YCHEXU MATEMATU YECKUX HAYK

ФУНКТОРЫ КОКСТЕРА И ТЕОРЕМА ГАБРИЕЛЯ

И. Н. Бернштейн, И. М. Гельфанд, В. А. Пономарев

В последнее время стало ясно, что целый ряд задач линейной алгебры допускает единую формулировку и в этой общей формулировке возникают общие эффективные методы исследования таких задач. Интересно, что эти методы оказываются связанными с такими понятиями, как группа Кокстера — Вейля и схемы Дынкина.

Мы изложим здесь эти связи на простейшей задаче. Никаких предварительных знаний мы не предполагаем. Мы также не касаемся здесь связей этих вопросов с теорией представлений групп и теорией бесконечномерных алгебр Ли. По этому поводу см. [3]—[5].

Пусть задан конечный связный граф Γ ; множество его вершин мы будем обозначать через Γ_0 , множество его ребер — через Γ_1 (мы не исключаем случаев, когда две вершины соединены несколькими ребрами или имеются ребра-петли, соединяющие вершину саму с собой). Фиксируем некоторую ориентацию Λ графа Γ ; это значит, что для каждого ребра $l \in \Gamma_1$ отмечена начальная точка $\alpha(l) \in \Gamma_0$ и конечная точка $\beta(l) \in \Gamma_0$.

Сопоставим каждой вершине $\alpha \in \Gamma_0$ конечномерное линейное пространство V_{α} над фиксированным полем K. Далее отнесем каждому ребру $l \in \Gamma_1$ линейное отображение $f_l \colon V_{\alpha(l)} \to V_{\beta(l)}$ ($\alpha(l)$ и $\beta(l)$ —начало и конец ребра l). Никаких соотношений на линейные отображения f_l мы не накладываем. Набор пространств V_{α} и отображений f_l мы обозначим (V, f).

О п р е д е л е п и е 1. Пусть (Γ, Λ) —ориентированный граф. Определим категорию $\mathcal{L}(\Gamma, \Lambda)$ следующим образом. Объектом категории $\mathcal{L}(\Gamma, \Lambda)$ будем считать любой набор (V, f) пространств V_{α} $(\alpha \in \Gamma_0)$ и отображений f_l $(l \in \Gamma_1)$. Морфизмом $\varphi \colon (V, f) \to (W, g)$ называется набор линейных отображений $\varphi_{\alpha} \colon V_{\alpha} \to W_{\alpha}(\alpha \in \Gamma_0)$ такой, что для любого ребра $l \in \Gamma_1$ следующая диаграмма

$$V_{\alpha(l)} \xrightarrow{f_l} V_{\beta(l)}$$

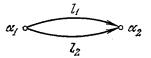
$$\downarrow \varphi_{\alpha(l)} \qquad \qquad \downarrow \varphi_{\beta(l)}$$

$$W_{\alpha(l)} \xrightarrow{g_l} W_{\beta(l)}$$

коммутативна, т. е. $\varphi_{\beta(l)}f_l=g_l\varphi_{\alpha(l)}$.

Многие задачи линейной алгебры могут быть сформулированы в этих терминах. Например, вопрос о канопическом виде линейного преобразования $f\colon V \to V$ связан с диаграммой

Классификация пары линейных отображений $f_1\colon V_1\to V_2$ и $f_2\colon V_1\to V_2$ приводит к графу



Очень интересна задача о классификации четверок подпространств в линейном пространстве, которая соответствует графу

Эта последняя задача содержит в себе много задач линейной алгебры 1). Пусть (Γ, Λ) —ориентированный граф. Прямой суммой объектов (V, f) и (U, g) в категории $\mathcal{L}(\Gamma, \Lambda)$ является объект (W, h), где $W_{\alpha} = V_{\alpha} \oplus U_{\alpha}$, $h_{l} = f_{l} \oplus g_{l}$ ($\alpha \in \Gamma_{0}$, $l \in \Gamma_{1}$).

Мы будем называть пенулевой объект $(V, f) \in \mathcal{L}(\Gamma, \Lambda)$ неразложимым, если его нельзя представить в виде прямой суммы двух ненулевых объектов. Простейшими перазложимыми объектами являются неприводимые объекты L_{α} ($\alpha \in \Gamma_0$), которые строятся следующим образом: $(L_{\alpha})_{\gamma} = 0$ при $\gamma \neq \alpha$, $(L_{\alpha})_{\alpha} = K, f_l = 0$ для всех $l \in \Gamma_1$.

Ясно, что каждый объект (V, f) категории $\mathcal{L}(\Gamma, \Lambda)$ изоморфен прямой сумме конечного числа перазложимых объектов ²).

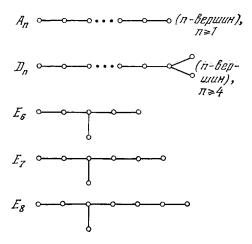
Во многих случаях неразложимые объекты можно расклассифицировать 3).

¹⁾ Поясним, как задача о капоническом виде линейного оператора $f:V\to V$ сводится к задаче о четверке подпространств. Для этого рассмотрим пространство $W==V\oplus V$ и в нем график отображения f, т. е. подпространство E_4 пар $(\xi,\ f\xi)$, где $\xi\in V$. Отображение f описывается четверкой подпространств в W, а именно, $E_1=V\oplus 0$, $E_2=0\oplus V$, $E_3=\{(\xi,\ \xi)\mid \xi\in V\}$ (E_3 — диагональ) и $E_4=\{(\xi,\ f\xi)\mid \xi\in V\}$ — график f. Два отображения f и f' эквивалентны тогда и только тогда, когда изоморфпы соответствующие им четверки. Действительно, E_1 и E_2 задают «координатные плоскости» в W, E_3 устанавливает отождествление между ними, после чего E_4 задает отображение.

²⁾ Можно показать, что такое разложение единственно с точностью до изоморфизма (см. [6], гл. II, § 14, теорема Крулля — Шмидта).

³⁾ Мы думаем, что изучить те случаи, в которых явная классификация невозможна, ничуть не менее интересно. Однако мы затруднились бы точнее сформулировать, что значит в этом случае «изучение» объектов с точностью до изоморфизма. Естественные, на первый взгляд, предложения (рассматривать разбиение пространства объектов на траектории, исследовать версальные семейства, выделять «устойчивые» объекты и т. д.) не являются, на наш взгляд, сколько-нибудь окончательными.

В работе Габриеля [1] была поставлена и решена следующая задача: найти все графы (Γ, Λ) , для которых существует лишь конечное число неизоморфных между собой неразложимых объектов $(V, f) \in \mathcal{L}(\Gamma, \Lambda)$. Им было сделано следующее удивительное наблюдение. Для того чтобы в категории $\mathcal{L}(\Gamma, \Lambda)$ было конечное число неразложимых объектов, необходимо и достаточно, чтобы граф Γ совпадал с одним из следующих графов:



(от ориентации Λ этот факт не зависит). Удивительным здесь является тот факт, что эти графы в точности совпадают со схемами Дынкина простых групп Ли 1).

Однако это еще не все. Как установил Габриель, неразложимые объекты категории $\mathcal{L}(\Gamma, \Lambda)$ естественно соответствуют положительным корням, построенным по схеме Дынкина Γ .

В настоящей статье мы попытаемся до некоторой степени снять «мистику» с этого соответствия. А именно, в то время как в статье Габриеля связь со схемами Дынкина и корнями устанавливается апостериори, мы дадим доказательство теоремы Габриеля, основанное на использовании техники корней и групп Вейля. При этом мы не предполагаем, что читатель знаком с этими понятиями, и даем полное изложение нужных нам фактов.

Существенную роль в нашем доказательстве играют определяемые ниже функторы, которые мы называем функторами Кокстера (название возникло из-за связи этих функторов с преобразованиями Кокстера в группе Вейля). Для частного случая четверки подпространств эти функторы были введены в работе [2] (там они обозначены через Φ^+ и Φ^-). По существу, настоящая работа является синтезом идеи Габриеля о связи категорий диаграмм $\mathcal{L}(\Gamma, \Lambda)$ со схемами Дынкина и идей первой части работы [2], где с помощью функторов Φ^+ и Φ^- отделяются «простые» неразложимые объекты от более «сложных».

Мы надеемся, что используемая нами техника полезна не только для решения задачи Габриеля или для классификации четверок подпространств,

¹⁾ Точнее, здесь встречаются схемы Дыпкина с однократными стрелками.

но и для решения многих других задач (быть может, не только задач линейной алгебры).

Некоторые соображения о задаче Габриеля, близкие к используемым в этой статье, были недавно высказаны А. В. Ройтером. Мы хотели бы также обратить внимание читателей на работы А. В. Ройтера, Л. А. Назаровой, М. М. Клейнера, Ю. А. Дрозда и др. (см. [3] и цитированную там литературу), в которых развиваются весьма эффективные алгоритмы решения задач линейной алгебры. В работе [3] А. В. Ройтер и Л. А. Назарова рассматривают задачу о классификации представлений упорядоченных множеств; полученные результаты близки к результатам Габриеля о представлениях графов.

§ 1. Функторы отражений и функторы Кокстера

Для изучения неразложимых объектов в категории $\mathcal{L}(\Gamma, \Lambda)$ мы рассмотрим «функторы отражений», которые строят по каждому объекту $V \in \mathcal{L}(\Gamma, \Lambda)$ некоторый новый объект (в другой категории); при этом неразложимый объект переходит либо в неразложимый либо в нулевой объект. Такой функтор мы построим для каждой вершины α , в которой все ребра имеют одинаковое направление (т. е. либо все входят либо все выходят). Далее мы построим «функторы Кокстера» Φ^+ и Φ^- , переводящие категорию $\mathcal{L}(\Gamma, \Lambda)$ в себя.

Для каждой вершины $\alpha \in \Gamma_0$ обозначим через Γ^{α} множество ребер, содержащих α . Если Λ — некоторая ориентация графа Γ , то через $\sigma_{\alpha}\Lambda$ мы будем обозначать ориентацию, получающуюся из Λ заменой направлений всех ребер $l \in \Gamma^{\alpha}$ на обратные.

Мы будем называть вершину α (—) допустимой (относительно ориентации Λ), если $\beta(l) \neq \alpha$ для всех $l \in \Gamma_1$ (это значит, что все ребра, содержащие точку α , начинаются в ней и в Γ нет петель с вершиной в точке α). Аналогично вершину β мы будем называть (+) допустимой, если для всех $l \in \Gamma_1$ $\alpha(l) \neq \beta$.

О пределение 1.1. 1) Пусть вершина β графа Γ (+) допустима относительно ориентации Λ . Построим по объекту (V, f) из категории $\mathcal{L}(\Gamma, \Lambda)$ новый объект (W, g) из категории $\mathcal{L}(\Gamma, \sigma_{\beta}\Lambda)$.

А именно, положим $W_{\gamma} = V_{\gamma}$ для $\gamma \neq \beta$.

Рассмотрим далее все ребра $l_1,\ l_2,\ \dots,\ l_k$, кончающиеся в точке β (т. е. все ребра из Γ^β). Обозначим через W_β подпространство в прямой сумме $\bigoplus_{i=1}^k V_{\alpha(l_i)}$, состоящее из векторов $v=(v_1,\ \dots,\ v_k)$ (здесь $v_i\in V_{\alpha(l_i)}$), для которых $f_{l_1}(v_1)+\dots+f_{l_k}\ (v_k)=0$. Иначе говоря, если обозначить через h отображение $h:\bigoplus_{i=1}^k V_{\alpha(l_i)}\to V_\beta$, задаваемое формулой $h(v_1,\ v_2,\ \dots,\ v_k)==f_{l_1}\ (v_1)+\dots+f_{l_k}(v_k)$, то $W_\beta=\mathrm{Ker}\ h$.

Зададим теперь отображения g_l . Для $l \notin \Gamma^{\beta}$ положим $g_l = f_l$. Если $l = l_j \in \Gamma^{\beta}$, то отображение g_l определяется как композиция естественного вложения W_{β} в $\bigoplus V_{\alpha(l_i)}$ и проекции этой суммы на слагаемое $V_{\alpha(l_j)} = W_{\alpha(l_j)}$. Заметим, что на всех ребрах $l \in \Gamma^{\beta}$ ориентация сменилась на обратную,

т. е. полученный объект (W, g) принадлежит категории $\mathcal{L}(\Gamma, \sigma_{\beta}\Lambda)$. Построенный объект (W, g) мы будем обозначать $F_{\beta}^{\dagger}(V, f)$.

2) Пусть вершина $\alpha \in \Gamma_0$ (—) допустима относительно ориентации Λ . Построим по объекту $(V, f) \in \mathcal{L}(\Gamma, \Lambda)$ новый объект $F_{\alpha}(V, f) = (W, g) \in \mathcal{L}(\Gamma, \sigma_{\alpha}\Lambda)$. А именно, положим

$$W_{\gamma} = V_{\gamma}$$
 при $\gamma \neq \alpha$ $g_l = f_l$ при $l \notin \Gamma^{\alpha}$

 $W_{\alpha}=\mathop{\oplus}\limits_{i=1}^k V_{\beta\;(l_i)}/\mathrm{Im}\;\widetilde{h},\;$ где $\{l_1,\;\ldots,\;l_k\}=\Gamma^{\alpha},\;$ а отображение $\widetilde{h}\colon V_{\alpha}\to\mathop{\oplus}\limits_{i=1}^k V_{\beta\;(l_i)}$ задается формулой $\widetilde{h}\;(v)=(f_{l_1}(v),\;\ldots,\;f_{l_k}(v)).\;$ Если $l\in\Gamma^{\alpha},\;$ то отображение $g_l\colon W_{\beta(l)}\to W_{\alpha}\;$ определяется как композиция естественного вложения $W_{\beta(l)}=V_{\beta(l)}$ в $\mathop{\oplus}\limits_{i=1}^k V_{\beta(l_i)}$ и проекции этой прямой суммы на $W_{\alpha}.$

Легко проверить, что F_{β}^{+} (и аналогично F_{α}^{-}) является функтором из категории $\mathcal{L}(\Gamma, \Lambda)$ в категорию $\mathcal{L}(\Gamma, \sigma_{\beta}\Lambda)$ (соответственно $\mathcal{L}(\Gamma, \sigma_{\alpha}\Lambda)$). Основным для нас является следующее свойство этих функторов.

Теорема 1.1. 1) Пусть задан ориентированный граф (Γ, Λ) и вершина $\beta \in \Gamma_0$, (+) допустимая относительно ориентации Λ . Пусть $V \in$ $\mathcal{L}(\Gamma, \Lambda)$ — неразложимый объект. Тогда возможны два случая:

- а) $V \approx L_{\beta} u F_{\beta}^{\dagger} V = 0$ (напомним, что L_{β} неприводимый объект, определяемый условием $(L_{\beta})_{\gamma} = 0$ при $\gamma \neq \beta$, $(L_{\beta})_{\beta} = K$, $f_{l} = 0$ при всех $l \in \Gamma_{1}$).
- б) $F_{\beta}^{+}(V)$ —неразложимый объект, $F_{\beta}^{-}F_{\beta}^{+}(V)=V$, причем размерности пространств $F_{\beta}^{+}(V)_{\gamma}$ вычисляются по формуле

(1.1.1)
$$\dim F_{\beta}^{\dagger}(V)_{\gamma} = \dim V_{\gamma} \ npu \ \gamma \neq \beta,$$

$$\dim F_{\beta}^{+}(V)_{\beta} = -\dim V_{\beta} + \sum_{l \in \Gamma^{\beta}} \dim V_{\alpha(l)}.$$

- 2) Если вершина α (—) допустима относительно ориентации Λ и $V \in \mathcal{L}(\Gamma, \Lambda)$ —неразложимый объект, то возможны два случая:
 - a) $V \approx L_{\alpha}$, $F_{\alpha}(V) = 0$.
 - б) $F_{\alpha}^{\text{-}}(V)$ —неразложимый объект, $F_{\alpha}^{\text{+}}F_{\alpha}^{\text{-}}(V)=V,$

(1.1.2)
$$\dim F_{\alpha}^{-}(V)_{\gamma} = \dim V_{\gamma} \ npu \ \gamma \neq \alpha,$$

$$\dim F_{\alpha}^{-}(V)_{\alpha} = -\dim V_{\alpha} + \sum_{l \in \Gamma^{\alpha}} \dim V_{\beta(l)}.$$

Доказательство. Если вершина β (+) допустима относительно ориентации Λ , то она (—) допустима относительно ориентации $\sigma_{\beta}\Lambda$ и потому определен функтор $F_{\overline{\beta}}F_{\overline{\beta}}^{\dagger}\colon \mathscr{L}(\Gamma, \Lambda) \to \mathscr{L}(\Gamma, \Lambda)$. Для каждого объекта $V \in \mathscr{L}(\Gamma, \Lambda)$ ностроим морфизм $i_V^{\beta}: F_{\overline{\beta}}F_{\overline{\beta}}^{\dagger}(V) \to V$ следующим образом.

Если $\gamma \neq \beta$, то $F_{\beta}^- F_{\beta}^+ (V)_{\gamma} = V_{\gamma}$ и мы положим $(i_V^{\beta})_{\gamma} = \mathrm{Id}$ — тождественное отображение.

Для определения $(i_V^{\beta})_{\beta}$ заметим, что в последовательности отображений $F_{\beta}^+(V)_{\beta} \stackrel{\widetilde{h}}{\longrightarrow} \bigoplus_{l \in \Gamma} V_{\alpha(l)} \stackrel{h}{\longrightarrow} V_{\beta}$ (см. определение 1.1) Кег $h = \operatorname{Im} \widetilde{h}$; мы примем за

 $(i_V^{\beta})_{\beta}$ естественное отображение

$$F_{\beta}^{-}F_{\beta}^{+}(V)_{\beta} = \bigoplus_{l \in \Gamma^{\beta}} V_{\alpha(l)}/\operatorname{Im} \widetilde{h} = \bigoplus_{l \in \Gamma^{\beta}} V_{\alpha(l)}/\operatorname{Ker} h \to V_{\beta}.$$

Легко проверить, что i_V^{β} — морфизм. Аналогично для каждой (—) допустимой вершины α строится морфизм p_V^{α} : $V \to F_{\alpha}^+ F_{\alpha}^-$ (V). Сформулируем основные свойства функторов F_{α}^- , F_{β}^+ и морфизмов p_V^{α} , i_V^{β} .

Лемма 1.1. 1) $F_{\alpha}^{\pm}(V_1 \oplus V_2) = F_{\alpha}^{\pm}(V_1) \oplus F_{\alpha}^{\pm}(V_2)$. 2) p_V^{α} —эпиморфизм, i_V^{β} —мономорфизм. 3) Если i_V^{β} —изоморфизм, то размерности пространств $F_{\beta}^{+}(V)_{\gamma}$ вычисляются по формуле (1.1.1). Если p_V^{α} —изоморфизм, то размерности пространств $F_{\alpha}^{-}(V)_{\gamma}$ вычисляются по формуле (1.1.2). 4) Объект $Ker\ p_V^{\alpha}$ [сосредоточен в точке α (т. е. $(Ker\ p_V^{\alpha})_{\gamma} = 0$ при $\gamma \neq \alpha$). Объект $V/Im\ i_V^{\beta}$ сосредоточен в точке β . 5) Если объект V имеет вид $F_{\alpha}^{+}W$ (соответственно $F_{\beta}^{-}W$), то $p_V^{\alpha}(i_V^{\beta})$ —изоморфизм. 6) Объект V изоморфен прямой сумме объектов $F_{\delta}^{-}F_{\beta}^{+}(V)$ и $V/Im\ i_V^{\beta}$ (аналогично $V \approx F_{\alpha}^{+}F_{\alpha}^{-}(V) \oplus Ker\ p_V^{\alpha}$).

Доказательство. Пункты 1), 2), 3), 4), 5) проверяются непосредственно. Докажем 6).

Нам нужно показать, что $V \approx F_{\beta}^- F_{\beta}^+ (V) \oplus \widetilde{V}$, где $\widetilde{V} = V/\mathrm{Im}\ i_V^{\beta}$. Естественная проекция $\phi_{\beta}\colon V_{\beta} \to \widetilde{V}_{\beta}$ допускает сечение $\phi_{\beta}\colon \widetilde{V}_{\beta} \to V_{\beta} (\phi_{\beta}^{\prime} \cdot \phi_{\beta} = \mathrm{Id})$. Если положить $\phi_{\gamma} = 0$ при $\gamma \neq \beta$, то мы получим морфизм $\phi\colon \widetilde{V} \to V$. Ясно, что морфизмы $\phi\colon \widetilde{V} \to V$ и $i_V^{\beta}\colon F_{\beta}^- F_{\beta}^+ (V) \to V$ задают разложение V в прямую сумму. Аналогично доказывается, что $V \approx F_{\alpha}^+ F_{\alpha}^- (V) \oplus \mathrm{Ker}\ p_V^{\alpha}$.

Докажем теперь теорему 1.1. Пусть V—перазложимый объект категории $\mathcal{L}(\Gamma, \Lambda)$, β — (+) допустимая вершина относительно ориентации Λ . Так как $V \approx F_{\beta}^- F_{\beta}^+(V) \oplus V/\mathrm{Im}\ i_V^{\beta}$ и V неразложим, то V совпадает с одним из слагаемых.

Cлучай I). $V=V/{\rm Im}\ i_V^{eta}$. Тогда $V_{\gamma}=0$ при $\gamma
eq \beta$ и в силу неразложимости V $Vpprox L_{eta}$.

Случай II). $V = F_{\beta}^{-}F_{\beta}^{+}(V)$, т. е. i_{V}^{β} —изоморфизм. Тогда в силу леммы 1.1 выполнена формула 1.1.1. Покажем, что объект $W = F_{\beta}^{+}(V)$ неразложим. Действительно, пусть $W = W_{1} \oplus W_{2}$. Тогда $V = F_{\beta}^{-}(W_{1}) \oplus \bigoplus F_{\beta}^{-}(W_{2})$ и, значит, одно из слагаемых (например $F_{\beta}^{-}(W_{2})$) есть 0. В силу п. 5) леммы 1.1 морфизм p_{V}^{β} : $W \to F_{\beta}^{+}F_{\beta}^{-}(W)$ является изоморфизмом, но $p_{V}^{\beta}(W_{2}) \subset F_{\beta}^{+}F_{\beta}^{-}(W_{2}) = 0$, т. е. $W_{2} = 0$.

Этим мы показали, что объект $F_{\beta}^+(V)$ неразложим. Аналогично доказывается п. 2) теоремы 1.1.

Будем называть последовательность вершин α_1 , α_2 , . . . , α_k (+) допустимой относительно ориентации Λ , если α_1 (+) допустима относительно ориентации σ_{α_1} (+) допустима относительно ориентации σ_{α_2} (+) допустима относительно ориентации σ_{α_2} (+) допустимые последовательности.

Следствие 1.1. Пусть (Γ , Λ)—ориентированный граф, α_1 , α_2 ,, α_k — (+) допустимая последовательность.

- 1) Для любого i ($1 \le i \le k$) $F_{\alpha_1}^- \dots F_{\alpha_{i-1}}^- (L_{\alpha_i})$ либо равно 0 либо является неразложимым объектом в $\mathcal{L}(\Gamma, \Lambda)$ (здесь $L_{\alpha_i} \in \mathcal{L}(\Gamma, \sigma_{\alpha_{i-1}}\sigma_{\alpha_{i-2}} \dots \sigma_{\alpha_i}\Lambda))^1$).
 - 2) Пусть $V \in \mathcal{L}(\Gamma, \Lambda)$ неразложимый объект, причем

$$F_{\alpha_k}^+ F_{\alpha_{k-1}}^+ \cdot \ldots \cdot F_{\alpha_1}^+(V) = 0.$$

Тогда для некоторого і

$$V \approx F_{\alpha_1}^- F_{\alpha_2}^- \cdot \dots \cdot F_{\alpha_{i-1}}^- (L_{\alpha_i}).$$

Проиллюстрируем применение функторов F_{β}^+ и F_{α}^- на следующей теореме. Т е о р е м а 1.2. Пусть Γ — граф без циклов (в частности, без петель), Λ , Λ' — две его ориентации.

- 1) Существует такая последовательность вершин $\alpha_1, \ldots, \alpha_k, (+)$ допустимая относительно Λ , что $\sigma_{\alpha_b}\sigma_{\alpha_{b-1}}, \ldots, \sigma_{\alpha_1}\Lambda = \Lambda'$.
- 2) Пусть \mathcal{M} , \mathcal{M}' множество классов (с точностью до изоморфизма) неразложимых объектов в \mathcal{L} (Γ , Λ) и \mathcal{L} (Γ , Λ'), $\widetilde{\mathcal{M}} \subset \mathcal{M}$ множество классов объектов $F_{\alpha_1}^-F_{\alpha_2}^- \cdot \ldots \cdot F_{\alpha_{i-1}}^-(L_{\alpha_i})$ ($1 \leqslant i \leqslant k$), $\widetilde{\mathcal{M}}' \subset \mathcal{M}'$ множество классов объектов $F_{\alpha_k}^+ \cdot \ldots \cdot F_{\alpha_{i+1}}^+(L_{\alpha_i})$ ($1 \leqslant i \leqslant k$). Тогда функтор $F_{\alpha_k}^+ \cdot \ldots \cdot F_{\alpha_1}^+$ устанавливает взаимно однозначное соответствие между $\mathcal{M} \setminus \widetilde{\mathcal{M}}$ и $\mathcal{M}' \setminus \widetilde{\mathcal{M}}'$.

Эта теорема показывает, что, зная классификацию неразложимых объектов для ориентации Λ , мы можем легко провести такую классификацию для ориентации Λ' ; иначе говоря, задачи, получающиеся друг из друга при переворачивании части стрелок, в каком-то смысле эквивалентны.

Как показывают примеры, аналогичное утверждение верно для графов с циклами, но доказывать его мы не умеем.

Доказательство теоремы 1.2. Ясно, что п. 2) сразу следует из п. 1) и следствия 1.1. Докажем п. 1).

Достаточно рассмотреть случай, когда ориентации Λ и Λ' отличаются только на одном ребре l. Граф $\Gamma \setminus l$ распадается на две связные компоненты. Пусть Γ' та из них, которая содержит вершину $\beta(l)$ ($\beta(l)$ берется в соответствии с ориентацией Λ). Пусть $\alpha_1, \ldots, \alpha_k$ — такая нумерация вершин графа Γ' , что для любого ребра $l' \in \Gamma'_1$ номер вершины $\alpha(l')$ больше номера $\beta(l')$. (Такая нумерация существует, так как Γ' —граф без циклов). Легко идеть, что последовательность вершин $\alpha_1, \ldots, \alpha_k$ является искомой (т. е. она (+) допустима и $\sigma_{\alpha_k} \cdot \ldots \cdot \sigma_{\alpha_4} \Lambda = \Lambda'$). Теорема 1.2 доказана.

Обычно бывает удобно пользоваться некоторой комбинацией функторов F_{α}^{\pm} , которая переводит категорию $\mathcal{L}(\Gamma,\ \Lambda)$ в себя.

О п р е д е л е н и е 1.2. Пусть (Γ, Λ) —ориентированный граф без ориентированных циклов. Выберем такую нумерацию $\alpha_1, \ldots, \alpha_n$ вершин графа Γ , что для любого ребра $l \in \Gamma_1$ номер вершины $\alpha(l)$ больше номера вершины $\beta(l)$. Положим $\Phi^+ = F_{\alpha_n}^+ \cdot \ldots \cdot F_{\alpha_2}^+ F_{\alpha_1}^+, \quad \Phi^- = F_{\alpha_1}^- \cdot F_{\alpha_2}^- \cdot \ldots \cdot F_{\alpha_n}^-$. Функторы Φ^+ и Φ^- мы будем называть функторами Кокстера.

¹⁾ Там, где это не приводит к недоразумениям, мы обозначаем одним и тем же символом L_{α} неприводимые объекты во всех категориях $\mathcal{L}(\Gamma, \Lambda)$, опуская указание ориентации Λ .

Лемма 1.2. 1) Последовательность $\alpha_1, \ldots, \alpha_n$ (+) допустима, $\alpha_n, \ldots, \alpha_1$ —(-) допустима. 2) Функторы Φ^+, Φ^- переводят категорию $\mathcal{L}(\Gamma, \Lambda)$ в себя. 3) Φ^+ и Φ^- не зависят от произвола в выборе нумерации вершин.

Доказательство 1), 2) — ясно. Докажем п. 3). Проведем доказательство для функтора Φ^+ . Заметим сначала, что если две различные вершины γ_1 , $\gamma_2 \in \Gamma_0$ не соединены ребром и (+) допустимы относительно некоторой ориентации, то функторы $F_{\gamma_1}^+$ и $F_{\gamma_2}^+$ коммутируют (т. е. $F_{\gamma_2}^+F_{\gamma_1}^+=F_{\gamma_1}^+F_{\gamma_2}^+$).

Пусть $\alpha_1, \ldots, \alpha_n$ и $\alpha_1', \ldots, \alpha_n'$ две подходящие нумерации и пусть $\alpha_1 = \alpha_m'$. Тогда вершины $\alpha_1', \alpha_2', \ldots, \alpha_{m-1}'$ не соединены с α_1 ребром (если α_1 и α_i' (i < m) соединены ребром l, то $\alpha(l) = \alpha_m' = \alpha_1$ в силу выбора нумерации $\alpha_1', \ldots, \alpha_n'$, но это противоречит выбору нумерации $\alpha_1, \ldots, \alpha_n$). Поэтому $F_{\alpha_m'}^+ \cdots F_{\alpha_1'}^+ = F_{\alpha_{m-1}'}^+ \cdots F_{\alpha_1'}^+ F_{\alpha_1}^+$. Проведя аналогичное рассуждение с α_2 , затем с α_3 и т. д., мы докажем, что $F_{\alpha_n'}^+ \cdots F_{\alpha_1'}^+ = F_{\alpha_n}^+ \cdots F_{\alpha_1}^+$. Для функтора Φ^- доказательство аналогично.

Следуя [2], можно ввести следующее определение.

О пределение 1.3. Пусть (Γ , Λ)—ориентированный граф без ориентированных циклов. Назовем объект $V \in \mathcal{L}(\Gamma, \Lambda)$ (+) (соответственно (—)) нерегулярным, если для некоторого $k(\Phi^+)^k V = 0$ (($\Phi^-)^k V = 0$). Назовем объект V регулярным, если для всех $k V \approx (\Phi^-)^k (\Phi^+)^k V \approx (\Phi^+)^k (\Phi^-)^k V$.

З а м е ч а н и е 1. Используя морфизмы p_V^{α} и i_V^{β} , введенные при доказательстве теоремы 1.1, можно построить канонические эниморфизм p_V^k : $V \rightarrow (\Phi^+)^k(\Phi^-)^kV$ и мономорфизм i_V^k : $(\Phi^-)^k(\Phi^+)^kV \rightarrow V$. Объект V регулярен тогда и только тогда, когда при всех k эти морфизмы являются изоморфизмами.

Замечание 2. Если объект V аннулируется функтором $F_{\alpha_s}^+ \cdot \ldots \cdot F_{\alpha_1}^+$ ($\alpha_1, \ldots, \alpha_s$ — некоторая (+) допустимая последовательность), то этот объект (+) нерегулярен. Более того, последовательность $\alpha_1, \ldots, \alpha_s$ можно так продолжить $\alpha_1, \ldots, \alpha_s, \alpha_{s+1}, \ldots, \alpha_m$, что $F_{\alpha_m}^+ \cdot \ldots \cdot F_{\alpha_{s+1}}^+ \cdot F_{\alpha_s}^+ \cdot \ldots \cdot F_{\alpha_1}^+ = (\Phi^+)^s$.

Теорема 1.3 сразу вытекает из следствия 1.1.

С помощью этой теоремы можно, так же как это сделано в [2] для классификации четверок подпространств, отделить «простые» объекты (нерегулярные) от более «сложных» (регулярных); для исследования регулярных объектов нужны другие методы.

§ 2. Графы, группы Вейля и преобразования Кокстера

В этом параграфе мы введем определения группы Вейля, корней, преобразования Кокстера и докажем нужные нам для дальнейшего результаты. Отметим два отличия нашего изложения от общепринятого.

- а) У нас встречаются только схемы Дынкина с однократными стрелками.
- б) В случае графов с кратными ребрами мы получаем более широкий класс групп, чем, например, в [7].

Определение 2.1. Пусть Г — граф без петель.

1) Обозначим через \mathscr{E}_{Γ} линейное пространство над Q, состоящее из наборов $x=(x_{\alpha})$ рациональных чисел x_{α} ($\alpha\in\Gamma_{0}$).

Для каждого $\beta\in\Gamma_0$ обозначим через $\overline{\beta}$ вектор в \mathscr{E}_Γ такой, что $(\overline{\beta})_\alpha=0$ при $\alpha\neq\beta$ и $(\overline{\beta})_\beta=1$.

Вектор $x=(x_{\alpha})$ мы будем называть *целочисленным*, если $x_{\alpha}\in \mathbf{Z}$ для всех $\alpha\in\Gamma_{0}.$

Вектор $x = (x_{\alpha})$ мы будем называть положительным (обозначение x > 0), если $x \neq 0$ и $x_{\alpha} \geqslant 0$ для всех $\alpha \in \Gamma_0$.

- 2) Обозначим через B квадратичную форму на пространстве \mathscr{E}_{Γ} , определяемую формулой $B(x) = \sum_{\alpha \in \Gamma_0} x_{\alpha}^2 \sum_{l \in \Gamma_1} x_{\gamma_1(l)} \cdot x_{\gamma_2(l)}$, где $x = (x_{\alpha})$, $\gamma_1(l)$ и $\gamma_2(l)$ концы ребра l. Обозначим через $\langle \; , \; \rangle$ соответствующую симметричную билинейную форму.
- 3) Для каждого $\beta \in \Gamma_0$ обозначим через σ_β линейное преобразование в пространстве \mathcal{E}_{Γ} , задаваемое формулами $(\sigma_{\beta}x)_{\gamma} = x_{\gamma}$ при $\gamma \neq \beta$, $(\sigma_{\beta}x)_{\beta} = -x_{\beta} + \sum_{l \in \Gamma} x_{\gamma(l)}$, где $\gamma(l)$ —конец ребра l, отличный от точки β .

Обозначим через W полугруппу преобразований пространства \mathscr{E}_{Γ} , порожденную преобразованиями σ_{β} ($\beta \in \Gamma_{0}$).

Лемма 2.1. 1) Если α , $\beta \in \Gamma_0$, $\alpha \neq \beta$, то $\langle \alpha, \overline{\alpha} \rangle = 1$, $2\langle \overline{\alpha}, \overline{\beta} \rangle = -$ число ребер, соединяющих α и β . 2) Пусть $\beta \in \Gamma_0$. Тогда $\sigma_{\beta}(x) = x - 2\langle \overline{\beta}, x \rangle \overline{\beta}, \sigma_{\beta}^2 = 1$. В частности, W является группой. 3) Группа W сохраняет целочисленную решетку в \mathcal{E}_{Γ} и сохраняет квадратичную форму В. 4) Если форма В положительно определена (т. е. B(x) > 0 при $x \neq 0$), то группа W конечна.

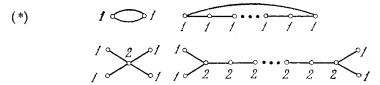
Доказательство. 1), 2), 3) проверяются непосредственно; 4) следует из 3).

Для доказательства теоремы Габриеля интересен случай, когда форма B — положительно определена.

 Π редложение 2.1. Форма B положительно определена для графов $A_n,\,D_n,\,E_6,\,E_7,\,E_8$ и только для них (см. [7], глава VI).

Дадим набросок доказательства этого утверждения.

1. Если граф Г содержит подграф вида



то форма B не будет положительно определенной, так как, дополнив нулями числа, проставленные в вершинах на рисунке (*), мы получим вектор $x \in \mathcal{E}_{\Gamma}$, для которого $B(x) \leqslant 0$. Значит, если форма B положительно определена, граф Γ имеет вид

где p, q, r — некоторые числа, $p, q, r \geqslant 0$.

2. Для каждого неотрицательного целого числа p рассмотрим квадратичную форму от (p+1) переменного x_1, \ldots, x_{p+1}

$$C_p(x_1, \ldots, x_{p+1}) = -x_1x_2 - x_2x_3 - \ldots - x_px_{p+1} + x_1^2 + \ldots + x_p^2 + \frac{p}{2(p+1)}x_{p+1}^2.$$

Эта форма неотрицательно определена и размерность пространства ее нулей равна 1. Кроме того, у любого вектора $x \neq 0$, для которого $C_p(x) = 0$, все координаты отличны от 0.

Для доказательства этих фактов достаточно переписать $C_p(x)$ в виде

$$C_{p}(x) = \sum_{i=1}^{p} \frac{i}{2(i+1)} \left(x_{i+1} - \frac{i+1}{i} x_{i}\right)^{2}.$$

3. Расставим числа $x_1, \ldots, x_p, y_1, \ldots, y_q, z_1, \ldots, z_r, a$ на вершинах графа Γ в соответствии с рисунком (**). Тогда

$$B(x_i, y_i, z_i, a) = C_p(x_1, \ldots, x_p, a) + C_q(y_1, \ldots, y_q, a) + C_r(z_1, \ldots, z_r, a) + \left(1 - \frac{p}{2(p+1)} - \frac{q}{2(q+1)} - \frac{r}{2(r+1)}\right)a^2.$$

Отсюда ясно, что форма B положительно определена тогда и только тогда, когда $\frac{p}{2\,(p+1)}+\frac{q}{2\,(q+1)}+\frac{r}{2\,(r+1)}<1$, т. е. $\frac{1}{p+1}+\frac{1}{q+1}+\frac{1}{r+1}>1$.

- 4. Можно считать, что $p \leqslant q \leqslant r$. Разберем возможные случаи.
- а) p=0, q, r- любые. $A=\frac{1}{p+1}+\frac{1}{q+1}+\frac{1}{r+1}>1$, т. е. форма B положительно определена (серия A_n).
 - б) p=1, q=1, r-любое. A>1 (серия D_n),
 - B) p=1, q=2, r=2, 3, 4. A>1 (E_6 , E_7 , E_8),
 - r) $p = 1, q = 2, r \ge 5.$ $A \le 1,$ $p = 1, q = 3, r \ge 3.$ $A \le 1,$ $p \ge 2, q \ge 2, r \ge 2.$ $A \le 1.$

Итак, форма B положительно определена для графов $A_n,\,D_n,\,E_6,\,E_7,\,E_8$ и только для них.

Определение 2.2. Вектор $x \in \mathcal{E}_{\Gamma}$ называется корнем, если для некоторых $\beta \in \Gamma_0$, $w \in W$ имеем $x = w\overline{\beta}$. Векторы $\overline{\beta}$ ($\beta \in \Gamma_0$) называются простыми корнями. Корень x называется положительным, если x > 0 (см. определение 2.1).

 $JI \ e \ m \ a \ 2.2.$ 1) Eсли x - корень, то <math>x - целочисленный вектор $u \ B(x) = 1.$ 2) Eсли $x \ корень, то <math>(-x) -$ корень. 3) Eсли $x \ корень, то либо <math>x > 0$ либо (-x) > 0.

Доказательство. Пункт 1) следует из леммы 2.1; 2) следует из того, что $\sigma_{\alpha}(\overline{\alpha}) = -\overline{\alpha}$ для всех $\alpha \in \Gamma_0$.

 Π ункт 3) нам понадобится только для того случая, когда форма B положительно определена. Поэтому мы докажем его только в этом случае.

Можно записать корень x в виде $\sigma_{\alpha_1}\sigma_{\alpha_2}\dots\sigma_{\alpha_k}\overline{\beta}$, где α_1,\dots,α_k , $\beta\in\Gamma_0$. Поэтому достаточно показать, что, если корень y>0 и $\alpha\in\Gamma_0$, то либо $\sigma_{\alpha}y>0$ либо $y=\overline{\alpha}$ (и $-\sigma_{\alpha}y=+\overline{\alpha}>0$).

Поскольку $\|y\| = \|\overline{\alpha}\| = 1$, то $|\langle \overline{\alpha}, y \rangle| \le 1$. Кроме того, $2\langle \overline{\alpha}, y \rangle \in \mathbb{Z}$. Значит, $2\langle \overline{\alpha}, y \rangle$ принимает одно из пяти значений 2, 1, 0, -1, -2.

- а) $2\langle \overline{\alpha}, y \rangle = 2$. Тогда $\langle \overline{\alpha}, y \rangle = 1$, т. е. $y = \overline{\alpha}$.
- б) $2\langle \overline{\alpha}, y \rangle \leqslant 0$. Тогда $\sigma_{\alpha}(y) = y 2\langle \overline{\alpha}, y \rangle \overline{\alpha} > 0$.
- в) $2\langle \alpha, y \rangle = 1$. Поскольку $2\langle \overline{\alpha}, y \rangle = 2y_{\alpha} \sum_{l \in \Gamma^{\alpha}} y_{\gamma(l)} (\gamma(l) \text{другой конец})$

ребра l), то $y_{\alpha} > 0$, т. е. $y_{\alpha} \gg 1$. Поэтому $\sigma_{\alpha} y = y - \overline{\alpha} > 0$. Лемма 2.2 доказана.

Определение 2.3. Пусть Γ — граф без петель, $\alpha_1, \ldots, \alpha_n$ — некоторая нумерация его вершин. *Преобразованием Кокстера* называется элемент группы W $c = \sigma_{\alpha_n} \cdot \ldots \cdot \sigma_{\alpha_1}$ (c зависит от выбора нумерации).

 Π е м м а 2.3. Если форма B для графа Γ положительно определена, то

- 1) Преобразование с в пространстве \mathscr{E}_{Γ} не имеет ненулевых инвариантных векторов.
- 2) Если $x \in \mathscr{E}_{\Gamma}, x \neq 0$, то для некоторого і вектор c^i х не положителен. Доказательство. 1) Пусть $y \in \mathscr{E}_{\Gamma}, y \neq 0$ и cy = y. Поскольку пре-

образования σ_{α_n} , $\sigma_{\alpha_{n-1}}$, ..., σ_{α_2} не меняют координаты, соответствующей α_1 (т. е. для любого $z \in \mathscr{E}_{\Gamma}$ ($\sigma_{\alpha_i z}$) $_{\alpha_1} = z_{\alpha_1}$ при $i \neq 1$), то ($\sigma_{\alpha_1 y}$) $_{\alpha_1} = (cy)_{\alpha_1} = y_{\alpha_1}$. Значит, $\sigma_{\alpha_1 y} = y$. Аналогично доказывается, что $\sigma_{\alpha_2 y} = y$, затем $\sigma_{\alpha_3 y} = y$ и т. д.

Для всех $\alpha \in \Gamma_0$ $\sigma_{\alpha} y = y - 2$ $\langle \overline{\alpha}, y \rangle \overline{\alpha} = y$, т. е. $\langle \overline{\alpha}, y \rangle = 0$. Так как векторы $\overline{\alpha}$ ($\alpha \in \Gamma_0$) образуют базис в \mathscr{E}_{Γ} , а форма B невырождена, то y = 0.

2) Поскольку группа W конечна, для некоторого h имеем $c^h=1$. Если все векторы $x, cx, \ldots, c^{h-1}x$ положительны, то вектор $y=x+cx+\ldots+c^{h-1}x$ отличен от 0. При этом cy=y, что противоречит п. 1).

§ 3. Теорема Габриеля

Пусть (Γ, Λ) — ориентированный граф. Для каждого объекта $V \in \mathcal{L}(\Gamma, \Lambda)$ набор размерностей dim V_{α} мы будем рассматривать как вектор из \mathcal{E}_{Γ} и обозначать через dim V.

Теорема 3.1 (Габриель [1]). 1) Если в категории $\mathcal{L}(\Gamma, \Lambda)$ имеется лишь конечное число неизоморфных неразложимых объектов, то граф Γ совпадает с одним из графов A_n, D_n, E_6, E_7, E_8 .

2) Пусть Γ — граф одного из типов A_n , D_n , E_6 , E_7 , E_8 , Λ — некоторая его ориентация. Тогда в категории $\mathcal{L}(\Gamma, \Lambda)$ имеется конечное число неизоморфных неразложимых объектов. При этом отображение $V \mapsto \dim V$ устанавливает взаимно однозначное соответствие между классами изоморфных неразложимых объектов и положительными корнями в \mathcal{E}_{Γ} .

Сначала приведем принадлежащее Титсу доказательство первой части теоремы.

Доказательство Титса. Рассмотрим объекты $(V, f) \in \mathcal{L}(\Gamma, \Lambda)$ с фиксированной размерностью dim $V = m = (m_{\alpha})$.

Если фиксировать в каждом из пространств V_{α} базис, то объект (V, f) полностью задается набором матриц A_l $(l \in \Gamma_l)$, где A_l — матрица отображения f_l : $V_{\alpha_n^{(l)}} \to V_{\beta(l)}$. Произведем в каждом пространстве V_{α} замену базиса при помощи невырожденной матрицы g_{α} размера $m_{\alpha} \times m_{\alpha}$. Тогда матрицы A_l заменятся на матрицы

$$A'_{l} = g_{\beta(l)}^{-1} A_{l} g_{\alpha(l)}.$$

Пусть A — многообразие всех наборов матриц A_l ($l \in \Gamma_1$), G — группа всех наборов невырожденных матриц g_{α} ($\alpha \in \Gamma_0$). Тогда группа G действует на A по формуле (*); ясно, что два объекта из $\mathcal{L}(\Gamma, \Lambda)$ с заданной размерностью m изоморфны тогда и только тогда, когда соответствующие им наборы матриц $\{A_l\}$ лежат на одной орбите группы G.

Если в категории $\mathcal{L}(\Gamma, \Lambda)$ лишь конечное число неразложимых объектов, то имеется лишь конечное число неизоморфных объектов размерности m. Поэтому многообразие A разбивается на конечное число орбит группы G. Отсюда следует 1), что dim $A \leqslant \dim G - 1$ (-1 появляется за счет того, что в G есть одномерная подгруппа $G_0 = \{g(\lambda) | \lambda \in K^*\}$, $g(\lambda)_{\alpha} = \lambda \cdot 1_{V_{\alpha}}$,

которая действует на A тождественно). Ясно, что $\dim G = \sum_{\alpha \in \Gamma_0} m_{\alpha}^2$, $\dim A = \sum_{l \in \Gamma_1} m_{\alpha(l)} m_{\beta(l)}$.

Поэтому условие dim $A \leq \dim G - 1$ можно переписать в виде 2) B(m) > 0 (если $m \neq 0$). Кроме того, легко проверить, что $B((x_{\alpha})) \geqslant B((|x_{\alpha}|))$ для всех $x = (x_{\alpha}) \in \mathcal{E}_{\Gamma}$.

Таким образом, мы показали, что если в категории $\mathcal{L}(\Gamma, \Lambda)$ конечное число неразложимых объектов, то форма B в пространстве \mathcal{E}_{Γ} положительно определена.

Как показано в предложении 2.1, это выполнено только для графов A_n, D_n, E_6, E_7, E_8 .

Докажем теперь вторую часть теоремы Габриеля.

Лемма 3.1. Пусть (Γ, Λ) —ориентированный граф, вершина $\beta \in \Gamma_0$ (+) допустима относительно ориентации Λ и $V \in \mathcal{L}(\Gamma, \Lambda)$ —неразложимый

¹⁾ Это рассуждение годится только для бесконечного поля K. В случае, когда $K=\mathbf{F}_q$ — конечное поле, надо воспользоваться тем, что число неизоморфных объектов размерности m растет не быстрее, чем полином от m, а число орбит группы G на многообразии A не меньше, чем $C \cdot q^{\dim A - (\dim G - 1)}$.

²⁾ Ясно, что мы можем ограничиться рассмотрением графов без петель.

объект. Тогда либо $F_{\beta}^{+}((V)$ —неразложимый объект $u \dim F_{\beta}^{+}(V) = \sigma_{\beta}$ (dim V), либо $V = L_{\beta}$, $F_{\beta}^{+}(V) = 0$, dim $F_{\beta}^{+}(V) \neq \sigma_{\beta}$ (dim V) < 0. Аналогичное утверждение выполнено для (—) допустимой вершины α u функтора F_{α}^{-} .

Эта лемма является переформулировкой теоремы 1.1.

Следствие 3.1. Пусть последовательность вершин $\alpha_1, \ldots, \alpha_k$ (+) допустима относительно ориентации $\Lambda, V \in \mathcal{L}(\Gamma, \Lambda)$ —неразложимый объект. Положим $V_j = F_{\alpha_j}^+ F_{\alpha_{j-1}}^+ \cdot \ldots \cdot F_{\alpha_1}^+ V$, $m_j = \sigma_{\alpha_j} \sigma_{\alpha_{j-1}} \cdot \ldots \cdot \sigma_{\alpha_1} (\dim V)$ $(0 \leqslant j \leqslant k)$. Пусть i—последний такой индекс, что $m_j > 0$ при $j \leqslant i$. Тогда при $j \leqslant i$ V_j —неразложимые объекты, причем $V = F_{\alpha_1}^- \cdot \ldots \cdot F_{\alpha_j}^- V_j$. Если $i \leqslant k$, то $V_{i+1} = V_{i+2} = \ldots = V_k = 0$, $V_i = L_{\alpha_{i+1}}$, $V = F_{\alpha_1}^- \cdot \ldots \cdot F_{\alpha_i}^- (L_{\alpha_{i+1}})$. Аналогичные утверждения верны при замене (+) на (-).

Покажем теперь, что в случае графа Γ типа A_n , D_n , E_6 , E_7 или E_8 (т. е. в случае, когда форма B положительно определена) неразложимые объекты соответствуют положительным корням.

а) Пусть $V \in \mathcal{L}(\Gamma, \Lambda)$ —неразложимый объект.

Выберем нумерацию α_1 , α_2 , . . . , α_n вершин графа Γ так, чтобы для любого ребра $l \in \Gamma_1$ вершина $\alpha(l)$ имела номер больше, чем $\beta(l)$. Пусть $c = \sigma_{\alpha_n} \cdot \ldots \cdot \sigma_{\alpha_1}$ — соответствующее преобразование Кокстера.

Согласно лемме 2.3 для некоторого k вектор $c^k(\dim V) \in \mathscr{E}_{\Gamma}$ не положителен.

Если рассмотреть (+) допустимую последовательность β_1 , β_2 , ..., $\beta_{nk} = (\alpha_1, \ldots, \alpha_n, \alpha_1, \ldots, \alpha_n, \ldots, \alpha_1, \ldots, \alpha_n)$ (k раз), то имеем $\sigma_{\beta_{nk}} \cdot \ldots \cdot \sigma_{\beta_1} (\dim V) = c^k (\dim V) \geqslant 0$. Из следствия 3.1 вытекает, что найдется такой индекс i < kn (зависящий только от $\dim V$), что объект $V = F_{\overline{\beta_1}} \cdot F_{\overline{\beta_2}} \cdot \ldots \cdot F_{\overline{\beta_i}} (L_{\beta_{i+1}})$, $\dim V = \sigma_{\beta_1} \cdot \ldots \cdot \sigma_{\beta_i} (\overline{\beta}_{i+1})$. Отсюда следует, что $\dim V$ — положительный корень, причем V определяется по вектору $\dim V$.

б) Пусть х — положительный корень.

В силу леммы $2.3 c^h x > 0$ для некоторого k. Рассмотрим (+) допустимую последовательность $\beta_1, \beta_2, \ldots, \beta_{nh} = (\alpha_1, \ldots, \alpha_n, \ldots, \alpha_1, \ldots, \alpha_n)$ (k раз). Тогда $\sigma_{\beta_{nh}} \cdot \ldots \cdot \sigma_{\beta_1}(x) = c^h(x) > 0$. Пусть i — последний индекс, для которого $\sigma_{\beta_i}\sigma_{\beta_{i-1}} \cdot \ldots \cdot \sigma_{\beta_1}(x) > 0$. Как видно из доказательства леммы 2.2 п. 3), $\sigma_{\beta_i} \cdot \ldots \cdot \sigma_{\beta_4}(x) = \overline{\beta}_{i+1}$.

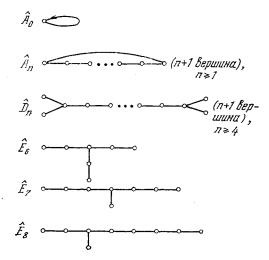
Из следствия 3.1 вытекает, что $V = F_{\bar{\beta}_1} F_{\bar{\beta}_2} \cdot \ldots \cdot F_{\bar{\beta}_i} (L_{\beta_{i+1}}) \in \mathcal{L} (\Gamma, \Lambda)$ — неразложимый объект, причем dim $V = \sigma_{\beta_1} \cdot \ldots \cdot \sigma_{\beta_i} (\bar{\beta}_{i+1}) = x$.

Доказательство теоремы Габриеля закончено.

Замечание 1. В случае, когда форма B положительно определена, множество корней совпадает с множеством целочисленных векторов $x \in \mathcal{E}_{\Gamma}$, для которых B(x) = 1 (это легко усмотреть из леммы 2.3 и доказательства леммы 2.2).

Замечание 2. Интересно рассмотреть категории $\mathcal{L}(\Gamma, \Lambda)$, для которых канонический вид объекта размерности m зависит меньше, чем от $C \cdot |m|^2$ параметров (здесь $|m| = \sum |m_{\alpha}|$, $\alpha \in \Gamma_0$). Из приведенного доказательства видно, что для этого необходимо, чтобы форма B была неотрицательно определенной.

Аналогично предложению 2.1 можно показать, что форма B неотрицательно определена у графов A_n, D_n, E_6, E_7, E_8 и $\hat{A}_0, \hat{A}_n, \hat{D}_n, \hat{E}_6, \hat{E}_7, \hat{E}_8$, где



(графы \hat{A}_n , \hat{D}_n , $\hat{E_6}$, $\hat{E_7}$, $\hat{E_8}$ являются расширенными схемами Дынкина (см. [7])).

В недавней работе Л. А. Назаровой дана классификация неразложимых объектов для этих графов. Кроме того, там показано, что такая классификация для остальных графов содержит в себе классификацию пары некоммутирующих операторов (т. е. в некотором смысле дать такую классификацию невозможно).

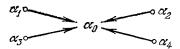
§ 4. Некоторые открытые вопросы

Пусть Γ — конечный связный граф без петель, Λ — пекоторая его ориентация.

 Γ и п о т е з а. 1) Пусть $x \in \mathcal{E}_{\Gamma}$ — целочисленный вектор, x > 0, B(x) > 0 и x — не корень. Тогда любой объект $V \in \mathcal{L}(\Gamma, \Lambda)$, для которого dim V = x, разложим.

- 2) Если x положительный корень, то существует ровно один (с точностью до изоморфизма) неразложимый объект $V \in \mathcal{L}(\Gamma, \Lambda)$, для которого $\dim V = x$.
- 3) Если V неразложимый объект в $\mathcal{L}(\Gamma, \Lambda)$ и $B(\dim V) \leqslant 0$, то существует бесконечное число неизоморфных неразложимых объектов $V' \in \mathcal{L}(\Gamma, \Lambda)$ с dim $V' = \dim V$ (мы считаем, что поле K бесконечно).
- 4) Если Λ и Λ' две ориентации графа Γ , $V \in \mathcal{L}(\Gamma, \Lambda)$ неразложимый объект, то существует неразложимый объект $V' \in \mathcal{L}(\Gamma, \Lambda')$ такой, что $\dim V' = \dim V$.

Проиллюстрируем эту гипотезу на примере графа (Γ , Λ)



(четверка подпространств).

Для каждого $x\in \mathscr{E}_{\Gamma}$ положим $\rho(x)\!=\!-2\langle\overline{\alpha}_0,\,x\rangle$ (если $x=\!(x_0,\,x_1,\,x_2,\,x_3,\,x_4)$, то $\rho(x)\!=\!x_1+x_2+x_3+x_4-2x_0).$

В работе [2] описаны все неразложимые объекты в категории $\mathcal{L}(\Gamma, \Lambda)$. Они бывают следующих типов.

- 1. Нерегулярные неразложимые объекты (см. конец § 1). Такие объекты однозначно соответствуют положительным корням $x \in \rho(x) \neq 0$.
- 2. Регулярные неразложимые объекты V, для которых $B(\dim V)\neq 0$. Эти объекты однозначно соответствуют положительным корням x, для которых $\rho(x)=0$.
- 3. Регулярные объекты V, для которых $B(\dim V)=0$. В этом случае $\dim V$ имеет вид $\dim V=(2n,\ n,\ n,\ n,\ n)$, $\rho(\dim V)=0$. Неразложимые объекты с фиксированной размерностью $m=(2n,\ n,\ n,\ n,\ n)$ зависят от одного параметра. При этом если $m\in\mathscr{E}_\Gamma$ такой целочисленный вектор, что m>0 и B(m)=0, то m имеет вид $m=(2n,\ n,\ n,\ n,\ n)(n>0)$ и существуют неразложимые объекты V с $\dim V=m$.

Если f — линейное преобразование в n-мерном пространстве, состоящее из одной жордановой клетки, то соответствующая ему четверка подпространств (см. введение) будет четверкой 3-го типа.

ЛИТЕРАТУРА

- [1] P. G a b r i e l, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
- [2] I. M. Gelfand, V. A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Colloquia Mathematica Societatis Ianos. Bolyai, 5 Hilbert space operators, Tihany (Hungary), 1970, 163—237. (Краткое изложение см. ДАН 197:4 (1971), 762—765.)
- [3] Л. А. Назарова, А. В. Ройтер, Представления частично упорядоченных множеств, Сб. «Исследования по теории представлений», Ленинград, «Наука», 1972, 5—31.
- [4] I. Gelfand, The Cohomology of Infinite dimensional Lie Algebras, Actes Congrès Intern. Math. 1 (1970), 95-111.
- [5] И. М. Гельфанд, В. А. Пономарев, Неразложимые представления группы Лоренца, УМН 23:3 (1968), 3—60.
- [6] Ч. Кэртис, И. Райнер, Теория представлений конечных групп и ассоциативных алгебр, М., «Наука», 1969.
- [7] Н. Бурбаки, Группы и алгебры Ли, М., «Мир», 1972.

Поступило в редакцию 18 декабря 1972 г.