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COHOMOLOGIES OF THE KLEINIAN 4-GROUP
YURIY A. DROZD AND ANDRIANA I. PLAKOSH

ABSTRACT. We calculate explicitly the cohomologies of all G-lattices,
where G is the Kleinian 4-group.

INTRODUCTION

The calculation of cohomologies of a given group is an important and
interesting, but usually a cumbersome problem. So only some cases
are known where such calculations were made for a rather wide class
of modules. If the group is finite, a special interest is in cohomologies
of lattices, i.e. G-modules which are finitely generated and torsion free
as groups. They are of importance, for example, in the theory of crys-
tallographic groups and of Chernikov groups. Certainly, if we want to
know all cohomologies of lattices, one would like to have a classification
of G-lattices. In the case of finite p-groups, such classification is only
known for cyclic groups of order p and p? for a prime p [4, § 34B, § 34C],
for the cyclic group of order 8 [I1] and for the Kleinian 4-group [} [9].
In other cases such a classification is wild, i.e. includes a description
of representations of all finite dimensional algebras. In the first above
mentioned case there are only finitely many indecomposable represen-
tations, the cohomologies H "(G,m) are periodic of period 2, so the
answer can be easily obtained. It was used in [7], where a complete list
of Chernikov p-groups with the cyclic top of order p or p? was obtained.
For the Kleinian group the question becomes much more complicated,
since, first, there are infinitely many non-isomorphic indecomposable
lattices, and, second, the cohomologies are no more periodic. In this
paper we use the description of indecomposable lattices from [9] and
some general facts about cohomologies of p-groups and give a complete
description of cohomologies of lattices over the Kleinian group.

It is known that for the Kleinian 4-group G every Z,G-lattice, where
Zs is the ring of p-adic integers, coincides with the 2-adic completion
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M, of some ZG-lattice M, and M, ~ Ny if and only if M ~ N (cf. [8]).
As H"(G, M) = H"(G, M,), we only have to consider the Z,G-lattices.

1. PRELIMINARIES

In this section we establish some results on Auslander—Reiten trans-
late and cohomologies of p-groups.

Let R be a local complete noetherian ring, equidimensional of Krull
dimension 1 and without nilpotent elements, R-lat be the category of
R-lattices, i.e. maximal Cohen—Macaulay R-modules or, equivalently,
torsion free R-modules. It is known that R has a canonical module
wr € R-lat such that the functor D = Hompg(_,wg) is an exact duality
on the category R-lat [3 Corollary 3.3.8]. In particular, it induces a
bijection on the set R-ind of isomorphism classes of indecomposable
R-lattices.

Recall that an Auslander—Reiten sequence in R-lat is a non-split
exact sequence

(AR) 0=M 5 NS M0,

where M and M’ are indecomposable R-lattices and

e for every homomorphism £ : L — M, where L is an indecompos-
able R-lattice and £ is not an isomorphism, there is &’ : L — N
such that & = a&’;
e for every homomorphism n : M’ — L, where L is an inde-
composable R-lattice and 7 is not an isomorphism, there is
n' : N — L such that n = n’ﬁﬁ
In this case M and M’ define one another up to an isomorphism.
They are denoted: M’ = 7sM and M = TglM’ . 7R is called the
Auslander—Reiten translate for R-lattices. It is known [I] that for every
indecomposable R-lattice M % R (for every indecomposable R-lattice
M' # wg) there is an Auslander-Reiten sequence ([AR]), so TR M (re-
spectively, TglM’) is defined. If R is Gorenstein, i.e. wg >~ R, g
induces a bijection on the set R-ind\{R}.

Let in the Auslander—Reiten sequence (AR) N = @.", N;, where N;
are indecomposable, «; : N; — M and 5; : M' — Nj; be the components
of a and § with respect to this decomposition. The Auslander—Reiten
quiver of the category R-lat is a quiver whose vertices are the isomor-
phism classes of indecomposable R-lattices and arrows are given by the
following rules:

11t is known (see, for instance, [2]) that each of these two conditions implies the
other.
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o If M # R, the arrows ending in M are just a; : N; — M.

o If M' % wp, the arrows starting in M are just ; : M — N,.

e Ifrad R = @le @i, where @); are indecomposable, the arrows
ending in R are just the embeddings ¢; : Q; — R.

e The arrows starting in wg are just Di; : DQ; — wg.

We denote by QM the syzygy of M, i.e. the kernel of an epimorphism
¢ : P — M, where P is projective and Kerp C rad P. Again, if R
is Gorenstein, € induces a bijection on the set R-ind\{R}. So in this
case Q' M is well defined for any indecomposable lattice M % R.

Proposition 1.1. If R is Gorenstein, TrRM ~ QM for every indecom-
posable R-lattice M # R.

Proof. For an indecomposable R-lattice M % R, consider a minimal

projective presentation P; KN Py % M — 0, i.e. an exact sequence,
where Py, P, are projective and both Ker¢ C rad Py and Kerty C
rad P;. Then Kerp = QM. Let N = Kert. Set Tr M = Coker Dy =
DN. Then there is an Auslander—Reiten sequence (ARI), where M’ =

DQTr M [1]. Since the exact sequence DB, 2% DP, — DN — 0 is
a minimal projective resolution of DN, we have that Q2 Tr M = Im Dy
and DQTr M = D(Im D) = Im ¢ = Ker p = QM. O

Recall that if R is Gorenstein and not regular there is a unique ring
A D R such that A/R ~ R/rad R, A € R-lat (hence A-lat is a full
subcategory of R-lat) and every indecomposable R-lattice M # R is an
A-lattice. A is called the minimal overring of R (see [5]). By duality,
DA ~ rad R.

Proposition 1.2. Let the ring R be Gorenstein and non-reqular, A be
the minimal overring of R.

(1) If 0 — M’ 5 N % M — 0 is an Auslander—Reiten sequence in
A-lat, it is also an Auslander—Reiten sequence in R-lat.

(2) Let M be an indecomposable A-lattice. If M # A, then TRM =
TaM, and if M # wa, then 7'M = 7, M.

Proof. (1) Let L be an indecomposable R-lattice, £ : L — M be not an
isomorphism. If L 2 R, it is an A-lattice, hence there is a homomor-
phism &' : L — N such that £ = a&’. If L = R, such a homomorphism
exists since R is projective. Let now n : M’ — L be not an isomor-
phism. Again, if L % R, there is ' : N — L such that n = n/f.
If L =R, Imp € rad R and rad R € A-lat, which implies again the
existence of 7.

(2) is an immediate consequence of (1). O
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From now on R = Z,G, where G is a finite commutative p-group. It
is local, Gorenstein, non-regular and R/rad R ~ F, (with the trivial
action). Let A be the minimal overring of R.

Proposition 1.3. 7 A >~ wy4.

Proof. Otherwise T A ~ M for some M # w,. Hence A = TglM =
71 M, which is impossible, since A is a projective A-module. O

Proposition 1.4. Let G = [[;_, G;, where G; are cyclic groups.

n+s—1

F
s—1 P
s—n—2

F
s—1 P

R R if n >0,
H"(G,A) ~ H"(G,F,) ~
if n <0.

Proof. The first isomorphism follows from the exact sequence 0 — R —
A —TF, — 0, since H"(G, R) = 0. The cohomologies of F,, can be easily
calculated using the free resolution of Z described in [6]. Namely, the

latter has a free R-module of rank (”;’:1) as the n-th component and

the image of the differential d, is in the radical, which implies the
result. O
Proposition 1.5. Let M € CM(R), M # R. Then

H™(G, M) ~ H" " (G, 7sM) ~ H" (G, 75" M)
Proof. Tt follows immediately from Proposition [Tl O

Now G is the Kleinian 4-group: G = {(a,b|a* = b® = 1, ab = ba).
Then ZyG has 4 irreducible lattices L,,, where u,v € {+, —}. Namely,
L., = Zs as Zs-module, a acts as ul and b acts as vl.

Proposition 1.6.

(In|/2 + 1)Fy if n # 0 is even,
H™YG, Lyy) =< [|n]/2]F, if n is odd,
7./ ifn=0,

and if (u,v) # (+,4+), then
HY(G, Luw) = ([(In] + 1) /2))F
Proof. 1t is a partial case of [0, Theorem 4.3 & Corollary 4.2]@ O

2 Note that there is an obvious misprint in [6, Theorem 4.3]: in the formula (4.4)
there must be |n| — 2 instead of |n| — 1.
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2. COHOMOLOGIES

In this section R = Z,G, where G is the Kleinian 4-group, A is the
minimal overring of R. Recall the structure of the Auslander—Reiten
quiver of A-lat. It follows from [10] and [9] that this quiver consists of
the preprojective-preinjective component and tubes. The preprojective-
preinjective component has the form

VaYaVavavavay
NAATAAYAY

Here M* denotes TEM. In particular, A’ = w,. Propositions
and imply the following values of cohomologies of these lattices.

Theorem 2.1.

A~ J— 3 >
H“(G,Ak):{(” k+1)F, ifn>Fk,

(k —n)Fy if n < k;
(In—k|/24+ 1D)Fy ifn—k #0is even,
[

H™(G, L) = { [|n — k|/2]F, if n — k is odd,
7.)47 it n = k:
and if (u,v) # (+,4+), then
H"(G, Ly,) = [(In — k| +1)/2]Fs. O

To calculate the cohomologies of the lattices that belong to tubes, we
need the following considerations. Let A be the integral closure of A
in A ®z, Q,. For any A-lattice M the lattice M = AM is a direct
sum @U7UE{+7_} My, where My, ~ (7, M) Ly, for some integers r,, M.

Note that every Zs-submodule of M, is actually an A-submodule.
Lemma 2.2. If M # L, is an indecomposable R-lattice, then H'(G, M) =
(r+ M)Fy

Proof. Recall that HO(G, M) = MS /tr M, where M€ is the set of in-
variants: M¢ = {m € M | gm =m for all g € G }, and tr = > gec 9-
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Note that rad A = 24, hence 2M = radM C M C M. There-
fore, MY D 2M,,. Suppose that m € MY\ 2M,,. Then 7(m) =
m € My, \ 2M,,, where 7 : M — M, is the projection. Hence
My, =Zom’ @ N for some submodule N C M . Let 0 : M — Zom/
be the composition of 7 and the projection M., — Zym'. There is
a homomorphism 7 : Zom' — M which maps m’' to m. Then 6y is
identity on Zym/, so M ~ Zom @® Kerf. As M is indecomposable,
M = Zosm ~ L, ., which is impossible.

Therefore, M® = 2M,,. On the other hand, as Im7 = Almm, it
coincides with the image of the projection M — M, which is M.
Hence 7 is a surjection and its restriction onto ¢rM is also a surjection
trM — trMyy = 4Myy. As trM C M = 2M, ., it implies that
trM = 4M,, and HY(G, M) = 2M,, /AM, . ~ (r,, M)F,. O

Now recall the structure of tubes [9]. Homogeneous tubes are parametrized
by irreducible unital polynomials f € Fylx], f ¢ {z,z — 1}. The tube
T/ is of the form

Tfr*Tf/_*Tf/_‘*Tf/_A...

where r | (T,f) = kd for d = deg f and TRTJ = T,f.

There are also 3 special tubes T7 (j € {2,3,4}). They are of the form
T T T T

where 7"++T2jkl = 7"++T2j]3 = ]f, 7’++T2j]i_l = ]f, 7"++T2j]3_1 =k —1 and

TRTI = TP, 7T =TI

Using Lemma and Proposition [LL5] we obtain the following result
that accomplishes the calculation of cohomologies of lattices over the
Kleinian group.

Theorem 2.3.

H™Y(G,T}) = kdF,, where d = deg f,
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and for every j € {2,3,4}
H™(G,T}) = kT, for both i = 1,2,

kTFy if |n| is even,

[f[n G le =
(G, To_1) (k — 1)Fy if |n| is odd,

kT, if |n| is odd,

HY(G, T ) =
(G, T5_4) (k— 1)Fy if |n| is even.
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