent modules.
Let F• be such a complex. As KA is injective as A-module, all modules
KF i are injective. As inj.dimAA = 1 and hence inj.dimAF i = 1 too, the
quotient modules KF i/F i are also injective. It gives an exact sequence of
complexes

0→ F• → KF• f−→ KF•/F• → 0.

Thus F• ' Cf [−1], where Cf is the cone of f . All components of Cf
are injective, hence RH(F•) = H(Cf [−1]). Applying H, we obtain an exact
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sequence of complexes

0→ H(F•)→ H(KF•) H(f)−−−→ H(KF•/F•)→ Ext1
A(P,F•)

and Ext1
A(P,F•) = 0, since inj.dimAF i = 1 and P is torsion free. Therefore,

H(F•) is quasi-isomorphic to CH(f)[−1] which coincides with H(Cf [−1]) =
RH(F•). As H(F•) ' F(F•) = LF(F•), we have proved the statement. �

3.6. Hereditary over-rings. Let now (X,H) be any hereditary (for in-
stance, normal) over-ring of A, I be the conductor of H in A, i.e. the
annihilator of the right A-module H/A. Then

I(U) = {λ ∈ K(U) | H(U)λ ⊆ A(U) }

for every open U ⊆ X, so I can be identified with HomA(H,A). Apply the
construction of the preceding subsection to the A-module F = H. Then
(using the corresponding notations) E = H,

AH =

(
A H
I H

)
,

H+ =
(A
I
)

and P =
(
H H

)
. Since P and P∨ =

(
I H

)
are locally

projective as H-modules, the functors F′ and G′ establish an equivalence of
the category lpH = tfH and the full subcategory lpP of lpAH consisting of
all modulesN such thatNx ∈ addPx for all x ∈ X. Moreover, these functors
are exact, so there derived functors are just calculated by applying F′ and
G′ to each component of a complex. They establish an equivalence between
DH and the full subcategory DP ⊂ DAH consisting of all complexes that
are quasi-isomorphic to K-flat complexes F• such that each component F ix
belongs to AddPx. As F′ maps K-injective complexes to K-injective, also
RHomAH(F′M•,F′N •) ' RHomA(M•,N •).

Consider also the submodule I ′ =
( I
I
)
⊂ H+ and the quotient Q =

H+/I ′ =
(
A/I

0

)
. Note that I ′ ' F′I and I ∈ LH, so I ′ belongs to F′(LH),

hence to lpAH. On the other hand, G′Q = (1− e)Q = 0. Note also that the
category KerG in this case is equivalent to Qcoh(H/IH).

Proposition 3.6.1. (1) DAH = 〈Q,F′(LH) 〉ω is a semi-orthogonal de-
composition of DAH.

(2) ExtiAH(F′N ,Q) = 0 for all i ∈ Z.

(3) ExtiAH(Q,M) = 0 for every M∈ CohAH and i > 1.
(4) Let γ : N → HomH(I,N ) be induced by the embedding I → H.

Then

HomAH(Q,F′N ) ' H0(X,Ker γ),

Ext1
AH(Q,F′N ) ' H0(X,Cok γ).

(5) ExtiAH(Q,Q) = 0 for i 6= 0.
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Proof. (2) follows from the equality

RHomAH(F′N ,Q) ' RHomA(N ,G′Q) = 0.

(1) I ′ = F′(I) is locally projective and belongs to 〈F′(LH) 〉 as well as
any module I ′ ⊗OX L, where L is an invertible OX -ideal. There is an exact
sequence

0→ I ′ ⊗OX L → H
∨
+ ⊗OX L → Q⊗OX L → 0,

where Q⊗OXL ' Q, since Q is torsion. It shows that F(LA) ⊂ 〈Q,F′(LH) 〉.
By Lemma 3.5.2, DA = 〈Q,F′(LH) 〉ω.

(3-5) As Q is torsion, the spectral sequence

Hp(X, ExtqAH(Q,M))⇒ Extp+qAH (Q,M)

implies that ExtiAH(Q,M) ' H0(X, Ext iAH(Q,M)). The exact sequence

0 → I ′ → H∨+ → Q → 0, where I ′ ∈ lpAH, implies that Ext iAH(Q,M) = 0
for any i > 1 and any coherent M, while

HomAH(Q,M) ' Kerβ,

Ext1
AH(Q,M) ' Cokβ,

where β : HomAH(H∨+,M)→ HomAH(I ′,M) is induced by the embedding
I ′ → H∨+. If M = F′N , then

HomAH(I ′,M) = HomAH(F′I,M) ' HomH(I,G′M) ' HomH(I,N )

and, as H∨+ = AHe, HomAH(H∨+,M) ' eM ' N . Under these identifi-
cations β is transformed to γ. Finally, HomAH(I ′,Q) = 0, which implies
(5). �
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4. Categorical resolutions for curves

In this section we suppose that (X,A) is a non-commutative curve such
that X is an algebraic curve over an algebraically closed field k. Without
loss of generality we suppose that it is central, i.e. cenA = OX . We call
this non-commutative curve rational if so are all irreducible components
of X, i.e. K ' k(t)s for some s. Let H be a hereditary over-ring of A
and X̃ = Spec(cenH). Then ν : X̃ → X is the normalization of X. In

what follows we write O for OX and Õ for ν∗OX̃ . If {X1, X2, . . . , Xs } are

irreducible (or, the same, connected) components of X̃, then Õ =
⊕s

i=1Õi,
where Õi = ν∗OXi .

4.1. Structure of hereditary non-commutative curves. We recall ba-
sic facts about hereditary non-commutative curves in the algebraic case (see
also [14], where Theorem 4.1.1 is given in a different, but equivalent form).
Recall that the center of such a curve is always normal. Hence, without loss
of generality, we can only consider central irreducible hereditary non-com-
mutative curves.

Theorem 4.1.1. Up to Morita equivalence, a central connected hereditary
non-commutative curve is defined by the following data (called hereditary
data):

• a normal curve X;
• a finite set S ⊂ Xcl;
• an integer k(x) > 1 for each x ∈ S.

The case S = ∅ correspond to normal non-commutative curves.

Proof. Let (X,A) be a a central connected hereditary non-commutative
curve. It is known that the Brauer group Br(K) is trivial [30]. There-
fore, KH = Mat(n,K) for some n. Hence any normal Ox-order in KH is
Morita equivalentto OX . Let S = {x ∈ Xcl | Hx is not normal }, k = k(x)

and n1, n2, . . . , nk be positive integers such that
∑k

i=1 ni = n. Consider
the subring Hx(n1, n2, . . . , nk) ⊂ Mat(n,Ox) consisting of all block matri-
ces (Aij), where Aij ∈ Mat(ni × nj ,Ox) and Aij ≡ 0 (mod mx). From [15,
Theorem 26.28] it follows that every hereditary Ox-order in Mat(n,K) is
isomorphic to H(n1, n2, . . . , nk) for some k and ni. Moreover, the rings
Hx(n1, n2, . . . , nk) and Hx(m1,m2, . . . ,ml) are Morita equivalent if and
only if k = l. Thus, by Theorem 3.3.1, the data (X,S, k(x) | x ∈ S) define
the hereditary non-commutative curve (X,H) up to Morita equivalence. �

We denote by H(X,S,k,n), where k = { k(x) | x ∈ S },

n = {ni(x) | x ∈ S, 1 ≤ i ≤ k(x) } ,

the non-commutative curve (X,H) such that

S = {x ∈ Xcl | Hx is not normal }



NON-COMMUTATIVE SCHEMES AND CATEGORICAL RESOLUTIONS 29

and, for every x ∈ S, Hx = Hx(n1, n2, . . . , nk(x)). As we have just seen,
these are Morita representatives for all irreducible hereditary non-commu-

tative curves. Note that the sums
∑k(x)

i=1 ni must have the same value N for

all x ∈ S. Set Nj(x) =
∑j−1

i=1 ni(x). We denote by L the H-module nO and
by Lx,j the submodule of L such that (Lx,j)y = Ly if y 6= x and (Lx,j)x
consists of all columns (a1, a2, . . . , ak(x)) such that ai ∈ mx for i < Nj . Note
that Lx,1 = L and Lx,k(x)+1 = L(−x) = L ⊗O O(−x). For every x ∈ S we
have the chain of submodules

L = Lx,1 ⊃ Lx,2 ⊃ Lx,3 . . . ⊃ Lx,k(x) ⊃ Lx,k(x)+1 = L(−x).

Let Ux,j = Lx,j/Lx,j+1 for 1 ≤ j ≤ k(x), Uy = L/L(−y) if y /∈ S.

Proposition 4.1.2. (1) The set

{Ux,j | x ∈ S, 1 ≤ j ≤ k(x) } ∪ {Uy | y /∈ S }
is a full set of representatives of isomorphism classes of simple H-
modules.

(2) Let

L = {L,L(−x) | x ∈ Xcl } ∪ {Lx,j | x ∈ S, 1 < j ≤ k(x) } .
Then 〈L 〉 = DcH, hence 〈L 〉ω = DH.

Proof. (1) follows from [40, Corollary 39.18]. Hence every simple H-module,
thus every H-module of finite length belongs to 〈L 〉. Let M ∈ tfH, then
KM = m(KL) for some m. If M′ = mL, then both M/(M∩M′) and
M′/(M/ ∩M′) are of finite length, hence belong to 〈L 〉. Therefore M ∈
〈L 〉, so 〈L 〉 = Db(CohH) = DcH. �

Theorem 4.1.3. In the above notations, suppose that X is rational. Let
o ∈ Xcl be an arbitrary point.

(1) The set

LH = {L,L(−o) } ∪ {Lx,j | x ∈ S, 1 < j ≤ k(x) }
generates DcH, hence strongly generates DH.

(2) If L′,L′′ ∈ LH, then ExtiH(L′,L′′) = 0 for all i > 0, while

dim HomH(L′,L′′) =



1 if L′ = L′′,
or L′ = L(−o), L′′ = Lx,j ,
or L′ = Lx,j , L′′ = L,
or L′ = Lx,j , L′′ = Lx,k, j > k,

2 if L′ = L(−o), L′′ = L,
0 in all other cases.

In particular, LH is a tilting set for the category DH.
(3) If θxj are generators of the spaces HomH(Lx,j+1,Lx,j) (1 ≤ j ≤ kj),

then the products θx = θx1θx2 . . . θx,kj are non-zero and any two of
them generate HomH(L(−o),L).
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Proof. (1) If X ' P1, then all sheaves O(−x), hence all sheaves L(−x) are
isomorphic, so we can apply Proposition 4.1.2.

(2) From the definition of L and Lij it immediately follows that

HomH(L′,L′′) '



O if L′ = L′′,
or L′ = Lx,j , L′′ = L,
or L′ = Lx,j , L′′ = Lx,k, j > k,

O(o− x) if L′ = L(−o), L′′ = Lx,j ,
O(o) if L′ = L(−o), L′′ = L,
O(−o) in all other cases.

Since ExtiH(L′,L′′) = H i(HomH(L′,L′′)), it implies the statement.
(3) One easily sees that, if x = (1 : ξ) as the point of P1, then θx, up to a

scalar, is the multiplication by t− ξ, where t is the affine coordinate on the
affine chart A1

0. Now the statement is obvious. �

Recall that a canonical algebra by Ringel [41] is given by a sequence of
integers (k1, k2, . . . , kr), where r ≥ 2 and all ki ≥ 2 if r > 2, and a sequence
(λ3, λ4, . . . , λr) of different elements from k (if r = 2, this sequence is empty).
Namely, this algebra, which we denote by R(k1, k2, . . . , kr;λ3, . . . , λr), is
given by the quiver

(4.1.1) •
α21 // • . . . •

αk1−1,1 // • αk11

**UUUUUUU

•

α11 44iiiiiii
α12

//

α1r

  AAAAAAAAAA •
α22

// • . . . •
αk2−1,2

// •
αk22

// •

...

•
α2r

// • . . . •
αkr−1,r

// •

αkrr

>>}}}}}}}}}}

with relations αj = α1 + λjα2 for 3 ≤ j ≤ r, where αj = αkjj . . . α2jα1j .

Certainly, if r = 2, it is the path algebra of a quiver of type Ãk1+k2 . In
particular, if r = 2, k1 = k2 = 1, it is the Kronecker algebra.

Corollary 4.1.4. Let (X,H) be a rational projective hereditary non-commu-
tative curve given by a hereditary data {X,S, k(x) | x ∈ S }, T =

⊕
F∈LHF ,

Λ = (EndH T )op. If S = {x1, x2, . . . , xr } with r ≥ 2, we set ki = k(xi).
If S = {x }, we set r = 2, k2 = 1 and k1 = k(x). If S = ∅, we set
r = 2, k1 = k2 = 1.

(1) Λ ' R(k1, k2, . . . , kr;λ3, . . . , λr) for some λ3, . . . , λr.
(2) The functor HomH(T , ) induces an equivalence DH ' DΛ.

Proof. (1) follows from the statement (3) of the preceding theorem. As LH
strongly generates DH and ExtiH(L′,L′′) = 0, T is a tilting object, whence
(2) follows. �
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Actually, the preceding considerations show that a rational projective
hereditary non-commutative curve is Morita equivalent to a weighted projec-
tive line by Geigle–Lenzing [20]. It can also be deduced from the description
of hereditary non-commutative curves and the remark on page 271 of [20].

4.2. König resolution. Let (X,A) be a non-commutative curve. We de-
note by Asg the subset of Xcl consisting of all points x such that Ax is not
hereditary. By J = J (A) we denote the singular ideal of A defined by its
local components

Jx =

{
Ax if x /∈ Asg,

radAx if x ∈ Asg.

We also denote by A] the over-ring of A such that

A]x = {λ ∈ KxAx | λJx ⊆ Jx } for all x ∈ Xcl.

Note that in commutative case, when A = OX , J = JX is the ideal of the
singular locus Xsg. We use the fact which follows from [40, Theorem 39.14].

Proposition 4.2.1. A is hereditary if and only if A] = A.

So we construct the chain of over-rings of A setting A1 = A and Ak+1 =

A]k. Proposition 4.2.1 shows that there is n such that An+1 is hereditary
(then Am = An+1 for all m > n). The smallest n with this property

is called the level of A. Set A⊕ =
⊕n+1

k=1Ak, where n is the level of A,

Ã = (EndAA⊕)op. We call Ã the König resolution of A and identify it
with the sheaf of (n + 1) × (n + 1) matrices (aij) such that aij ∈ Aij =
HomA(Ai,Aj), where Ai and Aj are considered as right A-modules. In
particular, Aij = Aj if i ≤ j and Ai1 = A′i = HomA(Ai,A). We denote by

Pi the Ã-module Ãeii, where eij denote the natural matrix units of Ã. Note

that P1 ' HomA(A⊕,A). Let also E = (EndA
⊕n+1

k=2Ak)op identified with
the sheaf of matrices (aij) (2 ≤ i, j ≤ n + 1) with aij ∈ Aij , and I be the
ideal of E consisting of such matrices that aij ∈ A′iAj .

Theorem 4.2.2. (1) gl.dim Ã <∞.

(2) QcohA ' Qcoh Ã/C , where C = P⊥1 is a bilocalizing subcategory of

Qcoh Ã. So QcohA is a bilocalization of Qcoh Ã. Moreover, C '
Qcoh Ē, where Ē = E/I.

(3) The functors F = (A⊕)′ ⊗A and H = HomA(A⊕, ) define equiva-
lences, respectively, QcohA ' ⊥C and QcohA ' C⊥.

(4) ImF consists of such A-modulesM that for every point x ∈ Asg there
is and exact sequence P1 → P0 →Mx, where P0, P1 ∈ AddP1,x.

(5) DA ' DÃ/DC Ã and DC Ã is a bilocalizing subcategory of DÃ.
(6) The functors LF and RH define equivalences, respectively, DA '

⊥(DC Ã) and DA ' (DC Ã)⊥.
(7) Im LF consists of the complexes quasi-isomorphic to K-flat complexes
M• such that F ix ∈ AddP1,x for every i ∈ Z and every x ∈ Asg. The
same is true if we replace D by D−.
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(8) The functor H induces an equivalence of tfA and tf∗ P1, where tf∗ P1

consists of all torsion free coherent Ã-modulesM such that for every
x ∈ Asg there is an exact sequence 0 →Mx → Q → N → 0, where
N is torsion free and Q is a multiple of A∗⊕.

(9) The functor F†, where F†(M) = (FM)∗∗, induces an equivalence

of tfA and F̃P1, where F̃P1 consists of all torsion free coherent Ã-
modules M such that for every x ∈ Asg there is an epimorphism
mP1,x →M

(10) If A is strongly Gorenstein, the restrictions of LF and RH onto DcA
coincide.

Thus the functor G = HomÃ((A+)′, ) gives a resolution DÃ → DA and,
if A is strongly Gorenstein, this resolution is weakly crepant.

Proof. (1) follows from [26]. The other statements are partial cases of The-
orems 2.3.3, 2.3.6, 3.2.1, 3.5.3 and Proposition 3.5.1, since P1 ' (A⊕)′,
P∨1 ' A⊕ and (End P1)op ' A. �

4.3. Finite dimensional resolution. Let now (X,A) be a rational pro-
jective non-commutative curve, (X,H) be its hereditary over-ring (for in-
stance, a normal one). Note that (X,H) is not necessarily central and the

scheme X̃ = Spec(cenH) is not necessarily connected. Let X1, X2, . . . , Xs

be the connected (or, the same, irreducible) components of X̃. Then H =∏s
α=1Hα, where Xα = Spec(cenHα). We use the tilting sets

LHα = {Lα,Lα(−oα) } ∪
{
Lαx,j

}
from Theorem 4.1.3 and the functor F′ : QcohH → QcohAH from Sec-
tion 3.5. We set L̃α = F′Lα and L̃αx,j = F′Lαx,j . We also choose closed points

oα ∈ Xα and define Q = H+/I ′ =
(
A/I

0

)
as on page 26.

Theorem 4.3.1. The set T =
{
Q[−1], L̃α, L̃α(−oα), L̃αx,j | 1 ≤ α ≤ s

}
is

a tilting set for DAH. Therefore the functor HomDAH(T , ), where T =⊕
C∈TC, induces an equivalence DAH ' DΛ, where Λ = EndDAH T .
Note that, since X is projective, Λ is a finite dimensional k-algebra. If

necessary, we denote this algebra Λ(A,H).

Proof. It follows immediately from Proposition 3.6.1 and Theorem 4.1.3. �

Remark 4.3.2. Let Q = Γ(X,A/I)op ' EndAH Q, Gα = Lα ⊕ Lα(−oα) ⊕
(
⊕

α,i,jLαx,j), Rα = (EndHα Gα)op, G =
⊕

αGα and R = (EndH G)op. Then

each Rα is a canonical algebra (Corollary 4.1.4), R '
∏
αRα and Λ can be

identified with the algebra of triangular matrices

Λ =

(
Q E
0 R

)
,

with E = Ext1
AH(Q,F′G). Unfortunately, this algebra needs not be of finite

global dimension, even if we consider “usual” (commutative) curves, as the
following example shows.
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Example 4.3.3. Let X ⊂ P2 consists of 3 lines passing through a point
x and A = O = OX (a plane curve singularity of type D4). Then the

normalization X̃ of X consists of 3 disjoint projective lines Xi (i ∈ { 1, 2, 3 }).
Let xi be the preimage of x under the normalization map ν : X̃ → X,
Õ = ν∗OX̃ = O1 ⊕ O2 ⊕ O3, where Oi = ν∗OXi and ti be a generator of

the maximal ideal of Oi,x. As Õ is a unique hereditary over-ring of O, we

must take H = Õ. Then Ix =
⊕3

i=1t
2
iOi and mx is generated as Ox-module

by the elements a = (t1, t2, 0) and b = (0, t2, t3).8 So A/I ' k[α, β]/(α, β)2,
where α is the image of a and β is the image of b in mx/Ix. One can also
verify that Ext1

AH(Q,Oi) ' Oi,x/(t2i ). Therefore, the algebra Λ in this case
is given by the quiver

•

ξ1
**

η1

44 •

γ1

%%JJJJJJJJJJJJJJ

•

ξ2
**

η2

44 •
γ2 // •

α

��

β

\\

•

ξ2
**

η1

44 •

γ3

99tttttttttttttt

with relations

αβ = βα = α2 = β2 = 0,

γiηi = 0 for i ∈ { 1, 2, 3 },
αγ3 = 0,

αγ1 = γ1ξ1,

βγ1 = 0,

βγ3 = γ3ξ3,

αγ2 = βγ2 = γ2ξ2.

One easily checks that gl.dimΛ =∞.

Nevertheless, we can obtain a “good” resolution of OX using the following
result.

Theorem 4.3.4. Let Λ be a finite dimensional algebra, r = radΛ, n be the
least integer such that rn = 0, M =

⊕n
i=1Λ/r

n, M∨ = HomΛ(M,Λ) and

Λ̃ = EndΛM .

(1) gl.dim Λ̃ ≤ n.
(2) The functors F = M∨⊗Λ and G = Hom

Λ̃
(M∨, ) establish an equiv-

alence between Λ-Mod and the full subcategory M∨-Mod of Λ̃-Mod

8 The curve X has a singularity of type D4 at the point x.
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consisting of such modules N that there is an exact sequence M1 →
M0 → N → 0, where M0,M1 ∈ AddM .

(3) The derived functors LF and RG establish an equivalence between DΛ

and the full subcategory DM∨ of DΛ̃ consisting of complexes quasi-
isomorphic to K-flat complexes having all components from AddM .

(4) Let Λ be self-injective (quasi-Frobenius), H = HomΛ(M, ). The
restrictions of LF and RH onto the subcategory DcΛ are isomorphic.
So LF restricted onto DcΛ is both left and right adjoint to RG.

Note that M∨ ' Hom
Λ̃

(M, Λ̃) is projective as Λ̃-module, so G is exact
and LG coincide with RG and acts as G applied to a complex componentwise.

Proof. (1) is proved in [3]. (2) and (3) are partial cases of Theorems 2.3.3
and 2.3.6.

(4) The restrictions of F and H onto the subcategory of finitely generated
projective modules are isomorphic. If C• ∈ DcΛ, it is quasi-isomorphic to a
bounded complex P • of finitely generated projective modules. Then LFP • is
obtained by applying F componentwise. As Λ is self-injective, the modules
P i are also injective, so RHP • is obtained by applying H componentwise,
which is the same as applying F. �

Combining Theorems 4.3.1 and 4.3.4 with the general results on minors
from Section 2.3, we see that every non-commutative curve has a resolution
by a finite dimensional algebra.

Corollary 4.3.5. For every rational projective non-commutative curve (X,A)
there is a resolution T : DΛ→ DA, where Λ is a finite dimensional algebra
of finite global dimension.

Note that in this situation dim DbA ≤ dim DbΛ ≤ gl.dimΛ.

4.4. Subhereditary case. We say that a non-commutative curve (X,A) is
subhereditary if there is a hereditary over-ring H of A such that A/I is semi-
simple, where I = HomA(H,A). (We always identify I with the annihilator
of the right A-module H/A and A/I with the finite dimensional algebra
Γ(X,A/I).) For instance, if the over-ring A] from Section 4.2 is hereditary,
A is subhereditary. If H is normal, we say that A is subnormal. Obviously,
if A is commutative, it is subhereditary if and only if it is subnormal.

In this subsection we suppose that (X,A) is subhereditary, but not hered-
itary, and we choose H and I as in the definition above. We also use the
notations from the preceding subsection.

Theorem 4.4.1. If (X,A) is subhereditary, then gl.dimΛ = 2. Hence
dim DbA ≤ 2. Namely, 〈A/I ⊕ G 〉3 = DbA, where G is defined as in
Remark 4.3.2.

This result is a generalization of [12, Theorem 5.16].
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Proof. In this case Q is semi-simple, hence so is also Q. Note that every
canonical algebra can be considered as the algebra of triangular matrices(

k S
0 H

)
,

where H is the path algebra of the quiver

•
α21 // • . . . •

αk1−1,1 // •

•

α11 44iiiiiii
α12

//

α1r

  AAAAAAAAAA •
α22

// • . . . •
αk2−1,2

// •

...

•
α2r

// • . . . •
αkr−1,r

// •

and S is generated as right H-module by the arrows αkjj in the notations
of (4.1.1). In particular, H is hereditary.

Thus Λ = EndDAH T can be considered as the algebra of triangular ma-
trices

Λ =

Q E1 E2

0 k
s

∏
α Sα

0 0
∏
αHα

 ,

where each Hα is hereditary. The algebra of 2× 2 matrices from the upper
left corner (

Q E1

0 k
s

)
is also hereditary. Using the result of [39], we see that gl.dimΛ = 2 (obvi-
ously, Λ is not hereditary itself).

Thus 〈Λ 〉3 = DbΛ [42, Proposition 7.4]. As Λ is the image of T under
the equivalence DbAH ' DbΛ, also 〈 T 〉3 = DbAH. Then 〈GT 〉3 = DbA
by Proposition 1.6.1. One easily sees that GT ' A/I[−1] ⊕ G, which ac-
complishes the proof. �

Example 4.4.2. Fix a point o in Pn and consider the union X of n lines
of general position passing through this point. Then o in a unique singular
point of X, the normalization X̃ of X is the disjoint union

⊔n
i=1Xi of n

projective lines Xi. Let ν : X̃ → X be the normalization map, O = OX and
Õ = ν∗OX̃ . The conductor I of Õ in O coincides with the ideal defining

the point o, so O/I = k(o). So X is subnormal. Õ =
∏n
i=1 Õi, where

Õi = ν∗OXi . Hence the tilting set for Õ is
{
Õi, Õi(−oi) | 1 ≤ i ≤ n

}
,

where oi is the preimage of o on Xi. We suppose that the coordinates of oi
on Xi = P1 are (0 : 1). Then the algebra Λ defining a categorical resolution
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for X is given by the quiver with relations

•

ξ1
**

η1

44 •

γ1
&&MMMMMMMMMMMMM

•

ξ2
**

η2

44 •
γ2

// • γiξi = 0 (1 ≤ i ≤ n)

...

•

ξn
**

ηn

44 •

γn

CC�������������������

Respectively, DbO = 〈k(o)⊕ G 〉3, where G =
⊕n

i=1(Õi ⊕ Õi(−oi)).
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[19] Gabriel P. Des catégories abéliennes. Bull. Soc. Math. France, 90 (1962) 323–448.
[20] Geigle W., Lenzing H. A class of weighted projective curves arising in representation

theory of finite dimensional algebras. Singularities, Representation of Algebras, and
Vector Bundles. Lecture Notes Math. 1273, Springer-Verlag, 1987, 265–297.

[21] Geigle W., Lenzing H. Perpendicular categories with applications to representations
and sheaves. J. Algebra 14 (1991) 273–343.

[22] Grothendieck A. Éléments de géométrie algébrique: II. Publ. Math. I.H.É.S. 8 (1961).
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