11. Elements of Homological Algebra

The present chapter has been written for the English edition. The aim of this

extension is to present an introduction to homological methods, which play an
increasingly important role in the theory of algebras, and in this way to make
the book more suitable as a textbook. Besides the fundamental concepts of a
complex, resolutions and derived functors, we shall also briefly examine three

special topics: homological dimension, almost split sequences and Auslander
algebras.

11.1 Complexes and Homology

A complez of A-modules (V,,d,), or simply Vi, is a sequence of A-modules
and homomorphisms

NN /AN RN /NS VRIS VR
such that d,d,4+; = 0 for all indices n. Clearly, this means that Imd,, C
Ker d,,. Thus, one can define the homology modules H, (V,) = Ker d,, /Im dnt1 -
The set of the maps d, = {d,} is called the differential of the given
complex. In what follows, we shall write often dz instead of d,z for z € Va
(and use, without mentioning it, other similar simplifications by omitting sub-

scripts). The coset (“homology coset”) * + Imd,41, where z € Kerd,, will
be denoted by [z].

If (V,,d,) is another complex, a complex homomorphism f, : Vo — V/ is

a family of homomorphisms f, : V,, — V., “commuting with the differential”,
i.e. such that f,_;d, = d, fn for all n. Evidently, such a family induces
homology maps

Ho(fe) : Hu(Ve) — Ha(W))

by Ho(fo)[z] = [fa(z)] for all n (it is easy to see that for dz — 0, also
d'f(z) =0 and [f(z + dy)] = [f(z)]). In this way, we can consider the
category of complezes of A-modules com-A and the family of the functors
H, : com-A — mod-A.

Two homomorphisms f, and g, : Vs — V/ are said to be homological if
H,.(fo) = Ha(g.) for all #e we shall denote this fact by fo = ge. An impor-
tant example of homological homomorphisms is the case of homotopic homo-
morphisms in the following sense. Two homomorphisms f. and ¢, are called
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homotopic: fo ~ g if there are homomorphisms s, : V; — Vi 4; such that
fo—gn = diiyy1Sn + Sn—1dy for all n (the sequence s, = {sn} is called a
homotopy between f, and g.).

Proposition 11.1.1. Homotopic homomorphisms are homological.

Proof. For every homology class [z],

Ho(f.)l2] = [f(2)] = [9(2) + d's(z) + s(dz)]
= [g(z) +d's(2)] = [g(2)] = Ha(gs)[2]

because dz = 0. a

Two complexes V, and V] are called homotopic if there are homomor-
phisms f, : Vo — V] and f, : V] — V, such that fof, ~ 1 and fife~1.In

this case, we shall write V. ~ V.

Corollary 11.1.2. If Vi and V! are homotopic, then Ho(Ve) =~ Ha(V]) for
all n.

Remark. The converse of Proposition 11.1.1 and of Corollary 11.1.2 does not
hold in general: f, = go does not imply fo ~ g and Hy(Va) >~ Hn(V]) for all
n does not imply V, ~ V! (see Exercise 1 and 2).

Along with complexes of the above type (“chain complexes”) it is often
convenient to consider “cochain complexes” (V*,d*) of the form

_1d7 Y 0 d° d*
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with the condition d"d™~! = 0. In this case, we obtain the cohomology modules
H"(V*) = Kerd"/Imd™~!. Obviously, one can pass from chain to cochain
complexes simply by changing the indices, i.e. putting V™ = V_,, and d" =
d_n ; hereby, H,, becomes H™". One can usually use the “chain” terminology
if the complex is bounded from the right, i.e. there is a number ny so that
V, = 0 for n < ng and “cochain” terminology if V, is bounded from the left,
i.e. if there is a number ng so that V,, =0 for n > ng .

If F : mod-A — mod-B is a functor, then F induces a functor F, :
com-A — com-B assigning to a complex Vo = {Vi,d,} the complex Fo(Vi) =
{F(V,.), F(dy,)}. For example, considering the functor hp : mod-4 — Vect
for a fixed A-module M (see Example 1 in Sect. 8.1), we obtain the functor
com-A — com-K assigning to a complex V, the complex Homa(M,V.) =
{Hom 4(M, V,,)}. Similarly, for a left A-module N, we have the functor — ®4 N
assigning to a complex V, the complex V, ® 4 N = {V,, ® 4 N}. A contravariant
functor from mod-A to mod-B, i.e. a functor G : (mod-4)° — mod-B defines
a functor G* : (com-4)° — com-B, but it is more convenient in this case
to consider G*(V,) as a cochain complex with the nth component equal to
G(V,,). For instance, if G = h$, (see Example 6 in Sect. 8.1), we obtam a
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contravariant functor mapping a chain complex {V,} into a cochain comp Corollary 11
{Hom 4(V,, M)}. complexzes. The
It is evident that every such functor maps homotopic homomorphis 1)
(and complexes) into homotopic ones; however, again, f, = g. does not img
F.(fs) = Fu(g.) (see Exercise 3).
Let fo : Vo — V! be a complex homomorphism. Then, obvious and Hot1
d (Im fp) C Im f—1 and d,(Ker f,) C Ker fo_y for all n, and thus we g V! is acye
the complexes Im fo = {Im f,} and Ker fo = {Ker f,,}. Therefore, one @ and Ha(fe
define ezact sequences of complexes just the same way as exact sequences
modules in Sect. 8.2. The following theorem seems to play a fundamental re Corollary 11
in homological algebra.
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Theorem 11.1.3. Let 0 — V] Iy, 2 V' — 0 be an ezact sequence of
plezes. Then, for each n, there is @ homomorphism 8, : Ha(V)') — Hpq(
such that the following sequence is ezact:

. Hn+1(V'") Ont1 Hn(V’) Ha(fs) Hn(V.) Hn(ge)

Ha(g0) :
—

H, (V) 2o Hoa(v) 8 mo0h) —— e The consy
following state

Proof. (We shall use the same letter d for differentials in all complexes a Proposition
omit subscripts.) Let [z] be a homology coset of H,(V,"). Since g, is an ey
morphism, z = ¢(y) for some y € V,,. Now, ¢(dy) = dg(y) = dz = 0 a
thus, in view of the exactness, dy = f(z) for some z € V,!_, . Furthermos
f(dz) = df(z) = d*y = 0 and therefore dz = 0 because f is a monomorphis

Let us verify that the coset [z] € H,_1(V,) depends neither on the choice
y nor on the choice of z in the homology coset [z]. Indeed, if g(y') = g(y), the be a commu
g(y'—y) = 0and y' —y = f(u) for some u; thus dy' = dy+df(u) = f(z+du) anf diagram is ce
[z + du] = [z]. Furthermore, let [2'] = {z], i.e. &' = 2 + dv for some v € V]!, 4 i
Then there is w € V., such that v = g(w) and therefore ' = g(y + di
Since d(y + dw) = dy, the choice of z' does not effect the coset {z].

Consequently, setting 9,[z] = [z] gives a well-defined homomorphis
On : Ha(V)') = Hy—1(V)). Tt remains to prove that the long sequence is exae

We are going to show that KerH,,(f,) C Im 0,4; and Ker 8, C Im H,(od
and leave the other (rather easy) verifications to the reader. Let H,(f.)[z] =
Thus f(z) = dy for some y € Vyy1. Put z = g(y). Then dz = g(dy) 4
gf(z) =0 and we get [z] € Hpt1(V,)") satisfying J[z] = [z] according to tH 11.2 Res
definition of 4. ’

Now, let O,[z] = 0. By the definition of 8, this means that if z = g
and dy = f(z), then z = du for some u € V,,. Hence, 2 = g(y — f(u)) anf Let M b;
d(y — f(u)) = dy — f(du) = 0, which gives that [z] = Ha(ge)ly — F(u)], modules Py
required. acyclic in e
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A complex V, is called acyclic in dimension n if H,(V,) = 0 and acyclie fixed epimo

it 1s acyclic in all dimensions (trivially, it means that V, is an exact sequeno resolution is]
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Corollary 11.1.4. Let 0 — v! LN V., & V)" = 0 be an ezqct sequence of
complezes. Then

1) Vi is acyclic in dimension n if and only if O, is a monomorphism and
On+1 is an epimorphism.

2) V! is acyelic in dimension n if and only if Hu(ge) is a monomorphism
and H,y1(g.) is an epimorphism,

3) VU s acyclic in dimension n if and only if Hy_1(fu) is a monomorphism
and Hy(fo) an epimorphism.

Corollary 11.1.5. Let 0 — V-V, - V' = 0 be an ezact sequence of

complezes.

1) IfV! and Vi are acyclic in dimension, n, then Vy is acyelic in dimension n.

2) If V, is acyelic in dimension n and V. in dimension n — 1, then V! ¢s
acyclic in dimension n.

3) If Vi is acyclic in dimension n and V)" in dimension n + 1, then V! is
acyclic in dimension n.

The construction of the connecting homomorphisms On also yields the
following statement, whose proof is left to the reader.

Proposition 11.1.6. Le:

0 — v

be a commutative diagram of complezes with ezact rows. Then the following
diagram is commutative:

Ha(V) 2% H,_y (v

Hn("/-)J' Jan—l(O’l)

H,(Wry Sn, H,_ (W!).

11.2 Resolutions and Derived Functors

Let M be an A-module. A projective resolution of M is a complex of A4-
modules P, in which P, =0forn < 0, all P, are projective, and P, is
acyclic in every dimension , # 0, while Ho(P.) ~ M is a fixed isomorphism.
Observe that Ker do = Py and thus Ho(Py) = Py/Im dy ; hence, we have a
fixed epimorphism 7 : Py — M whose kernel is Im d; . Therefore a projective
resolution is often considered in the form of an exact sequence
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da dy k.
-— P 5P P ——M-—0.

However, in what follows, we want to underline the fact that M is not included
in its projective resolution: the last non-zero term of its resolution is Fy.
In a dual way, one defines an injective resolution of an A-module M as

cochain complex Q* in which Q™ = 0 for n < 0, all A-modules Q™ are injective!

and such that Q* is acyclic in all dimensions n # 0, while M ~ H°(Q*) =

Kerd’ is a fixed isomorphism. Such a resolution can be identified with am
exact sequence

0— M50 Lot o2,

Generally speaking, we will deal with projective resolutions, leaving the
corresponding formulations (and proofs) for injective resolutions to the reader.
Let P, be a projective resolution of a module M and P! a projective

resolution of M'. Then every complex morphism f, : P, — P! induces a
module homomorphism ¢ : M — M'. The morphism f, is said to be an
eztension of ¢ to the resolutions P, and P!.. In other words, an extension of
¢ to the resolutions is a commutative diagram

— P P M op T, oM 0

f2l ) flJ' fol #’l
' ) ' ! ' ' Tt
— P, —- P — P — M — 0

Theorem 11.2.1. 1) Every A-module M has a projective resolution.

2) Any two projective resolutions of a module M are homotopic.

3) Every homomorphism @ : M — M’ can be exstended to the resolutions P,
and P, of the modules M and M', respectively.

4) Any two eztensions of v to a given pair of resolutions are homotopic.

Proof. 1) For every A-module M, there is an epimorphism v Py — M with
a projective module Py (Corollary 3.3.4). Write M; = Ker « and construct an
epimorphism 7 : P, — M, where P, is again projective. This epimorphism
can be interpreted as a homomorphism d; : P, — P, with Imd; = Kerm.

Applying the same construction to M, = Ker dy, we obtain dy : Py, — P; |

with Imd, = Kerd, . Continuing this process, we get a projective resolution
P, of the module M.

3) Let P, be a projective resolution of M’. Consider the homomorphism
@7 : Py — M'. Since Py is projective and ' : Py — M’ is an epimorphism,
there is a homomorphism fo : Py — P such that 7'fy = wr. From here,

7' fodi = ¢nd; = 0 and thus Im fod; C Kern'. However, Imd} = Kern', {

and P; is projective, so there is f; : P, — P| such that fod; = djf1. In
particular, d} fids = fodidz = 0 and therefore Im fid, C Ker d} ; hence there is
f2 1 P2 — Pj such that fidy = dbyfs . Continuing this procedure, we construct
an extension f, : P, — P, of the homomorphism .

4) If g4 : Py — P! is another extension of @, then f, — g, is an extension
of the zero homomorphism. Hence, it is sufficient to show that fe ~ 0 for any

extension f, of the
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extension f, of the zero homomorphism. In such a case we have a commutative

diagram

d d d ,
- — P3 —3) P2 ‘—2% P] _’1 PO 0

fsl le , fll f.‘l

d d
3, P} 2, P! - Py — 0

. — P

with Im fo C Imd} (since Ho(fo) = 0).

Since Py is projective, fy = d}sg for some sg : Py — P_l’; thus fo = djso +
s<1do (because dy = 0). Consider f; = f; —sod; . Then difi = difi=dispds =
di fi = fody = 0 and therefore Im f; C Kerd} = Imd) in view of Hy(P,) = 0.
Since P) is projective, there exists s; : P, — Pj such that f1 = dysy, i.e.
fi = sody + dys1. Now, take fo = fo — s1dy; again dyfo = dbfy — dbsydy =
dyfr — fids + sedidz = 0 and subsequently fo = disy, i.e. fo = s1dy+ dys2
for some sy : Py — P, . Again, by induction, f, ~ 0.

2) Let P, and P, be two projective resolutions of a module 3. There are
extensions fo : P, — P] and f, : P, — P, of the identity homomorphism
1: M — M. But then f,f, and f.f. also extend 1 : M — M. Since the
identity morphisms 1, : P, — P, and 1, : P! — P! extend 1 : M — M,
as well, 4) implies that f,f, ~ 1 and f,f, ~ 1. Therefore P, ~ P! and the
O

theorem is proved.

Taking into account the fact that every functor F' : mod-4 — mod-B
translates homotopic complexes and homomorphisms into homotopic ones,
and applying Proposition 11.1.1 and Corollary 11.1.2, we get the following
consequence.

Corollary 11.2.2. 1) Let F : mod-4 — mod-B be a functor and P, a pro-
jective resolution of an A-module M. Then the homology Hp(F(P,)) s
independent of the choice of the resolution P, .
2) If P, is a projective resolution of M’ and fo : Py — P} an eztension of
a homomorphism » : M — M', then H, (F.(f.)) 15 wndependent of the :
choice of the estension f, .

In the situation described in Corollary 11.2.2, we shall write L,F(M) =
Hn(F.(P.)) and L, F(p) = Hn(Fo(fo)). If fo is an extension of @ and g,
an extension of ¥ : M’ — M" then g,f, is an extension of Yo and thus
Lo F(pp) = Lo F(¢)LoF(p), i.e. L,F is a functor mod-4 —s mod-B, which
is called the n-th left derived functor of the functor F. Similarly, replacing
projective resolutions by injective ones, one can define right derived functors
R"F. The definitions of left and right derived functors of a contravariant func-
tor G can be given dually, using injective resolutions for L, G and projective

resolutions for Z2"G. All further arguments apply to right derived, as well as
contravariant functors,

Proposition 11.2.3, 4 reght [left) ezact functor 7 satisfes Lo ~ F (re-
: 0
spectively, ROF ~ F),
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Proof. If P, is a projective resolution of M, then P 4 Py — M — 0is an

exact sequence, and thus F(p) F-(ﬂ)) F(Py) — F(M) — 0 is exact, as well.

Therefore, LyF(M) = H, (Fo(P.)) = F(Py)/Im F(dy) ~ F(M). ]

The importance of derived functors stems in many respects from the exis-
tence of “long exact sequences”. Their construction is based on Theorem 11.1.3
and the following lemmas.

Lemma 11.2.4. For every ezact sequence of modules
0— M Lm0,
there are projective resolutions P}, P, and P! and an ezact sequence
0— Pl Lyp, 2 pr g,
in which f, eztends v and ge extends 1.
Proof. Let ' : P} — M' and =" : Py — M" be epimorphisms. Put Py =
P; ® P}’ and consider a homomorphism 7 = (7',9) : Py — M, where N 1is a

homomorphism P" — M such that Y = 7" It is easy to verify that 7 is also
an epimorphism and that we obtain a commutative diagram

0 0
| |
0 — M 2 M

l

in which all columns and the two lower rows are exact; here M| = Kerr’,
My = Kerm, M]" = Ker . According to part 3) of Corollary 11.1.5 (see also
Exercise 3 to Chapter 8) the first row is also exact, and thus we may apply to
it the same construction. By repeating this procedure, we obtain a required
exact sequence of resolutions. a

Lemma 11.2.5. If 0 — Vi = Vo = V' 5 0 4s an ezact sequence of com-
plezes, where all modules V' are projective, then the sequence 0 — F,(V]) —
Fo(Vo) - Fo(V!") = 0 is ezact for every functor F.

Proof. Since every sequence 0 — Vo= Vao V' 50 splits, the sequence

0= F(V;) = F(V,) —» F(V") = 0 also splits. O

Now we apply the p
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Now we apply the preceding lemmas and Theorem 11.1.3 in order to get
a long exact sequence for arbitrary functors.

Corollary 11.2.6. Let 0 — M' 5 M ¥ M 0 be an ezact sequence
of modules. Then for any functor F, there exist connecting homomorphisms
On: LyF(M") — L, 1 F(M') so that the following sequence i3 ezact

LaF(p) Lo F(y)
— —

o Lop F(M™y 2 LoROMY)

L, F(¥) ) Ln_1F(¢)
— E—

L.F(M"y 2 L. F(M")

L F(M)
LoiF(M) — -

Observe that, by definition, L, F = 0 for n < 0 and thus, Corollary 11.2.6
implies that Lo F is always right exact. In particular, if F itself is right exact,
then in view of Proposition 11.2.3, the end of the long exact sequence has the
following form:

s L F(M") 2 (M) — F(M) — F(M") — 0.

Corollary 11.2.7. 1) A functor F is right (left) ezact if and only if F ~ Lo F
(respectively, F ~ ROF).

2) A right (left) ezact functor F is ezact if and only if Ly F = 0 (respectively,
R'F=0).

Observe that, for an exact F', both L,F =0 and R*"F =0 for all n > 0.

If a module P is projective, then its projective resolution has a very simple
form: Py = P and P, = 0 for n > 0. In particular, L,F(P) =0 for all n > 0.

This trivial observation indicates how to characterize derived functors “ax-
iomatically”, in the following way.

Theorem 11.2.8. Let F be a right exact functor and {@, | n = 0} a family

of functors satisfying the following properties:

1) @¢~ F (as functors);

2) @,(P) =0 for alln >0 and all projective P;

3) Ifo - M 5 M % M" 5 0 s an ezact sequence of modules, then
there are homomorphisms A, 1 @ (M) — S (M'), n > 0, so that the
following sequence 1s exact:

. ¢n+1(M”) ﬂ) @n(M/) & (p) @n(M) &, (Y)
28 gy A e ) Y e ) -

Then $,(M) ~ L, F(M) for alln > 0 and all modules M.

Proof. The exact sequence 0 — L = P — M — 0 with a projective module
P induces a long exact sequence for the functors @, . For n = 1, we get the
exact sequence

TSI e v =
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1 ¢o [e4
B1(P) = 0— &1 (M) 25 & (L) ™23 3 (P),

from where @, (M) ~ Ker $y(a) = Ker F(a) ~ L F(M) by the condition 1).

For n > 1, the exact sequence has the form

$,(P)=0— (M) 258, (L) — &,_1(P) =0

I

thus A, is an isomorphism and the theorem follows by induction. ]

Remark. In fact, in Theorem 11.2.8, ¢, =~ L, F as functors; however, we will
not use this result.

From Proposition 11.1.6, we get also the following consequence.

Corollary 11.2.9. Let

0 — M — M — M' — 0

Lol

0 — N — N — N'' 45 0

be a commutative diagram with ezact rows. Then the following diagram is

commutative: ) 9
L, F(M") = L,_1F(M")

LnF(-y)JV an_lF(a)
L.F(N"y 2= L. F(N").

11.3 Ext and Tor. Extensions

The construction of derived functors applies, in particular, to the functors
Hom and ® (more precisely, to the functors Ay , h%, X®a—and —®4Y).
Since Hom is left exact, it is natural to consider right derived functors R™hy,
(constructed by means of injective resolutions) and R™hY, (comstructed by
means of projective resolutions, since h% is contravariant), which coincide

for n = 0 with Az and h$ . It is a remarkable fact that these constructions
produce the same result.

Theorem 11.3.1. For all A-modules M, N and each n > 0,

R™hp(N) = R™h%,(M).

Proof. Fix a module M and put &,(N) = R*AG(M). f ¢ : N — L,
then ¢ induces a functor morphism r% — L% assigning to a homomor-
phism o : M — N the homomorphism ¢a : M — L, and thus also a de-
rived functor morphism @,(¢) : $,(N) — &@,(L). Note that if N is injective,

then, in accorda

the functor h%y 1s
@o(N) = ROh(M
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Now, let 0 —
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then, in accordance with the definition of injectivity (see Theorem 9.1.4),
the functor h% is exact and therefore @, (N) = 0 for n > 0. In addition,
o(N) = R°hQ(M) ~ h%(M) = hp(N) by Proposition 11.2.3. Clearly, this
isomorphism is functorial in NV, and thus &g ~ hatr.

Now, let 0 » N' & N % N" 5 0 be an exact sequence. Then, for any
complex P, consisting of projective modules, the sequence of complexes

0 — Homu(P., N') - Homa(Ps,N) — Homa(P,,N") - 0

is exact. Taking for P, a projective resolution of the module M, we get, accord-
ing to Theorem 11.1.3, just a long exact cohomology sequence similar to that
which appears in the formulation of Theorem 11.2.8 (condition 3)). Thus, all
the conditions of this theorem are satisfied, and therefore S,(N) ~ R*hy(N).
The proof of the theorem is completed. O

The common value R™hp(N) 2 R*h3,(M) is denoted by Ext% (M, N).
An analogous result holds for the functors ¢ty = M®is— and ty =
—®a N, where M is a right and N is a left A-module.

Theorem 11.3.2. For any right A-module M and any left A-module N, and
each n > 0,

Lnl‘,]v[(N) = LntN(M) R

The proof is (quite similar to the proof of Theorem 3.1) left to the reader.

The common value of these functors is denoted by Tor(M, N). Let us
point out that Ext) (M, N) ~ Hom(M, N) and Tor{(M,N) ~ M @4 N.

The functor Ext} (M, N) is closely related to the module extensions. Re-
ferring to Sect. 1.5, let us reformulate the definition of an extension of a module
M with kernel N as an exact sequence ( of the form

C:0-NSXL Mmoo
Two extensions ¢ and (', where
C0=-NSX B0

are said to be equivalent (which is denoted by ¢ ~ ¢') if there is a homomor-
phism 7 : X' — X’ such that the following diagram is commutative:

4

0—>NL>X—>M—>0

SR

0o — N 5 x oM o .

By Lemma 8.2.1 (Five lemma), v is an isomorphism. Denote by Ex(M, N) the
set of all equivalence classes of extensions of M with kernel N.
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By Corollary 11.2.6, an exact sequence ¢ induces a connecting homomor-
phism &, : Hom (M, M) — Ext (M, N). The element 6(¢) = O¢(1n) is called
the characteristic class of the extension (. If { =~ (', then the diagram

Homa(M,M) —5 Extly(M,N)
8 1
Homa(M, M) —= Exty(M,N)

is, by Corollary 11.2.9, commutative (with the vertical maps being identity
morphisms). From here, 8(¢) = 6(¢'), and therefore we get a well defined map
6 : Ex(M,N) — Exzt{(M.N).

Theorem 11.3.3. The map 6 1s one-to-one.
Proof. We are going to construct an inverse map «. To this end, fix an exact

sequence 0 — N 5 Q % I — 0 with an injective module Q. By Corol-
lary 11.2.6, the sequence

Hom (M, Q) " Hom(a, L) - Ext’j(M, N) — 0

is exact (since Ext’, (M, Q) = 0). In particular, every element u € Exth (M, N)
is of the form u = O(y) for some o : M — L. Consider a lifting of the given
exact sequence along > (see Exercise 5 to Chap. 8). 1.e. the exact sequence

c0-NLz5 M0,

where Z is a submodule of @ & M consisting of the pairs (q.m) such that
o(q) = @(m), and f and g are defined by the rules f(n) = (¢(n),0) and
g(g,m) = m. If ¢ is another homomorphisin satisfying 8(') = u, then ¢’ =
@ + oy for some n : M — . Then an equivalence of the extensions ¢ and
£ :0 - N — Z' — M — 0 constructed as a lifting along ¢', is given by
a homomorphism v : Z — Z' sending (¢.m) into (¢ + n(m).m) (the simple
verification is left to the reader). Consequently, by defining w(u) = ¢, we get
a map Extk(]\l, N) = Ex(M, N). The commutative diagram

0o — ~ Lz L u — o0
Jd T
0 — N - —E* Q _U) L B 0?
where (g, m) = g, yields, in view of Corollary 11.2.9, a commutative square
15]
Homa(M, M) —» Exty(M,N)
h,u(v)‘[ ‘[1
Homa(M,L) -5 Exti(M,N),
and thus dw(u) = (1) = Aw) = w.

It rem
C:0- N
phism € :
commutatH

Therefore




pnecting homomor-
) = O;(1ar) is called
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paps being identity
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is end, fix an exact
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it u € Exty (M, N)
lifting of the given
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s (g,m) such that
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5') = u, then ¢' =
 extensions £ and
ng ', is given by
n).m) (the simple
rw(u) =&, we get
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0

0.

nmutative square
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) = ¢ holds for an arbitrary extension

It remains to show that wé(¢

(0o NS XA M0 Let §(¢) = u. Since Q

is injective, the homomor-

phisme : N — @ extends to g : X — @ such that pa = €, and yields a

commutative diagram
a B

0 — N — X —

1NJ, 13
o

<
!

€
N

!

Therefore the following square is commutative:
Homa(M, M) —o Exty(M,N)
s (@) l ll
Homa(M,L) -2 Exty(M,N),

and u = 8(¢). Using this ¢ in constructing w(u) as above, we get a sequence
£:0>N—>2Z — M — 0. But then the homomorphism 7 : X — Z given

by v(z) = (,u(;t),ﬁ(l)) establishes the equivalence of ¢ and £ = w(u). The

theorem is proved. O
In the sequel, we shall identify the elements of Extl (M, N) and the re-
spective extensions. Since, for a fixed M, Ext'(M,N) is a covariant func-
tor of N (and, for a fixed N, a contravariant functor of M), a homomor-
N — N’ (a homomorphism ¢ : M' — M) induces a map
M,N) — Extl(M,N") (respectively, a map ¥e : Exty(M,N) —
t form of the one-to-one correspondence
get immediately the

phism ¢ :
Pe * Exth(
Eztly(M',N)). From the explici
w : ExtL(M,N) — Ex(M,N) constructed above, we

following corollary.

Corollary 11.3.4. 1) The eztension w(Y(u)) s equivalent to the lifting of

w(u) along P.

2) The extension w(ipe(u)) is equivalent to the descent of w(u) along @.

(A lifting of an exact sequence has been already defined above. A descent
of an extension 0 — N L 75 M- 0along ¢ : N — N' is, by definition,
the exact sequence 0 — N’ Lz 9 M — 0, where Z' = (N' @ Z)]Y with
Y ={(- o(n), f(n)) | n € N} and f'(n') = [n',0], g'([n',2]) = g(z). Here

[n', z] denotes the coset (n',2)+7Y.)
Using the preceding Corollary 11.3.4, we shall write Pe(Q) = w(¥e(uw)) and

¢e(C) = w(pe(u)) for ¢ = w(w). /
Corollary 11.3.5. The following conditions are equivalent:

1) The module M 1is projective (injective).

2) Exty(M,N)=0 (respectively, EatL (N, M) =0) for every module N.
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3) ExtL(M,N) = 0 (respectively, EztL (N, M) = 0) for every simple mod-
ule N.

4) Ext}(M,N) = 0 (respectively, Exty(N,M) = 0) for each n > 0 and
every module N,

Proof. The implications 1) = 4) = 2) are trivial and 2) = 1) follows in view
of Theorem 11.3.3 and Theorem 3.3.5 (or Theorem 9.1.4 for injectivity). Also,
2) = 3) is trivial, while 3) = 2) can be proved by induction on the length of
N, using the long exact sequence. 0

It is remarkable that, for modules over finite dimensional algebras, the
following statement also holds.

Proposition 11.3.6. The following conditions are equivalent:

1) The module M is projective.

2) TorlA(.M, N) =0 for every module N.

3) Torf'(M,N) =0 for every simple module N,

4) Tor2(M,N) =0 for every module N and each n > 0.

Proof. Again, 1) = 4} = 2) => 3) are trivial. We are going to prove 3) = 1)
Consider an exact sequence 0 — L—-P 5 M — 0, where 7 : P - M
is a projective cover of M. Write A = A/R with R = rad A and note that

Torf (M, A) = 0 because A is a direct sum of simple modules. Therefore,
in view of Corollary 1126, 0 — L®s 4 — P@4 A 1 MgisA — 0
is an exact sequence. Now, one can see easily that M @4 A ~ M/MR (an
isomorphism can be defined by 2 + MR — z ® 1). Since # : P — M is
a projective cover, # 1 defines an isomorphism P/PR ~ M/MR. Thus,
L/LR = 0 and, by Nakayama’s lemma, I = 0. Hence, n : P — M is an

isomorphism and M is projective. a

11.4 Homoloﬁcal Dimensions

The functor mod-A — Vect assigning to X the space Ext’y(M, X} will be
denoted by A%,. Notice that if M is a B-A-bimodule then A%, can be considered
as a functor mod-A — mod-B. The projective dimension of an A-module M is
said to be n: proj.dim , M =nif b}, # 0and AT, = 0 for all m > n;if nosuch
number exists, define proj.dim 4 M = oo. Dually, considering the functors
h3f + X — Ext’i(X, M), we define the injective dimension inj.dim , M to be
n, if 57 # 0 but h§/* = 0 for all m > n, and inj.dim, M = oo if no such
number n exists.

In accordance with Corollary 11.3.5, proj.dim 4 M = 0 means that M
is projective and inj.dim 4 = 0 that M is injective. Furthermore, Corol-
lary 11.2.6 provides an inductive way for computing these dimensions.

-
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Proposition 11.4.1. Let0 - L —- P > M —-0and 0 > M - Q - N =0
be ezact sequences with a projective module P and an injective module Q. If
M 15 not projective (not injective), then proj.dim, M = proj.dim, L + 1
(respectively, inj.dim, M = inj.dim, N +1).

Proposition 11.4.2, Let 0 - L - P,y —» -+ - P, - P - M — 0
and 0 5> M — Qo — Q1 — -+« — Qr_1 — N — 0 be ezact sequences with
projective modules Py, Py, ..., Py—1 and injective modules Q,,Q1,- . -, Qk 1 If
proj.dim 4 M >k (inj. dzmA M > k), then proj.dimy M = proj.dim, L+k
(respectively, inj.dim 4 M = inj.dimy N + k).

Proposition 11.4.3. Let (P.,d.) (respectively, (Q*,d*)) be a projective
(injective) resolution of a module M. If M is not projective (not injec-
tive), then proj.dim, M = min{n | Kerd,_1 is projective} (respectively,
inj.dim, M =min{n | Cokerd™™! is injective} ).

Taking into account Proposition 11.3.6, we obtain also a definition of pro-
jective dimension in terms of Tor.

Corollary 11.4.4. p7 og.dim 4 M 1s equal to n if and only 1f Torn_H(M,N) =
0 for all N and Tor” w(M,N) #£0 for some module N (proj.dim, M = oo if

no such n ecists).

Let A = A/R where R = rad A. In view of condition 3) of Corollary 11.3.5
and Proposition 11.3.6, we get the following result.

Corollary 11.4.5.

proj.dim, M =sup{n | Exty(M,A) £ 0} =
= sup{n | Tor(M,A) # 0} ;
inj.dim, M =sup{n | Ext%(4, M) # 0}.
Corollary 11.4.6. The following values coincide for any finite dimensional
algebra A:

sup{proj.dim, M | M a right A-module} ;
sup{inj.dimy M | M a right A-module};
sup{proj.dimy M | M a left A-module} ;
sup{inj.dim, M | M a left A-module};
proj.dim, A;

inj.dimy A;

sup{n | Ext}(4,4) # 0} ;

sup{n | Tor}(4, A) £ 0}.

(Here, A can always be considered either as a right or as a left A-module.)

{
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This common value is called the global dimension of the algebra A and is
denoted by gl.dim A.

Obviously, gl.dim A = 0 if and only if A is semisimple. In view of Propo-
sition 11.4.1, if A is not semisimple, then gl.dimA = projdim, R+ 1. In
particular, gl.dim A = 1 if and only if R is projective, i.e. if and only if A is
hereditary (see Theorem 3.7.1). Later we shall also use the following criterion
resulting from Proposition 11.4.3.

Corollary 11.4.7. The following conditions are equivalent:

1) gldim A <2;

2) the kernel of a homomorphism between projective A-modules is projective;
3) the cokernel of @ homomorphism between injective A-modules 1s injective.

11.5 Duality

Given a complex (V.,d.) of right (left) A-modules, one can construct a dual
complex (V,*,d?):

z dy d} 3
T AT (A N /A N /A I /AN
of left (right) A-modules (in view of indexing, it is natural to consider it as a
cochain complex). In order to compute its cohomology, we shall recall (without
proofs) some well-known facts from linear algebra.

Proposition 11.5.1. Let U > W be subspaces of a vector space V. Then
there is a canonical isomorphism (U/W)* ~ wWL/Uut,

Proposition 11.5.2. For any linear transformation f : V — W, (Im f)l =
Ker f* and (Ker f)* = Im f*.

As a result, we ge{immedia‘cely the following statements.

Corollary 11.5.3. H*(V*) ~ H,(V.)".

Corollary 11.5.4. For any right A-module M and any left A-module N,
Ext} (M, N*) ~ Tor?(M, N)*.

Proof. Consider a projective resolution P, of the left module N: --- — P —
Pr — Py — N — 0. Passing to the dual right modules, we get an injective
resolution P} of the module N*: 0 —» N* Py —» P — P} — ... It follows
from the adjoint isomorphism formula (Proposition 8.3.4) that

Hom4(M, P;) ~ Homy4 (M, Hompy (P, K)) ~
~ Homg(M @4 Po, K) = (M ®4 P.)",

and thus, by Ca
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and thus, by Corollary 11.5.3, the cohomology Ext’ (M, N*} of the complex
H4(M, P}) is dual to the homology Tor(M, N) of the complex M ® 4 P,. O

In the sequel, we shall find useful another kind of duality defined by
the functor M — M" = Homu(M, A). As the “usual” duality, this is a
contravariant functor, or more precisely, a pair of contravariant functors
mod-4 — A-mod and A-mod — mod-A. However, these functors are not
exact (in fact, they are only left exact) and not reciprocal. Nevertheless, there
is a canonical map oar : M — M™, sending m € M into opm(m): M~ —= A
such that opr(m)(f) = f(m) for all f: M — A.

If M, N are two right modules, then there is a unique map A = A(M,N) :
N®aM" — Homu(M,N) such that A\(n ® f)(m) = nf(m) for all m € M,
n€Nand f € M.

Proposition 11.5.5. 1) If M is a projective module, then o is an isomor-
phism.

2) A homomorphism ¢ : M — N belongs to the image of MM, N) if and

only if it can be factored into o product v = Pa, where o : M — P and

B: P — N with a projective module P.

Proof. 1) Obviously, 4 is an isomorphism and therefore also Ona 1S an iso-
morphism. Thus, in view of Theorem 3.3.5, the statement follows.

2) Similarly to 1), if P is a projective module, we can immediately see
that A(P,N) is an isomorphism. Now, let a : M — P with a projective P.
Then the following diagram commutes:

N®aP 18,

)\(P,N)JV

N@s M
A(M,N)l

Homu(P,N) "™ Hom,(M,N),

(11.5.1)

and we get that Imh(a) = {fa | §: P - N} C Im A(M, N).

In order to complete the proof, we shall need the following obvious lemma.

Lemma 11.5.6. For a right B-module M, a left A-module N and an A-B- i
bimodule L, there is an isomorphism

Homp (M7 Hom 4 (N, L)) ~ Hom 4 (N, Hompg(M, L))

assigning to a homomorphism f : M — Hom (N, L) the homomorphism

'+ N — Homp(M, L) such that f'(n)(m) = f(m)(n) for allm € M and
neN.

If, in particular, P is a projective module, then

Hom4(P", M") = Hom 4 (P", Hom 4 (M, A)) ~ Homy (M, Homy(P, A)) =
= Hom4(M, P™") ~ Hom 4 (M, P).
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Consider now an epimorphism ¥ : P’ — M", where P' is projective.
According to 1), we may assume that P’ = P" and ¢ = o” for a projective
module P and a : M — P. Then the homomorphism 1 ® o” of (11.5.1) is
an epimorphism by Proposition 8.3.6. Consequently Im A(M, N) = Im A%/ (a)
and the proof of 2) is completed. O

- In what follows, we shall write Pra(M,N) = Im A(M,N) and call the
homomorphisms from Pr4(M, N) the projective homomorphisms. Let us also Let X'
introduce the following notation: Hom , (M, N) = Homa(M, N)/Prs(M, N). su;n = '
gin =
homomeo
h(m) at
11.6 Almost Split Sequences view of §

where n{.

In this section, we are going to prove a theorem which plays a fundamental role Since
in the contemporary investigations of representations and structure of finite some @ :
dimensional algebras. It is related to the concept of almost split sequences, factoriza
often called Auslander-Reiten sequences. equality
Since f
indecom
invertiblg
and if u
The
duality.

A seq
an alme

It is
essary th
that this;

Proposition 11.6.1. Let (: 0 —= N x5 Mo0bea non-split ezact se-
quence with indecomposable modules M and N. Then the following conditions
are equivalent:

1) For every ¢ : M' — M, where M' is indecomposable and ¢ is not
isomorphism, the lifting ¢(() splits.

1"y For every ¢ : M' — M, where M' 1is indecomposable and ¢ is not
isomorphism, there is a factorization ¢ = ga for some o : M' — X.

2) For every ¢ : N — N', where N' is indecomposable and ¢ is not
1somorphism, the descent .(() splits.

2'} For every ¢y : N — N', where N' is indecomposable and i is not

isomorphism, there is a factorization ¥ = f for some §: X — N'. Theore

M
Proof. 1) = 1'). Consider the commutative diagram involving the lifting ¢ °({): 2) For

mos,

(,OE(C):O——)N—f’—) —gl—vM'—>0

ST
N L ox & M — o

¢: 0 —

Since ¢(¢) is split, there is a homomorphism v : M’ — X' for which g'v =1
But then ¢ = @g¢'y = g¢'~, as required.

1) = 1). If ¢ = ga, then the homomorphism v : M' — X' given by
the formula v(m') = (a(m’),m') defines a splitting of ¢¢((). (Recall that, in
the construction of lifting, X' = {(z,m') | g(z) = ¢(m')} C X & M', and
g'(z,m')=m")
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P' is projective. 1') = 2). Consider the commutative diagram involving the descent ¥.(():

a” for a projective . ; ,
18 o of (11.5.1) is (: 0 — N — Sy M — 0
M.N) =Imh(a) wl w,l lMl
D 1
f

I,Z)e(C):O—»N'—»X'g—/)M—>O,
M. N) and call the

hismns. Let us also

M.N)/Pra(M,N).

Let X' = X, ® X2 ®...® X be a direct decomposition into indecomposable
summands X; and g; the restrictions of ¢' to X;. If any of ¢; is invertible, i. e.
gih = 1p for some h : M — X;, then the sequence e (¢) splits due to the
homomorphism v : M — X' defined by v(m) = (0,...,0, k(m),0,...,0) with
h(m) at the ith position. Thus, assume that none of g; is invertible. Then in
view of the condition 1'), g; = ga; for some a; : X; — X and hence g' = g7,

‘ where n{z1,22,...,Tm) = 2 ai(z:).
: i
s a fundamental role Since gnf' = ¢'f' =0, Imnf C Kerg = Im f, and thus nf = f6 for
structure of finite some 8 : N' — N. Similarly, since g(1 — n¢') = g — ¢'¥' = 0, we have a
t split sequences, factorization 1 — ' = fu for some u : X — N. Furthermore, multiplying the
cquality 1 — np' + fu by f we get f = mf' {4+ fuf = nfo+ fuf = f86-+ fuf.

Since f is a monomorphism, this equality yields 1y = 6 + uf. Now, N is
indecomposable and thus the algebra E4(NV) is local. Consequently, 8 or u f 1s
invertible. However, if 8¢ is invertible, so is 1 (since N' is also indecomposable)
and if u f is invertible, then ( is split. This contradiction completes the proof.

The assertions 2) < 2') and 2) = 1) can be proved similarly, or follow by
pable and ¢ is not an duality. O

e & non-split ezact se-
k following conditions

A sequence ( possessing the properties listed in Proposition 11.6.1 is called
an almost split sequence with end M and beginning N.

It is clear that in order that such an almost split sequence exists, it is nec-
essary that M is not projective and N is not injective. It 1s rather remarkable
that this condition is also sufficient.

seble and ¢ is not an
eme o : M' — X.
sable and Y is nol an

sable and i is not an

X > N'.
ome 3 - Theorem 11.6.2 (Auslander-Reiten). 1) For any indecomposable module

dving the lifting o¢(C): M which is not projective, there 1s an almost split sequence with end M.
& g @) 2)  For any indecomposable module N which is not injective, there s an al-
most split sequence with beginning N.

5 0
Proof. 1) Theorem 3.3.7 implies that there is an epimorphism 7 : Py — M such
that Py is projective and Kerr C rad Py. Repeating the same procedure for
— 0 Ker 7, we get an exact sequence P LN Py, 5 M — 0 for which Im6 = Kern C .

rad Py and Ker 8 C rad P;. Now, apply the functor = h% (see Sect. 11.5) and
+ X' for which ¢'y = 1. put T = Tr M = Coker (8"). We obtain the following exact sequence:

" M' — X' given by 0— M Py P LT —0. (11.6.1)

7%(¢). (Recall that, in
(m')} C X @ M', and

We are going to show that T is indecomposable. Indeed, assuming that
T is decomposable, we get from Corollary 3.3.8 that P\” = Y1 & Y2 and
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Py =7, & Z3 such that 8°(Z;) C Y1 and 6°(Z;) C Y,. But then, taking into
account part 1) of Proposition 11.5.5, we see that P, = Y,"@Y,", Py = Z,"®Z,"
with 8(Y7") C Z;" and §(Y>") C Z3". From here, M ~ Z,"/8(Y1") & Z,"/8(Y>")
and, in view of the fact that Im & C rad Py, both summands are non-zero. This
contradiction shows that T is indecomposable. Put N = T*.

According to Corollary 11.5.4, for any module L, there is an isomor-
phism ExtL (L, N) ~ Tor‘lq(L,T)*. To compute Torf‘(L,T), we will use the
exact sequence (11.6.1): It turns out that Tor{(L,T) is isomorphic to the
factor space Kertr(8")/Imtr(#") (here t5 is the functor L ®4 —). Making
use of part 2) of Proposition 11.5.5 we obtain L®4P," ~ Hom(P;, L),
and hence Kertr(8") ~ Ker h§(6) ~ Homa(M, L), since the sequence 0 —
Homu4(M,L) — Hom4(Py, L) — Hom4(P;. L) is exact. Moreover, Imty(7")
is mapped in this isomorphism into Im A(M, L) = Pr (A, L). Consequently,
Tor‘lq(L,T) ~ Hom 4(M, L) and ExtY (L, N) ~ Hom 4(M, L)". In particular,
Ext)(M,N) ~ Hom (M, M)*. However, H = Hom 4(M, M) is a quotient
algebra of E4(M) and thus it is a local algebra. Denote by R its radical and
consider a non-zero linear functional { € H* such that ((R) = 0. Let M’ be an
indecomposable A-module. For any  : M' — A which is not an isomorphism,
the induced map Hom 4(A, M') — Hom 4(M, M) assigns to a homomorphism
f: M — M' the non-invertible endomorphism ¢ f. Thus, denoting by f the
coset of f in Hom 4(M, M"), we get that »*(¢)(f) = ((¢f) = 0, which means
that the extension of A by kernel N corresponding to the element ¢ is an
almost split sequence.

The assertion 2) follows from 1) by duality (or can be proved similarly). Let
us point out that our computations yield also isomorphisms M =~ Tr N* and
Ext}(M,L) ~ Hom (L. N)* for every module L: here Hom 4(L.N) denotes
the factor space of Hom 4(L, V) by the subspace In 4 (L, N} consisting of those
homomorphisms which factor through an injective module. (B

11.7 Auslander Algebras

In conclusion, we will give a homological characterization of an important class
of algebras. We call an algebra A an Auslender algebre if there is an algebra
B possessing only a finite number of non-isomorphic indecomposable modules
My, My, ..., M, ,sothat A ~ Eg(M), where M =M1 &M, 3D ...& M, (more
precisely, A is called the Auslander algebra of the algebra B). By definition,
such an algebra is always basic. Obviously, a basic semisimple algebra is always

an Auslander algebra.

Theorem 11.7.1 (Auslander). A basic algebra A is an Auslander algebra
if and only if gl.dim A < 2 and there is an ezact sequence 0 — A — Io — I
in which the A-modules Iy and I; are bijective.

The necessity of the statement will be based on the following lemma.
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Lemma 11.7.2. Let A = Eg(M) be an Auslander algebra. Then:

1) M is a projective left A-module.

2) The functors F : N — Homp(M,N) and G : P — P®4 M establish
an equivalence between the category mod-B and the category pr-A of the

projective A-modules. -

Proof. 1) Since M is a direct sum of all indecomposable B-modules, mM ~
B & L for some L, and thus mA ~ Homp(mM,M) =~ Hompg(B,M) &
Hompg(L, M). Therefore, M ~ Hompg(B, M) is a projective A-module.

2) The fact that F(N) is always projective can be verified the same way as
the first statement 1). The natural transformation of functors (see Sect. 8.4)
@ lpra — FG and ¥ : GF — lyed-p are isomorphisms on 44 and Mg,
respectively, and therefore on all their direct summands. Hence ¢ and 1 are
isomorphisms, respectively, on all projective A-modules and all B-modules, as
required. 4 O

Proof of necessity in Theorem 11.7.1. Let A = Ep(M) be the Auslander
algebra of an algebra B and g : Py — P, a homomorphism of projective
A-modules. In view of Lemma 11.7.2, we may assume that P; = F(N;) and
g = F(f) for some B-module homomorphism f : Ny — Ny. Since F is left
exact, Ker g >~ F(Ker f) is a projective A-module and gl.dim A < 2 by Corol-
lary 11.4.7.

Now, construct an exact sequence 0 — M — Qo — @, with injective
B-modules (o, Q:. Applying the functor F, we obtain an exact sequence
0 - A — F(Qo) — F(Q1). It remains to show that F(Q;) are injective
A-modules. In view of Theorem $f.1.4, it is sufficient to know that F(B*)
is an injective A-module. However, F(B*) = Homp (M, Hom;‘-(B,K)) ~
Homyg (M ®p B,K) ~ M* is injective by part 1) of Lemma 11.7.2.

Proof of sufficiency. Assume that gl.dim A < 2 and that there is an exact
sequence 0 — A — Iy — I; with bijective A-modules Iy and I. Denote
by I the direct sum of all indecomposable bijective A-modules, B = E4(I)
and consider the contravariant functors F' : N = Hompg(N,I) and G' : P —
Hom 4(P, I). For aleft B-module N, a projective resolution P, — Py — N — 0
translates to the exact sequence 0 — F'(N) — F'(Py) — F'(P;). However
F'(B) ~ I and therefore F'(P;) are projective (even bijective) A-modules. By
Corollary 11.4.7, F'(N) is also projective, and thus F' can be viewed as a
functor (B-mod)’ — pr-A.

Consider the natural transformations @ tlpna — F'G'and ¥’ : 1y0q.B —
G'F' (they act the same way: ¢/(P) assigns to an element z € P the B-
homomorphism Hom4(P,I) — I sending f into f(z); ¥'(N) acts similarly).
Clearly, ¢'(I) and ¥'(B) are isomorphisms. Thus, if P is bijective and N is
projective, also ¢'(P) and 4'(N) are isomorphisms. Besides, the functor F'G'
i1s left exact and G'F” is right exact, since I is an injective A-module and thus
G' is exact. Therefore the exact sequence 0 — A — Iy — I; can be extended
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to the following commutative diagram with exact rows:

0 — SN

A Iy — I
%’(A)j sa’(lo)j sa’(/z)j
0 — FG4) — FE(L) — FG(L).

As a consequence, ¢'(A) is an isomorphism and thus ¢'(P) is an isomorphism
for every projective P. Similarly, ¥'(/V) is an isomorphism for every NV and we
conclude that F’ and G’ establish an equivalence of the categories (B-mod)®
and pr-A. In particular, since G'(A) = I, the algebra A is anti-isomorphic to
Endg(I). Furthermore, A is basic, and thus is a direct sum of non-isomorphic
principal A-modules; therefore 7 is a direct sum of all non-isomorphic indecom-
posable left B-modules. It follows that I* is a direct sum of all non-isomorphic
indecomposable right B-modules and Eg(I*) ~ Ep(I)° ~ A, so A is an Aus-
O

lander algebra.

Exercises to Chapter 11

1. Verify that for a complex V, which is a short exact sequence 0 — M — N —
L — 0, V, ~ 0 if and only if the sequence splits. (Clearly. Hn(V,) = 0 for all n.)
: 4 — M the canonical

. Let A = KJa], where ¢* = 0, M = A4/ad and 7
projection. Furthermore, let ¢ : M — A be the embedding sending = + aAd

into az and f, : Vi — VJ the complex homomorphism defined by the following

diagram:
(s9)

0 — MeM MeM — 0

o ‘) &

Mel — 0.

0 — A i
Show that f, = 0. but f, # 0.
Give an example of a complex V, and a functor F such that H,(V,) = 0 for all

n, but Ha (F(V,)) # 0 for some n.
. Let Vi, and V! be complexes of projective modules over a hereditary algebra,
bounded from the right, and f, and g, two homomorphisms V, — V,. Prove

that fo = g. implies fo ~ go.
. Prove that for every module M there exists a projective resolution (P,,ds)
satisfying Imd"™ C rad Pn_; for all n, and that any two such resolutions are
isomorphic. (Resolutions satisfying this property are called minimal projective
resolutions of the module 3 and are denoted by P,(31).) Formulate and prove

an analogous result for injective resolutions.
— Py — M — 0 be an exact sequence with
Let F be a right exact functor. Prove

Let 0 = N 2 Poy — -
Pi,..., Py

projective modules Fo, ,
that L* F(M) ~ L*~*F(N) for n > k and L* (M) = Ker F(p). Formulate and
prove similar statements for right derived functors and contravariant functors.

. Let Po(M) =

(see Exercise
module W). B

. Let A be a s
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is the incidena

. Construct a o

homomorphis:
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10.

11.

12.

13.

14.

15.

16.

. Let Po(M) = (Ps,ds) be a minimal projective resolution of a right A-module M
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(see Exercise 5). Prove that, for any simple right A-module V' (simple left A-
module W), Ext}(M,V) =~ Hom 4(P,,V) and Tor (M, W)~ P, ©@a W.

. Let A be a split algebra, D = D(A) its diagram and V; the simple A-module

corresponding to the vertex ¢ € D. Prove that Extl (Vi, V) = ti; K, where (i)
is the incidence matrix of the diagram D.

_ Construct a one-to-one map &' : Ex(M,N) — Extl (M, N) using the connecting
p ) A

homomorphism with respect to the first variable (and projective resolutions).
Prove that proj.dim,(® M;) = max;(proj.dim 4, M;) and inj.dim (P M) =
max;(ing.dim 4 M i)

Prove that gl.dim(]] A:) = max;(gl.dim A;).

Assume that there are no cycles in the diagram D(A) of an algebra A.
a) Prove that gl.dim A < {, where {is the maximal length of paths in D(A).

b) If (rad A)? =0, prove that gl.dim A = I3

Let L be an extension of the field K. Prove that gl.dim A > gl.dim A. Prove
that the inequality becomes equality if L is a separable extension or if the
quotient algebra A/rad A is separable over K.

Prove that gl.dim A < proj.dim 4g a0 A and that equality holds if A/rad A is
separable.

Prove that any two almost split sequences with a common beginning (or end)
are isomorphic.

Prove that a hereditary Auslander algebra is semisimple.
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