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COHOMOLOGIES OF THE KLEINIAN 4-GROUP

YURIY A. DROZD AND ANDRIANA I. PLAKOSH

Abstract. We calculate explicitly the cohomologies of allG-lattices,
where G is the Kleinian 4-group.

Introduction

The calculation of cohomologies of a given group is an important and
interesting, but usually a cumbersome problem. So only some cases
are known where such calculations were made for a rather wide class
of modules. If the group is finite, a special interest is in cohomologies
of lattices, i.e. G-modules which are finitely generated and torsion free
as groups. They are of importance, for example, in the theory of crys-
tallographic groups and of Chernikov groups. Certainly, if we want to
know all cohomologies of lattices, one would like to have a classification
of G-lattices. In the case of finite p-groups, such classification is only
known for cyclic groups of order p and p2 for a prime p [4, § 34B, § 34C],
for the cyclic group of order 8 [11] and for the Kleinian 4-group [8, 9].
In other cases such a classification is wild, i.e. includes a description
of representations of all finite dimensional algebras. In the first above
mentioned case there are only finitely many indecomposable represen-
tations, the cohomologies Ĥn(G,m) are periodic of period 2, so the
answer can be easily obtained. It was used in [7], where a complete list
of Chernikov p-groups with the cyclic top of order p or p2 was obtained.
For the Kleinian group the question becomes much more complicated,
since, first, there are infinitely many non-isomorphic indecomposable
lattices, and, second, the cohomologies are no more periodic. In this
paper we use the description of indecomposable lattices from [9] and
some general facts about cohomologies of p-groups and give a complete
description of cohomologies of lattices over the Kleinian group.

It is known that for the Kleinian 4-group G every Z2G-lattice, where
Z2 is the ring of p-adic integers, coincides with the 2-adic completion
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M̂2 of some ZG-latticeM , and M̂2 ≃ N̂2 if and only ifM ≃ N (cf. [8]).

As Ĥn(G,M) = Ĥn(G, M̂2), we only have to consider the Z2G-lattices.

1. Preliminaries

In this section we establish some results on Auslander–Reiten trans-
late and cohomologies of p-groups.

Let R be a local complete noetherian ring, equidimensional of Krull
dimension 1 and without nilpotent elements, R-lat be the category of
R-lattices, i.e. maximal Cohen–Macaulay R-modules or, equivalently,
torsion free R-modules. It is known that R has a canonical module

ωR ∈ R-lat such that the functor D = HomR( , ωR) is an exact duality
on the category R-lat [3, Corollary 3.3.8]. In particular, it induces a
bijection on the set R-ind of isomorphism classes of indecomposable
R-lattices.
Recall that an Auslander–Reiten sequence in R-lat is a non-split

exact sequence

(AR) 0 →M ′ β
−→ N

α
−→ M → 0,

where M and M ′ are indecomposable R-lattices and

• for every homomorphism ξ : L→M , where L is an indecompos-
able R-lattice and ξ is not an isomorphism, there is ξ′ : L→ N
such that ξ = αξ′;

• for every homomorphism η : M ′ → L, where L is an inde-
composable R-lattice and η is not an isomorphism, there is
η′ : N → L such that η = η′β.1

In this case M and M ′ define one another up to an isomorphism.
They are denoted: M ′ = τRM and M = τ−1

R M ′. τR is called the
Auslander–Reiten translate for R-lattices. It is known [1] that for every
indecomposable R-lattice M 6≃ R (for every indecomposable R-lattice
M ′ 6≃ ωR) there is an Auslander–Reiten sequence (AR), so τRM (re-
spectively, τ−1

R M ′) is defined. If R is Gorenstein, i.e. ωR ≃ R, τR
induces a bijection on the set R-ind\{R}.

Let in the Auslander–Reiten sequence (AR) N =
⊕m

i=1
Ni, where Ni

are indecomposable, αi : Ni →M and βi :M
′ → Ni be the components

of α and β with respect to this decomposition. The Auslander–Reiten

quiver of the category R-lat is a quiver whose vertices are the isomor-
phism classes of indecomposable R-lattices and arrows are given by the
following rules:

1 It is known (see, for instance, [2]) that each of these two conditions implies the
other.
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• If M 6≃ R, the arrows ending in M are just αi : Ni →M .
• If M ′ 6≃ ωR, the arrows starting in M are just βi :M

′ → Ni.
• If radR =

⊕k

i=1
Qi, where Qi are indecomposable, the arrows

ending in R are just the embeddings ιi : Qi → R.
• The arrows starting in ωR are just Dιi : DQi → ωR.

We denote by ΩM the syzygy of M , i.e. the kernel of an epimorphism
ϕ : P → M , where P is projective and Kerϕ ⊆ radP . Again, if R
is Gorenstein, Ω induces a bijection on the set R-ind\{R}. So in this
case Ω−1M is well defined for any indecomposable lattice M 6≃ R.

Proposition 1.1. If R is Gorenstein, τRM ≃ ΩM for every indecom-

posable R-lattice M 6≃ R.

Proof. For an indecomposable R-lattice M 6≃ R, consider a minimal

projective presentation P1

ψ
−→ P0

ϕ
−→ M → 0, i.e. an exact sequence,

where P0, P1 are projective and both Kerϕ ⊆ radP0 and Kerψ ⊆
radP1. Then Kerϕ = ΩM . Let N = Kerψ. Set TrM = CokerDψ =
DN . Then there is an Auslander–Reiten sequence (AR), where M ′ =

DΩTrM [1]. Since the exact sequence DP0

Dψ
−−→ DP1 → DN → 0 is

a minimal projective resolution of DN , we have that ΩTrM = ImDψ
and DΩTrM = D(ImDψ) = Imψ = Kerϕ = ΩM . �

Recall that if R is Gorenstein and not regular there is a unique ring
A ⊃ R such that A/R ≃ R/ radR, A ∈ R-lat (hence A-lat is a full
subcategory of R-lat) and every indecomposable R-latticeM 6≃ R is an
A-lattice. A is called the minimal overring of R (see [5]). By duality,
DA ≃ radR.

Proposition 1.2. Let the ring R be Gorenstein and non-regular, A be

the minimal overring of R.

(1) If 0 →M ′ β
−→ N

α
−→M → 0 is an Auslander–Reiten sequence in

A-lat, it is also an Auslander–Reiten sequence in R-lat.
(2) Let M be an indecomposable A-lattice. If M 6≃ A, then τRM =

τAM , and if M 6≃ ωA, then τ
−1

R M = τ−1

A M .

Proof. (1) Let L be an indecomposable R-lattice, ξ : L→ M be not an
isomorphism. If L 6≃ R, it is an A-lattice, hence there is a homomor-
phism ξ′ : L → N such that ξ = αξ′. If L = R, such a homomorphism
exists since R is projective. Let now η : M ′ → L be not an isomor-
phism. Again, if L 6≃ R, there is η′ : N → L such that η = η′β.
If L = R, Im β ∈ radR and radR ∈ A-lat, which implies again the
existence of η′.
(2) is an immediate consequence of (1). �
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From now on R = ZpG, where G is a finite commutative p-group. It
is local, Gorenstein, non-regular and R/ radR ≃ Fp (with the trivial
action). Let A be the minimal overring of R.

Proposition 1.3. τRA ≃ ωA.

Proof. Otherwise τRA ≃ M for some M 6≃ ωA. Hence A = τ−1

R M =
τ−1

A M , which is impossible, since A is a projective A-module. �

Proposition 1.4. Let G =
∏s

i=1
Gi, where Gi are cyclic groups.

Ĥn(G,A) ≃ Ĥn(G,Fp) ≃















(

n + s− 1

s− 1

)

Fp if n ≥ 0,
(

s− n− 2

s− 1

)

Fp if n < 0.

Proof. The first isomorphism follows from the exact sequence 0 → R →
A→ Fp → 0, since Ĥn(G,R) = 0. The cohomologies of Fp can be easily
calculated using the free resolution of Z described in [6]. Namely, the
latter has a free R-module of rank

(

n+s−1

s−1

)

as the n-th component and
the image of the differential dn is in the radical, which implies the
result. �

Proposition 1.5. Let M ∈ CM(R), M 6≃ R. Then

Ĥn(G,M) ≃ Ĥn+1(G, τRM) ≃ Ĥn−1(G, τ−1

R M)

Proof. It follows immediately from Proposition 1.1. �

Now G is the Kleinian 4-group: G = 〈a, b | a2 = b2 = 1, ab = ba〉.
Then Z2G has 4 irreducible lattices Luv, where u, v ∈ {+,−}. Namely,
Luv = Z2 as Z2-module, a acts as u1 and b acts as v1.

Proposition 1.6.

Ĥn(G,L++) =











(|n|/2 + 1)F2 if n 6= 0 is even,

[|n|/2]F2 if n is odd,

Z/4Z if n = 0,

and if (u, v) 6= (+,+), then

Ĥn(G,Luv) = ([(|n|+ 1)/2])F2

Proof. It is a partial case of [6, Theorem 4.3 & Corollary 4.2].2 �

2Note that there is an obvious misprint in [6, Theorem 4.3]: in the formula (4.4)
there must be |n| − 2 instead of |n| − 1.
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2. Cohomologies

In this section R = Z2G, where G is the Kleinian 4-group, A is the
minimal overring of R. Recall the structure of the Auslander–Reiten
quiver of A-lat. It follows from [10] and [9] that this quiver consists of
the preprojective-preinjective component and tubes. The preprojective-
preinjective component has the form

L2
++

��✱
✱✱
✱✱
✱✱
✱✱
✱✱

L1
++

��✱
✱✱
✱✱
✱✱
✱✱
✱✱

L++

��✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰

L−1
++

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

L−2
++

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

L−3
++

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

L2
+−

��✿
✿✿

✿✿
L1
+−

��✿
✿✿

✿✿
L+−

��✽
✽✽

✽✽
L−1
+−

��❂
❂❂

❂❂
L−2
+−

��❂
❂❂

❂❂
L−3
+−

��❃
❃❃

❃❃
❃

· · ·

GG✏✏✏✏✏✏✏✏✏✏✏✏✏

??������

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

��❃
❃❃

❃❃
❃ A2

HH✒✒✒✒✒✒✒✒✒✒✒

AA☎☎☎☎☎

��✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱

��✿
✿✿

✿✿
A1

HH✒✒✒✒✒✒✒✒✒✒✒✒

AA☎☎☎☎☎

��✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱

��✿
✿✿

✿✿
✿ A

II✓✓✓✓✓✓✓✓✓✓✓✓

BB✝✝✝✝✝

��✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰

��✽
✽✽

✽✽
A−1

HH✏✏✏✏✏✏✏✏✏✏✏✏

@@✁✁✁✁✁

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

��❂
❂❂

❂❂
❂ A−2

HH✏✏✏✏✏✏✏✏✏✏✏✏

@@✁✁✁✁✁

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

��❂
❂❂

❂❂
❂ · · ·

L2
−+

AA☎☎☎☎☎
L1
−+

AA☎☎☎☎☎
L
−+

BB✝✝✝✝✝✝
L−1
−+

@@✁✁✁✁✁✁
L−2
−+

@@✁✁✁✁✁✁
L−3
−+

??������

L2
−−

HH✒✒✒✒✒✒✒✒✒✒✒✒
L1
−−

HH✒✒✒✒✒✒✒✒✒✒✒✒
L
−−

II✓✓✓✓✓✓✓✓✓✓✓✓
L−1
−−

HH✏✏✏✏✏✏✏✏✏✏✏✏
L−2
−−

HH✏✏✏✏✏✏✏✏✏✏✏✏
L−3
−−

GG✏✏✏✏✏✏✏✏✏✏✏✏

Here Mk denotes τkRM . In particular, A1 = ωA. Propositions 1.5
and 1.6 imply the following values of cohomologies of these lattices.

Theorem 2.1.

Ĥn(G,Ak) =

{

(n− k + 1)F2 if n ≥ k,

(k − n)F2 if n < k;

Ĥn(G,Lk++) =











(|n− k|/2 + 1)F2 if n− k 6= 0 is even,

[|n− k|/2]F2 if n− k is odd,

Z/4Z if n = k;

and if (u, v) 6= (+,+), then

Ĥn(G,Lkuv) = [(|n− k|+ 1)/2]F2. �

To calculate the cohomologies of the lattices that belong to tubes, we
need the following considerations. Let Ã be the integral closure of A
in A ⊗Zp

Qp. For any A-lattice M the lattice M̃ = ÃM is a direct
sum

⊕

u,v∈{+,−}Muv, where Muv ≃ (ruvM)Luv for some integers ruvM .

Note that every Z2-submodule of Muv is actually an Ã-submodule.

Lemma 2.2. IfM 6≃ L++ is an indecomposable R-lattice, then Ĥ0(G,M) =
(r++M)F2.

Proof. Recall that Ĥ0(G,M) = MG/trM , where MG is the set of in-
variants: MG = {m ∈M | gm = m for all g ∈ G }, and tr =

∑

g∈G g.
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Note that radA = 2Ã, hence 2M̃ = radM ⊂ M ⊆ M̃ . There-
fore, MG ⊇ 2M++. Suppose that m ∈ MG \ 2M++. Then π(m) =
m′ ∈ M++ \ 2M++, where π : M → M++ is the projection. Hence
M++ = Z2m

′ ⊕N for some submodule N ⊂ M++. Let θ : M → Z2m
′

be the composition of π and the projection M++ → Z2m
′. There is

a homomorphism η : Z2m
′ → M which maps m′ to m. Then θη is

identity on Z2m
′, so M ≃ Z2m ⊕ Ker θ. As M is indecomposable,

M = Z2m ≃ L++, which is impossible.

Therefore, MG = 2M++. On the other hand, as Im π = Ã Im π, it
coincides with the image of the projection M̃ → M++, which is M++.
Hence π is a surjection and its restriction onto trM is also a surjection
trM → trM++ = 4M++. As trM ⊆ MG = 2M++, it implies that

trM = 4M++ and Ĥ0(G,M) = 2M++/4M++ ≃ (r++M)F2. �

Now recall the structure of tubes [9]. Homogeneous tubes are parametrized
by irreducible unital polynomials f ∈ F2[x], f /∈ {x, x− 1}. The tube
T f is of the form

T f1
++
T f2

++
kk T f3

++
kk T f4

**
kk · · ·kk

where r++(T
f
k ) = kd for d = deg f and τRT

f
k = T fk .

There are also 3 special tubes T j (j ∈ {2, 3, 4}). They are of the form

T j11 // T j12 //

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

T j13 //

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

T j14 //

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

//

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

· · ·

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

T j21 // T j22 //

``❆❆❆❆❆❆❆❆

T j23 //

``❆❆❆❆❆❆❆❆

T j24 //

``❆❆❆❆❆❆❆❆

//

``❆❆❆❆❆❆❆❆

· · ·

``❅❅❅❅❅❅❅❅❅

where r++T
j1
2k = r++T

j2
2k = k, r++T

j1
2k−1

= k, r++T
j2
2k−1

= k − 1 and

τRT
j1
k = T j2k , τRT

j2
k = T j1k .

Using Lemma 2.2 and Proposition 1.5, we obtain the following result
that accomplishes the calculation of cohomologies of lattices over the
Kleinian group.

Theorem 2.3.

Ĥn(G, T fk ) = kdF2, where d = deg f,
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and for every j ∈ {2, 3, 4}

Ĥn(G, T ji
2k) = k F2 for both i = 1, 2,

Ĥn(G, T j1
2k−1

) =

{

k F2 if |n| is even,

(k − 1)F2 if |n| is odd,

Ĥn(G, T j2
2k−1

) =

{

k F2 if |n| is odd,

(k − 1)F2 if |n| is even.
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