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9. Cohen–Macaulay modules: generalities 19
10. Kahn’s reduction 21
11. Cohen–Macaulay types: minimal elliptic case 26
12. Cohen–Macaulay types: Q-elliptic case 30
13. Application to hypersurfaces and curves. 32
14. Some conjectures and remarks 33
References 34

Introduction

The aim of this survey is to present recent results on classification of
vector bundles over projective curves and Cohen–Macaulay modules over
surface singularities, mainly obtained by the author in collaboration with
G.-M. Greuel and I.Kashuba [DG3, DGK]. We consider this problem from
the viewpoint of the representation theory, being mainly interested in the
representation type (finite, tame or wild) and, for tame case, in the descrip-
tion of all objects. So we do not deal with stable bundles and related topics,
though something can be done in this direction too (cf. Section 4). We
mostly consider algebras and varieties over an algebraically closed field k,
though some results remain valid in a more general setting.

Recall a history of these investigations. The first general result concern-
ing curve singularities was obtained by H. Jacobinski and independently by
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2 YURIY A. DROZD

A. Roiter and the author [Jac, DR], who gave a criterion for a curve singu-
larity to be of finite Cohen–Macaulay type. We must note that there were
no such words as ‘curve singularity’ or ‘Cohen–Macaulay module’ in these
papers; they were replaced by ‘commutative local ring of Krull dimension
1’ and ‘torsion free module.’ So the first paper, where these results were in-
deed related to curve singularities, was that of G.-M. Greuel and H. Knörrer
[GK], where this criterion obtained the following wonderful form (see also
[Yo], which is a perfect survey on the Cohen–Macaulay finite type):

A curve singularity is Cohen–Macaulay finite if and only if it dominates
a simple plane curve singularity (in the sense of deformation theory, cf.
[AGV]).

This result was extended to hypersurface singularities in [Kn, BGS].
Namely,

A hypersurface singularity is Cohen–Macaulay finite if and only if it is
simple (0-modal), i.e. of type An, Dn (n ∈ N) or En (n = 6, 7, 8) (cf.
[AGV]).

At the same time H. Ésnault and independently M. Auslander [Esn, Aus]
(see also [Yo]) proved that

A surface singularity over an algebraically closed field k of characteristic
0 is Cohen–Macaulay finite if and only if it is a quotient singularity, i.e. is
isomorphic to the ring of invariants k[[x, y]]G, where G is a finite subgroup
of GL(2,k).

By the way, we do not know whether this result has ever been generalized
to the case of positive characteristic.

The first step towards tame case was made by Schappert [Sch], who
proved that a plane curve singularity has at most 1-parameter families of
ideals if and only if it is strictly unimodal [Wall], or, the same, uni- or
bimodal in the sense of [AGV]. In [DG2] this result was extended to all
curve singularities (one only has to replace in Schappert’s theorem ‘it is’
by ‘it dominates’). Nevertheless, most of these singularities happened to
be Cohen–Macaulay wild. Indeed, in [DG1] G.-M. Greuel and the author
showed that

A curve singularity, which is not Cohen–Macaulay finite, is Cohen–Mac-
aulay tame if and only if it dominates one of the singularities of type Tpq.

In characteristic 0 these singularities (all of them are plane) are given by the
equations xp+yq +λx2y2 = 0 (1/p+1/q ≤ 1/2, λ 6= 0; if (pq) = (36) or (44)
some special values of λ must also be excluded). In positive characteristic
the easiest way to define these singularities is by their parameterisations.

The case of surface singularities was first studied by C.Kahn [Kahn].
He proved that the so-called simple elliptic singularities are Cohen–Macau-
lay tame and described Cohen–Macaulay modules over these singularities.
Moreover, he elaborated a very general procedure that relates Cohen–Mac-
aulay modules over a normal surface singularity with vector bundles over
the exceptional curve of its resolution. As for simple elliptic singularities the
latter is an elliptic curve, he only had afterward to apply the classification
of vector bundles over elliptic curves by M.Atiyah [At]. By the way, till
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recently only vector bundles over a projective line [Gro1] and over elliptic
curves have been classified.

To apply Kahn’s technique to other surface singularities one has to know
the corresponding results for vector bundles over projective curves. This
investigation has been accomplished in [DG3] with the following output:

A projective curve is:

• vector bundle finite if it is a configuration of projective lines of type
An (just P1 if n = 1);
• vector bundle tame if it is either an elliptic curve or a configuration

of projective lines of type Ãn (if n = 1 it is a plane nodal cubic);
• vector bundle wild otherwise.

In finite and tame cases a complete description of vector bundles was ob-
tained. These results (with the corresponding definitions and outline of
proofs) are presented in the first part of the paper (Sections 1–8). The tech-
nical background here is that of “matrix problems,” widely used before in
analogous (and lots of other) questions.

The second part (Sections 9–14) consists of applications to surface and
hypersurface singularities (cf. [DGK]). We recall the Kahn’s reduction
since it seems not well known to the audience. Moreover, we extend it to
families of Cohen–Macaulay modules and vector bundles, which is necessary
to deal accurately with tameness and wildness. Then we apply it, together
with the results of the preceding sections, to the so-called minimally elliptic
singularities [Lau]. In this case a complete answer can be obtained:

A minimally elliptic singularity is:

• Cohen–Macaulay tame if it is either simple elliptic or a cusp singu-
larity;
• Cohen–Macaulay wild otherwise.

Here a cusp singularity is a such one that the exceptional curve of its mini-

mal resolution is a configuration of projective lines of type Ãn (the original
definition by F.Hirzebruch [Hir] was different, though equivalent for the
case k = C). For cusp singularities we get a complete description of Cohen–
Macaulay modules. By the way, it also gives possibility to fill up a flaw in
the result for curve singularities, namely to give an explicit classification of
Cohen–Macaulay modules over the singularities of type Tpq. (Recall that
in [DG1] there was no such classification; their tameness was proved indi-
rectly, using considerations from the deformation theory). We also obtain
a description of Cohen–Macaulay modules over the so-called log-canonical
singularities, since they are just quotients of simple elliptic or cusp by finite
groups of automorphisms [Kaw]. There is some strong evidence that these
cases are indeed the only tame ones, all other surface singularities being
Cohen–Macaulay wild.

At last, we consider the case of hypersurface singularities. Combining
our results with the Knörrer periodicity theorem [Kn, Yo], we obtain a
classification of Cohen–Macaulay modules over singularities of type Tpqr,
i.e. given by equations xp + yq + zr + λxyz +Q(t1, . . . , tm) = 0, where Q is
a non-degenerate quadratic form, 1/p + 1/q + 1/r ≤ 1, λ 6= 0 (if (p, q, r) =
(2, 3, 6), (2, 4, 4) or (3, 3, 3), some extra values of λmust be excluded). Again
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there is an evidence that all other hypersurface singularities are Cohen–Mac-
aulay wild.

1. An easy example: vector bundles on P1

A projective line P1 is a union of two affine lines A1
i (i = 0, 1): if (x0 : x1)

are homogeneous coordinates in P1, then A1
i = { (x0 : x1) |xi 6= 0 }. The

affine coordinate on A1
0 is t = x1/x0 and on A1

1 t−1 = x0/x1. Thus we
can identify A1

0 with Speck[t] and A1
1 with Speck[t−1]; their intersection

is then Spec k[t, t−1]. Certainly, any projective module over k[t] is free,
i.e. all vector bundles over an affine line are trivial. Therefore to define
a vector bundle over P1 one only has to prescribe its rank r and a gluing
matrix A ∈ GL(r,k[t, t−1]). Changing bases in free modules over k[t] and
k[t−1] corresponds to the transformations A 7→ TAS, where S and T are
invertible matrices of the same size, respectively over k[t] and over k[t−1].
Now an easy calculation, quite similar to that used in description of finitely
generated modules over an euclidean ring, leads to the following

Lemma 1.1. For any matrix A ∈ GL(r,k[t, t−1]) there are matrices S ∈
GL(r,k[t]) and T ∈ GL(r,k[t−1]) such that SAT is a diagonal matrix
diag(td1 , . . . , tdr).

Since 1× 1 matrix (td) defines the line bundle OP1(d), we get

Theorem 1.2. Every vector bundle over a projective line uniquely decom-
poses into a direct sum of line bundles OP1(d).

(As usually, ‘unique’ in this context means that if F ≃
⊕n

i=1Li ≃⊕m
j=1L

′
j, then m = n and there is a permutation τ of indices such that

Li ≃ L
′
τi for all i.)

This is a typical example of finite vector bundle type: every indecompos-
able is a twist of one of them, namely OP1. I think that it is an important
distinction between finite and discrete type. For instance, a quiver of type
A∞ is a typical example of discrete, but not finite type: it has finitely many
representation of each prescribed vector-dimension, but the dimensions of
indecomposables can be arbitrary big.

2. A simple example: projective configurations of type A

A projective configuration is, by definition, a (singular, reduced) curve X
such that

1) each irreducible component Xi (i = 1, . . . , s) of X is rational, i.e. its
normalization is isomorphic to a projective line P1;

2) each singular point of X is an ordinary double point, i.e. a transversal
intersection of two components (the latter may coincide, so it may be
a self-intersection of a component).

In particular, no three components pass through one point. For every pro-
jective configurationX we define its intersection graph (or dual graph) ∆(X)
as follows.

• The vertices of ∆(X) are irreducible components of X, or rather their
indices 1, 2, . . . , s.
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• The edges of ∆(X) are singular points of X.
• An edge p is incident to a vertex i if p ∈ Xi; especially if p is a self-

intersection point of a component Xi, it gives rise to a loop in the
graph ∆(X).

This graph is non-oriented, but may contain loops and multiple edges be-
tween two vertices. Note that the graph ∆(X) does not, in general, define
a projective configuration X up to isomorphism. For instance, if ∆(X) is a

graph of type D̃3, i.e.

1

2 5 4

3

the position of 4 intersection points on the projective line X5 corresponding
to the central point depends on one parameter λ ∈ k\{ 0, 1 }: their harmonic
ratio. For a fixed λ these points can be chosen as 0, 1, λ,∞.

We consider now the simplest case, when ∆(X) is of type As, i.e.

1 2 3 · · · s

Denote by pi (1 ≤ i < s) the intersection point of Xi and Xi+1. The
calculation below is typical for the case of singular curves, though is the
simplest example of this sort.

The normalization X̃ of X is just a disjoint union
⊔s

i=1Xi. Each point

pi gives rise to two points on X̃ : p′i ∈ Xi and p′′i ∈ Xi+1. We may suppose
that the isomorphisms Xi ≃ P1 are so chosen that p′i = ∞ and p′′i = 0
(in homogeneous coordinates, respectively, (0 : 1) and (1 : 0)). As the

normalization mapping π : X̃ → X is finite and birational, it induces an
embedding O = OX → Õ = π∗OX̃ , and we can (and shall) identify any

vector bundle F over X̃ with its direct image π∗F . We denote by J the
conductor of Õ in O, i.e. the biggest sheaf of Õ-ideals contained in O. In
our example its sections are just those sections of Õ, which have zeros at
all points p′i and p′′i for each i. Note that O/J =

⊕s−1
i=1 k(pi) and Õ/J ≃⊕s−1

i=1 (k(p′i)× k(p′′i )).

Let G be a vector bundle over X of rank r, G̃ = Õ ⊗O G. Then G̃ ⊃
G ⊃ JG = J G̃. We already know that G̃ ≃

⊕s
i=1(

⊕r
j=1Oi(dij)) for some

integers dij, where Oi = OXi
. For every d

Oi(d)/JOi(d) ≃ Oi/JOi ≃





k(p′′i−1)⊕ k(p′i), if 1 < i < s,

k(p′1), if i = 1,

k(p′′s−1), if i = s.

Therefore the factor G̃/J G̃ is isomorphic to
⊕s−1

i=1 r(k(p′i)⊕k(p′′i )). The fac-
tor G/J G is isomorphic to

⊕s
i=1 rk(pi), where each rk(pi) is embedded into

r(k(p′i) ⊕ k(p′′i )). Moreover, the projections of rk(pi) onto both rk(p′i) and
rk(p′′i ) are isomorphisms. On the contrary, given r-dimensional subspaces
Vi ∈ r(k(p′i)⊕ k(p′′i )) for each i such that their projections onto both rk(p′i)
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and rk(p′′i ) are isomorphisms, we can construct a vector bundle G over X

taking the preimage of
⊕s−1

i=1 Vi in G̃/J G̃. Hence G can be defined by a
set of invertible r × r matrices {M ′

i ,M
′′
i | i = 1, . . . , s− 1 } describing the

projections of Vi respectively onto rk(p′i) and rk(p′′i ). It is important that
every row of these matrices has a weight dij : the degree of the corresponding
vector bundle Oi(dij) (this weight is common to the j-th rows of M ′

i and of
M ′′

i−1).

Certainly, we can change these matrices using automorphisms of G̃ and
of Vi. Recall that

HomOi
(Oi(d),Oi(d

′)) =





0, if d > d′,

k, if d = d′,

Poly(d′ − d), if d < d′,

where Poly(m) is the space of homogeneous polynomials of degree m over
k. Namely, if s is a section of Oi(d) and f ∈ Poly(d′ − d), then (fs)(ξ0 :
ξ1) = f(ξ0, ξ1)s(ξ0 : ξ1). In particular, for any scalars λ, µ ∈ k one can
choose f ∈ Poly(d′ − d) such that (fs)(0) = λs(0) and (fs)(∞) = µs(∞).
Therefore two sets of matrices M = {M ′

i ,M
′′
i } and N = {N ′

i ,N
′′
i } define

isomorphic vector bundles over X if and only if N can be obtained from M

by a sequence of transformations of the following sorts:

1) M ′
i 7→ M ′

iS and M ′′
i 7→ M ′′

i S for some i and some invertible matrix
S;

2) M ′
i 7→ T ′M ′

i and M ′′
i−1 7→ T ′′M ′′

i−1 (1 < i < s − 1), where T ′ = (t′jk)

and T ′′ = (t′′jk) are invertible matrices such that

(a) t′jk = t′′jk if dij = dik;

(b) t′jk = t′′jk = 0 if dij < dik;

3) M ′
1 7→ TM ′

1 for some invertible matrix T ;
4) M ′′

s−1 7→ TM ′′
s−1 for some invertible matrix T .

The following result is a rather simple exercise in matrix calculation.

Proposition 2.1. Using transformations (1–4) from above one can trans-
form any set M = {M ′

i ,M
′′
i } to the set I only consisting of unit matrices.

(Actually, one has to start from M ′
1, make it unit, then consider transfor-

mations of M ′′
1 that do not change this form of M ′

1, etc.)
Evidently, it can be reformulated as a description of all vector bundles

over X.

Theorem 2.2. Let X be a projective configuration of type As.

1. Every vector bundle over X uniquely decomposes into a direct sum of
line bundles.

2. A line bundle L over X is uniquely determined by its vector-degree,
i.e. the sequence d = (d1, d2, . . . , ds), where di = degXi

L.

Especially every line bundle is a twist of the trivial line bundle O. Thus
a projective configuration of type As, as well as projective line, is of finite
vector bundle type. Further we shall see that there are no more such curves.

Note that just the same calculation also gives a description of all torsion
free coherent sheaves F over X. The distinctions are the following:
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• The ranks rj of the restrictions F|Xj need not coincide, as well as the
dimensions mi of the fibres F(pi).
• The projections mik(pi)→ rik(p′i) and mik(pi)→ ri+1k(p′′i ) must be

surjective (but not necessarily bijective).
• The mappings mik(pi)→ rik(p′i)⊕ ri+1k(p′′i ) must be injective.

It means that the matrices M ′
i (of size ri×mi) and M ′′

i (of size ri+1×mi) are
not necessarily square, but have the ranks, respectively, ri and ri+1, while
the “big” matrix (

M ′
i

M ′′
i

)

has rank mi. In any case, using transformations (1–4) from above these
matrices can be transformed to diagonal forms with 1 and 0 on the diagonals.
Thus an indecomposable torsion free sheaf is actually a vector bundle on a
connected part of our configuration, i.e. on a curve consisting of components
Xk,Xk+1, . . . ,Xl for some 1 ≤ k < l ≤ s. Again we only get, up to twist, a
finite number of indecomposables, so with this respect nothing changes.

3. Elliptic curves are vector bundle tame

Another known case is that of elliptic curves, i.e. smooth projective curves
of genus 1. Such a curve can always be represented as a 2-fold covering of a
projective line with 4 ramification points of degree 2, which can be chosen
as 0, 1, λ,∞ (λ ∈ k \ { 0, 1 }). If char k 6= 2 it can also be considered as
a smooth cubic curve in P2 given in one of its affine parts by the equation
y2 = x(x − 1)(x − λ). Recall [Ha, Section IV.4] that in this case the line
bundles of a prescribed degree d are in one-to-one correspondence with the
points of the curve X. Namely, if we fix one point o, such a bundle is
isomorphic to OX(x+(d−1)o) for a uniquely determined point x. Moreover,
there is a line bundle P on X × X (Poincaré bundle) such that, for every
x ∈ X,

OX(x+ (d− 1)o) ≃ OX(do)⊗OX
i∗xP ≃ i

∗
xP(d(o ×X)),

where ix is the embedding X ≃ X × x→ X ×X. Thus the line bundles of
degree d form a 1-parameter family (parameterised by X).

It so happens that the description of indecomposable vector bundles of an
arbitrary rank and degree is quite similar. Nearby we present the results of
Atiyah [At] (with the modifications of Oda [Oda], who has shown that the
Atiyah’s classification can be formulated in terms of families). We denote
by nx the closed subscheme of X defined by the sheaf of ideals OX(−nx)
and by inx the embedding X × nx→ X ×X.

Theorem 3.1. For every pair of coprime integers (r, d) with r > 0 there
is a vector bundle Pr,d over X × X such that every indecomposable vector
bundle over X of rank nr and degree nd, where n is a positive integer, is
isomorphic to p1∗i

∗
nxPr,d for a uniquely determined point x ∈ X. Moreover,

Pr,d+mr ≃ Pr,d(m(o×X)) and P1,0 ≃ P.

The proof of this theorem uses rather sophisticated considerations specific
to elliptic curves, and we omit it referring to [At, Oda].
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Theorem 3.1 shows that any elliptic curve is vector bundle tame: there are
1-paramenter families, at most one for any prescribed rank and degree, such
that every indecomposable vector bundle over X can be obtained from this
family by specialization. The latter may include “blowing,” which means
that we consider the values not only at points, but also at subschemes of
the sort nx. (We shall give precise definitions in Section 5.)

4. Curves of genus g > 1 are vector bundle wild

Suppose now thatX is a smooth projective curve of genus g > 1, O = OX .
Then for any two points x 6= y from X the Riemann–Roch Theorem implies
that HomO(O(x),O(y)) ≃ H0(X,O(y − x)) = 0 and Ext1O(O(x),O(y)) ≃
H1(X,O(y − x)) 6= 0. Fix 5 different points x1, . . . , x5 of the curve X,
choose non-zero elements ξij ∈ Ext1(O(xj),O(xi)) for i 6= j and consider
vector bundles F(A,B), where A,B ∈ Mat(n× n,k), and F(A,B) is given
as an extension

0 −→ n(O(x1)⊕O(x2))︸ ︷︷ ︸
B

−→ F(A,B) −→ n(O(x3)⊕O(x4)⊕O(x5))︸ ︷︷ ︸
A

−→ 0

corresponding to the element ξ(A,B) of Ext1(A,B) presented by the matrix

(
ξ13I ξ14I ξ15I
ξ23I ξ24A ξ25B

)

(I denotes the unit n × n matrix). If (A′, B′) is another pair of matrices,
any homomorphism F(A,B) → F(A′, B′) maps O(xi) to O(xi). It means
that there are homomorphisms φ : A → A′ and ψ : B → B′ such that
ψξ(A,B) = ξ(A′, B′)φ (this is the Yoneda multiplication). Note that both
φ and ψ also map O(xi) to O(xi) for each i. Now one can easily deduce that
φ = diag(S, S, S) and ψ = diag(S, S) for some matrix S ∈ Mat(n′ × n,k)
such that SA = A′S and SB = B′S.

If we consider a pair (A,B) as a representation of the free algebra Σ2 in
2 generators, the correspondence (A,B) 7→ F(A,B) becomes a full, faithful,
exact functor Σ2-mod → VB(X). In particular, it maps non-isomorphic
modules to non-isomorphic vector bundles and indecomposable modules to
indecomposable vector bundles. Using terminology of the representation
theory of algebras, we say that the curve X is vector bundle wild. Again we
give a precise definition in the next section.

Recall that the algebra Σ2 here can be replaced by any finitely gener-
ated algebra Λ = k〈 a1, a2, . . . , am 〉. Indeed, any Λ-module M such that
dimk M = n is given by a set of matrices {A1, A2, . . . , Am } of size n × n.
One gets a full, faithful, exact functor Λ-mod→ Σ2-mod mapping the mod-
ule M to the Σ2-module of dimension mn defined by the pair of matrices




λ1I 0 . . . 0
0 λ2I . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . λnI


 ,




A1 I 0 . . . 0
0 A2 I . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . An


 ,
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where λ1, λ2, . . . , λm are different elements from the field k. Thus a classi-
fication of vector bundles over X would imply a classifications of all repre-
sentations of all finitely generated algebras, the goal that perhaps nobody
considers as achievable.

As the first result of our investigation, we may formulate a theorem that
describes vector bundle types of smooth projective curves.1

Theorem 4.1. A smooth projective curve X is

• vector bundle finite if X ≃ P1;
• vector bundle tame if it is an elliptic curve (i.e. of genus 1);
• vector bundle wild otherwise.

Remark 4.2. As F(M) is an iterated extension of line bundles of degree 1,
it is semi-stable in the usual sense [Ses]. Thus even the classification of
semi-stable vector bundles is wild in this case. The same can be shown in
other cases too, though we do not bother to present explicit explanations.

5. Vector bundle types: definitions

The aim of this section is to precise the definitions concerning vector bun-
dle types, especially make them available for non-smooth and even reducible
curves. First we fix some notations.

Let X be a projective curve (connected, reduced, but maybe reducible)
over an algebraically closed field k. We denote by X1,X2, . . . ,Xs its irre-
ducible components, by π : X̃ → X its normalization, by SingX the set

of singular points, and by S̃ingX = π−1(SingX) its preimage on X̃ . Note

that X̃ =
⊔s

i=1 X̃i, where X̃i is the normalization of Xi, so if s > 1 it is not

connected. We often write O and Õ instead of, respectively, OX and O
X̃

.
Denote by VB(X) the category of vector bundles over X. We always

identify vector bundles over X with their sheaves of sections, thus with
locally free coherent sheaves of O-modules. If F is such a sheaf, we set
F̃ = F ⊗O Õ; it is a vector bundle over X̃. As π is finite and birational,
the direct image functor π∗ is a full embedding on the category of vector
bundles, so we usually identify a vector bundle G over X̃ with π∗G, which is
a coherent sheaf on X (but not a vector bundle over X). In particular, we

usually identify Õ with π∗Õ.
As X is connected, every vector bundle F has a constant rank rkF =

dimk F(x), where x is an arbitrary closed point of X and F(x) = Fx/mxFx.
On the other hand, if s > 1 we must consider the degree of a vector bundle
as a vector degF = (d1, d2, . . . , ds), where di denotes the degree of the
restriction F|Xi. The degree defines an epimorphism deg : PicX → Zs.
We denote by Pic◦X its kernel. We fix a section s : Zs → PicX of this
epimorphism and denote by O(d) the line bundle s(d) (d ∈ Zs). Setting
F(d) = F ⊗O O(d) we define an action of the group Zs on vector bundles.

To define vector bundle tame and wild curves we need not individual
sheaves, but their families, moreover, those with non-commutative bases.

1The same results has been obtained by W. Scharlau (preprint of the Münster Univer-
sity). Moreover, he has also shown, almost in the same way, that every algebraic variety
of dimension greater than 1 is vector bundle wild.
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We provide the necessary definitions. Note that symbols like ⊗, Hom, etc.
always denote ⊗k, Homk, etc.

Definition 5.1. Let X be a projective curve, Λ be a k-algebra.

1. A family of vector bundles over X based on Λ is a flat coherent sheaf
of O ⊗ Λop-modules F on X (it is convenient to suppose that Λ acts
on the right). We denote the category of such sheaves by VB(X,Λ).

2. Given such a family and any finite dimensional (over k) Λ-module M ,
we set F(M) = F ⊗Λ M ; it is a vector bundle over X; moreover, for
each vector d ∈ Zs we set F(d,M) = F(d) ⊗Λ M .
If Λ is commutative and M = k(x) = Λ/m, where x is the closed
point of S = SpecΛ corresponding to a maximal ideal m ⊂ Λ, then
F can be considered as a family of vector bundles with the base S,
and F(M) = F(x) is the fibre of this family at the point x. If S is
connected (i.e. Λ is indecomposable), the rank rkF(x) and the degree
degF(x) are constant on S; we call them the rank and the degree of
the family F . If M is an indecomposable, but not simple Λ-module,
F(M) can be considered as a “generalized” fibre. For instance, if
M = Λ/I for some ideal I, we consider F(M) as the value of F on
the closed subscheme of S defined by the ideal I, just as we have
done in Section 3. Note that we can consider families over arbitrary
schemes, not only affine. The corresponding obvious changes in the
definitions are left to the reader (cf. also [DG3]).

3. A family F of vector bundles over an algebra Λ is called strict if, for
every finite dimensional Λ-modules M,M ′,
(a) F(M) ≃ F(M ′) if and only if M ≃M ′;
(b) F(M) is indecomposable if and only if so is M .

4. We call a curve X
• vector bundle finite if it has finitely many non-isomorphic in-

decomposable vector bundles up to twist, i.e. there is a finite
set of vector bundles F1,F2, . . . ,Fn such that every indecom-
posable vector bundle over X is isomorphic to Fk(d) for some
k ∈ { 1, . . . , n } and some d ∈ Zs;
• vector bundle tame if there is a set S of families of vector bundles

over X satisfying the following conditions:
(a) every F ∈ S is a strict family over a smooth connected

curve SF ;
(b) the set S(r,d) = {F ∈ S | rkF = r, degF = d } is finite

for each r and d;
(c) for each r and d almost all (i.e. all but a finite number)

indecomposable vector bundles over X of rank r and degree
d are isomorphic to F(c,M) for some F ∈ S, some vector
c ∈ Zs, and some sky-scraper sheaf M , or, the same, a
finite dimensional OSF ,x-module for some point x ∈ SF

(such a set S is called a parameterising set for vector bundles
over X);
• vector bundle wild if it possesses a strict family over every finitely

generated k-algebra Λ.
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5. For a vector bundle tame curve X and a parameterising set S denote
by ν(r,d,S) the cardinality of S(r,d), and by ν(r,d,X) the smallest
value of ν(r,d,S), when S runs through all parameterising families.
The curve X is called
• tame bounded if there is a polynomialN(r,d) such that ν(r,d,X)
≤ N(r,d) for all r and d;
• tame unbounded otherwise.

For instance, elliptic curves are vector bundle tame bounded (actually
in this case ν(r, d,X) = 1 for all r and d).

Remark 5.2. 1. The use of twists in the definitions of finite and tame is
indeed indispensable. On the other hand, the parameterising families
that we shall construct later actually cover all vector bundles (up to
twist), so the words ‘almost all’ could be replaced by ‘all’ in this con-
text. Nevertheless, we have included them in order that our definition
fits the usual pattern.

2. One can be interested not only in vector bundles, but also in torsion
free sheaves, or even in all coherent sheaves. Certainly, all defini-
tions of ‘finite,’ ‘tame’ or ‘wild’ can be almost literally reproduced for
these cases too. Moreover, the same calculations as for vector bun-
dles show that nothing will change if we consider torsion free sheaves
(though this time ‘almost all’ is indispensable). We shall comment
their structure at the corresponding places. The things become more
complicated if we are interested in all coherent sheaves over singu-
lar curves, because they do not split into direct sums of torsion and
torsion free ones. Nevertheless, I. Burban and the author have shown
that even the derived category of coherent sheaves remains tame for
all vector bundle tame curves (cf. the talk of I. Burban presented at
this workshop).

3. It is well-known that to prove that a curve X is vector bundle wild
it is enough to construct a strict family from VB(X,Λ), where Λ is
either the free algebra k〈 z1, z2 〉 in two generators, or the polynomial
algebra k[z1, z2], or the power series algebra k[[z1, z2]]. Moreover, we
can even replace them by a finite dimensional algebra, for instance,
k[z1, z2]/(z

2
1 , z

3
2 , z1z

2
2) or the path algebra of a wild quiver without

cycles (the latter is even hereditary that is sometimes convenient). In
what follows we constantly use this observation.

6. Vector bundles and matrix problems

We have already established the vector bundle types of smooth curves.
Suppose now that X is a singular curve. We use a procedure similar to that
of Section 2. Namely, let J be the conductor of Õ in O, i.e. AnnO(Õ/O).

Then J F̃ = JF ⊂ F ⊂ F̃ for every vector bundle F . Denote by F = O/J
and by F̃ = Õ/J . Both F and F̃ have 0-dimensional support (respectively

SingX and S̃ingX). Thus we may (and shall) identify them with the finite

dimensional algebras of their sections Γ(X,F) and Γ(X̃, F̃). Evidently F is

a subalgebra in F̃.
We define the category Fsm(X,Λ), where Λ is a k-algebra, as follows:
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• Its objects are the pairs (A,M), where A is an object from VB(X̃,Λ),

i.e. a coherent flat sheaf of Õ ⊗ Λ-modules, and M is a projective
F ⊗ Λ-submodule in A/JA such that the natural homomorphism

F̃⊗F M → A/JA is an isomorphism.
• A morphism from (A,M) to (A′,M ′) is a homomorphism φ : A →
A′ such that φ̄(M) ⊆ M ′, where φ̄ is the induced homomorphism
A/JA → A′/JA′.

We write Fsm(X) instead of Fsm(X,k). If L is a finite dimensional Λ-
module and P = (A,M) ∈ Fsm(X,Λ), set P(L) = (A ⊗Λ L,M ⊗Λ L) ∈
Fsm(X). Note also that the group Zs acts on Fsm(X). Indeed, the factors
A/JA andA(d)/JA(d) are naturally isomorphic, so we can just set P(d) =
(A(d),M). It allows to transfer the definitions of finite, tame and wild types
to the categories Fsm(X) (we leave it to the reader).

Consider the functor P : VB(X,Λ) → Fsm(X,Λ) that maps a sheaf F
to the pair (F̃ ,F/JF). Moreover, for each pair P = (A,M) ∈ Fsm(X,Λ)
denote by V(P) the preimage of M in A; it is a sheaf of O ⊗ Λ-modules.
Obviously, any morphism φ : P → P ′ induces a homomorphism V(P) →
V(P ′) and one easily verifies the main property of these constructions:

Proposition 6.1. For every pair P ∈ Fsm(X,Λ) the sheaf V(P) belongs
to VB(X,Λ), and the functors P,V define an equivalence of the categories
VB(X,Λ) and Fsm(X,Λ). Moreover, P(P(L)) ≃ P(P)(L) and V(F(L)) ≃
V(F)(L) for every finite dimensional Λ-module L.

Corollary 6.2. A curve X is vector bundle finite (tame, wild) if and only
if so is the category Fsm(X).

It is easier to deal with the category Fsm(X), because it can be identified
with a bimodule category, so it carries us to the better explored world of
“matrix problems.” (We refer to [GR] and [DG3] for the corresponding
definitions and note that in [DG3, Section 3] the shifted bimodules have
been introduced, which are necessary for the application to vector bun-
dles.) Namely, let A = VB(X̃), B = F-pro, the category of finitely gener-
ated projective right F-modules. Consider the A-B-bimodule U such that
U(P,A) = HomF(P,A/JA), where A ∈ A, P ∈ B. In the category El(U)
of elements of the bimodule U (or matrices over U) consider the full sub-
category Elc(U) consisting of all homomorphisms α : P → A such that the

induced homomorphism F̃⊗F P → A is an isomorphism. We call elements
from Elc correct.

Proposition 6.3. The categories Fsm(X) and Elc(U) are equivalent.

Moreover, one can obviously define twists by d ∈ Zs on El(U) so that this
equivalence is compatible with twists.

Corollary 6.4. A curve X is vector bundle finite (tame, wild) if and only
if so is the category Elc(U).

7. Vector bundle types: results

Now we use the reduction to matrix problems to find the vector bundle
types of singular curves. First we establish several wild cases. We keep
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the notations and definitions of the preceding section and suppose that X
is indeed singular. Since all proofs consist in more or less standard matrix
calculations, we only write down the matrices that describe strict families,
leaving the verification of strictness (always straightforward, though some-
times rather cumbersome) to the reader, who can also look into [DG3].

Step 1. If one of the components X̃i is not rational, the curve X is vector
bundle wild.

Proof. Suppose that X̃1 is of genus g ≥ 1. As X is connected, there is
a singular point p that belongs to X1. We suppose that p has at least
2 preimages on X̃. If it only has one, the algebra F̃p is not semi-simple,
which simplifies the calculations. Let { p1, p2, . . . , pt } be all preimages of

p, with p1 ∈ X̃1, and let Y be the component that contains p2 (we allow

Y = X̃1). Let { pt+1, . . . , pl } be all other points from S̃ingX. Choose 4

different regular points xi (i = 1, . . . , 4) on X̃1 and another regular point y
on Y , and consider the family u of elements of Elc(U) over the free algebra

Λ = k〈 z1, z2 〉 that belongs to U(A⊗Λ, 4F⊗Λ), whereA =
⊕4

k=1 Õ(xk+ky),
all components of u in HomF(4F,Api

/JApi
) ⊗ Λ (1 < i ≤ l) are unit

matrices, and its component in HomF(4F,Ap1
/JAp1

)⊗ Λ equals



0 0 0 1
0 0 1 1
0 1 1 z1
1 0 1 z2


 .

Since HomOX1
(OX1

(xk),OX1
(xj)) = 0 if k 6= j and HomOY

(OY (ky),OY (jy))
= 0 if k > j, one can check that u is actually a strict family of correct ele-
ments. Hence Elc is wild and thus X is vector bundle wild. �

From now on we suppose that X̃i ≃ P1 for every i = 1, . . . , s.

Step 2. If the algebra F̃ is not semi-simple, the curve X is wild.

(Note that F̃ is semi-simple if and only if all singular points of X are ordi-
nary multiple points, i.e. such that at each of them the number of linearly
independent tangent directions to X equals the multiplicity of this point.)

Proof. Choose a point p ∈ S̃ingX such that F̃p is not semi-simple, and a

non-zero element α ∈ F̃p with Ann
F̃p
α = rad F̃p. Let Λ be the path algebra

of the graph

5
z5−−−−→ 4

z4−−−−→ 3

z3

y
yz2

2 −−−−→
z1

1

It is known to be wild [DF, Na1], so we only have to construct a strict family
of correct elements over Λ. Denote by Pj the indecomposable projective Λ-
module corresponding to the vertex j of the graph. We identify an arrow z :
j → k with the corresponding homomorphism Pj → Pk (left multiplication
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by z). Let p ∈ X̃1. Choose a regular point x on X̃1. Set

A = Õ ⊗ (P3 ⊕ P1)⊕ Õ(x)⊗ (P1 ⊕ P2)⊕ Õ(2x)⊗ (P3 ⊕ P4)⊕ Õ(3x) ⊗ P5,

B = F⊗ (P3 ⊕ P1 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5)

and consider the family u of elements from Elc over Λ such that all compo-
nents of u except that in HomF(B,Ap/JAp) equal unit matrices, while the
last is 



1 0 0 0 α⊗ 1 0 0
0 1 α⊗ 1 0 0 0 0
0 0 1 α⊗ z1 α⊗ z2 0 0
0 0 0 1 0 α⊗ z3 0
0 0 0 0 1 α⊗ z4 0
0 0 0 0 0 1 α⊗ z5
0 0 0 0 0 0 1




.

Again a straightforward calculation shows that this family is strict, hence
X is vector bundle wild. �

Step 3. If the curve X has a singular point of multiplicity m ≥ 3, it is
vector bundle wild.

Proof. Let p be a point of multiplicity l ≥ 3, which we suppose an ordi-
nary multiple point, p1, p2, . . . , pl be its preimages on X̃. Denote by Yi the
component of X̃ containing pi (some of them may coincide). Choose reg-

ular points yi ∈ Yi and set A =
⊕4

k=1 Õ(ky1 + ky2 + ky3). Consider the
family of elements from Elc(U) over Λ = k〈 z1, z2 〉 given by the element
u ∈ HomF(4F,A/JA) that has unit matrices as all its components except
those at the points p1 and p2, the last two being respectively




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 and




1 1 z1 z2
0 1 1 1
0 0 1 0
0 0 0 1


 .

One can check that u is a strict family, so X is vector bundle wild. �

Thus from now on we only consider the case when all singular points of
X are ordinary double points (or nodes). It means that X is a projective
configuration in the sense of Section 2, so its dual graph ∆(X) is defined.

Step 4. If a vertex of ∆(X) is incident to three edges or to a loop and
another edge, the curve X is vector bundle wild.

Proof. We consider the case when the graph ∆(X) is

1

2 4 3

(In other cases the calculations are even easier.) It means that the com-
ponent X4 intersects transversally the components Xi (i = 1, 2, 3) at the
points pi (i = 1, 2, 3). We denote by pij the preimage of pi on the com-
ponent Xj (j = i or j = 4). If u ∈ HomF(P,A/JA) is an element of U,
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we denote by uij the component of u in HomF(P,Apij
/JApij

). We can

choose homogeneous coordinates on X4 ≃ P1 so that p1 = (1 : 0), p2 =
(0 : 1), p3 = (1 : 1). Fix regular points xi ∈ Xi and consider a family
u ∈ HomF(14F,A)⊗ k〈 z1, z2 〉 of elements of U such that

A =
14⊕

j=1

Õ(kj(x1 + x2 + x4) + ljx3)

where

kj =





1 if 1 ≤ j ≤ 3,

2 if 4 ≤ j ≤ 7,

3 if 8 ≤ j ≤ 11,

4 if 12 ≤ j ≤ 14,

lj = [(j + 1)/2], uij is a unit matrix if j 6= 4 or i = 1,

u24 =




0 . . . 0 1
0 . . . 1 0
. . . . . . . . . . . .
1 . . . 0 0


 ,

while u34 = (tpq) (p, q = 1, . . . , 14), where t13,11 = z1, t14,11 = z2, tpq = 1 if
p = q or (p, q) is from the set

{ (5, 3), (6, 1), (7, 2), (9, 4), (10, 6), (10, 9), (11, 5), (11, 7), (11, 10),

(12, 8), (13, 9), (13, 12), (14, 10), (14, 12) },

and tpq = 0 otherwise. Again a straightforward though cumbersome calcu-
lation shows that it is a strict family, thus X is vector bundle wild. �

Remark. Actually under the given shape of uij for (ij) 6= (34) the matrix
u34 splits into blocks vkl (1 ≤ k ≤ 4, 1 ≤ l ≤ 7) (corresponding to the values
kj = k, lj = l), all of them with 2 columns, the number of rows is 3 for
k = 1, 4 and 4 for k = 2, 3. With respect to the transformations that do
not change other matrices these blocks form a representation of the pair of
posets (N,L), where L is a chain with 7 elements and N is

•

@

@

@

@

@

@

@

•

• •

The matrix u34 described above just presents a strict family of representa-
tions of this pair over k〈 z1, z2 〉. Certainly, this matrix problem is known to
be wild [Na2], but we had to ensure the matrix u34 to be invertible. That
is why we had to take L with 7 elements, though for the wildness of the pair
of posets 6 elements would suffice.

Step 4 shows that projective configurations that are not wild can only
have the following dual graphs:

chain As 1 2 3 · · · s
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or

cycle Ãs 1 2 3 · · · s

Here s denotes the number of vertices. If s = 1, there are no edges in the
configuration of type A1; thus the corresponding curve is just a projective
line. The configuration Ã1 corresponds to a rational curve with one ordinary
double point (a nodal plane cubic, an affine part of which can be given by
the equation y2 = x3 + x2).

We already know that the projective configurations of type As are vector
bundle finite. In the next section we show that all projective configurations
of type Ãs are vector bundle tame unbounded, thus accomplishing the proof
of the following theorem announced in the Introduction.

Theorem 7.1. A projective curve is

• vector bundle finite if and only if it is a projective configuration of
type As,
• vector bundle tame bounded if and only if it is a elliptic curve,
• vector bundle tame unbounded if and only if it is a projective config-

uration of type Ãs,
• vector bundle wild otherwise.

Moreover, we present there a description of indecomposable vector bundles
over the projective configurations of types Ãs.

8. Vector bundles over projective configurations of type Ã

Now we consider the projective configurations of type Ãs. We follow the
way of Section 2 with evident changes. There are s irreducible components
X̃1, X̃2, . . . , X̃s of X̃ and s singular points p1, p2, . . . , ps on X, each of them
having two preimages p′i and p′′i on X̃ . We can arrange the numeration and

coordinates on X̃i ≃ P1 so that p′i = (1 : 0) ∈ X̃i, p
′′
i = (0 : 1) ∈ X̃i+1 (we

use the cyclic numeration modulo s, so Xs+1 = X1, etc.). Then F =
∏s

i=1 ki

and F̃ =
∏s

i=1(k
′
i × k′′

i ), where ki = k(pi), k′
i = k(p′i), k′′

i = k(p′′i ). All these

fields coincide with k and the embedding F→ F̃ maps each ki into k′
i × k′′

i

diagonally.
Let u ∈ Elc(P,A). Then

P = rF, A =

s⊕

i=1

r⊕

k=1

Oi(dik),

where Oi = OX̃i
and dik ∈ Z are the degrees of direct summands; r is

the rank of A (it must be constant). Note that Oi(d)/JOi(d) ≃ k′
i ⊕ k′′

i−1

(again k0 = ks). Choosing bases in each summand k′
i and k′′

i as well as in
each component rki of M , we present u as a set of r× r invertible matrices
{M ′

i ,M
′′
i | i = 1, . . . , s }. Moreover, the rows of these matrices are endowed

with weights dik (it is the common weight of the k-th row of M ′
i and of

M ′′
i−1). Taking into account the description of homomorphisms of vector

bundles over P1 from Section 2, we see that the automorphisms of A and P
give rise to the following transformations of these matrices:
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1) M ′
i 7→ M ′

iS and M ′′
i 7→ M ′′

i S for some i and some invertible matrix
S;

2) M ′
i 7→ T ′M ′

i and M ′′
i−1 7→ T ′′M ′′

i−1 (1 ≤ i ≤ s), where T ′ = (t′jk) and

T ′′ = (t′′jk) are invertible matrices such that

(a) t′jk = t′′jk if dij = dik;

(b) t′jk = t′′jk = 0 if dij < dik.

Two sets of matrices correspond to isomorphic vector bundles if and only if
one of them can be converted to the other by a sequence of such transfor-
mations.

Note that this problem is much more complicated than that of Section 2.
Even if s = 1 and all rows have the same weight, it becomes the Kronecker
problem, or that of pencils of matrices, which is of infinite type. Fortunately,
one can recognize the arising matrix problem as belonging to the so-called
“representations of bunches of chains,” or “Gelfand problems,” or “clans”
(cf. [CB, Bon] or [DG3, Appendix B]; we refer to the last paper, because
the presentation there is more convenient to our purpose). Namely, in our
case we have the pairs of chains

E′
i =

{
E′

id | i = 1, . . . , s; d ∈ Z
}
, F′

i =
{
f ′i
}
,

E′′
i =

{
E′′

id | i = 1, . . . , s; d ∈ Z
}
, F′′

i =
{
f ′′i
}

with the natural ordering in each E′
i, E′′

i (according to the index d), while
the equivalence relation ∼ is given by the rules:

E′
id ∼ E

′′
i−1,d, f ′i ∼ f

′′
i .

Slightly rearranging the list of indecomposable objects, we obtain the fol-
lowing result.

Theorem 8.1. Indecomposable vector bundles over a projective configura-
tion of type Ãs are described by “band data,” which are triples (d,m, λ),
where m ∈ N, λ ∈ k \ { 0 } and d is a sequence from Zrs for some r that
is non-s-periodic, i.e. cannot be presented as a repetition of a shorter se-
quence c ∈ Zls (l < r). Two such triples (d,m, λ) and (d′,m′, λ′) cor-
respond to isomorphic vector bundles if and only if m = m′, λ = λ′ and
d′ can be obtained from d by an s-shift, i.e. d = (d1, d2, . . . , drs), while
d′ = (dls+1, dls+2 . . . , drs, d1, . . . , dls) for some l ≤ r.

Note that neither “string data” gives a set of invertible matrices, though
most of them can be interpreted as corresponding to torsion free, but not
locally free sheaves (cf. [DG3] or Remark 8.3 below).

Moreover, from the explicit description of indecomposable representations
of a bunch of chains one can deduce an explicit description of vector bundles
over such a configuration. Namely, the vector bundle V = V(d,m, λ), where

d = (d1, d2, . . . , drs), is a subsheaf of Ṽ =
⊕rs

j=1mOj(dj) defined as follows:

• If x /∈ SingX, Vx = Ṽx.
• Choose bases e′jk and e′′j,k (j = 1, . . . , rs, k = 1, . . . ,m) in each vec-

tor space m(Oj(dj)/JOj(dj))p′j and m(Oj+1(dj+1)/JOj+1(dj+1))p′′j
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respectively, and set

ejk =





e′jk + e′′jk if 1 ≤ j < rs,

e′rs,1 + λe′′rs,1 if j = rs, k = 1,

e′rs,k + λe′′rs,k + e′′rs,k−1 if j = rs, k > 1.

• For each singular point pi the stalk Vpi
is generated by the preimages

of ejk with j ≡ i (mod s).

Especially rkV(d,m, λ) = mr and degV(d,m, λ) = (δ1, δ2, . . . , δs), where
δi =

∑
j≡i (mod s) dj. For instance, if s = 1 (the case of nodal cubic) and

m = 1, one can present this vector bundle as the following gluing of line
bundles over X̃ = P1:

•
d1

•λ

•
d2

•

•
d3

•

...

•
dr

•

Here horizontal lines symbolize line bundles over X̃ of the superscripted
degrees, their left (right) ends are basic elements of these bundles at the
point 0 = (1 : 0) (respectively ∞ = (0 : 1)), and the dotted lines show which
of them must be glued. All gluings are trivial, except that going from the
uppermost right point to the lowermost left one, where we glue one vector
to another multiplied by λ. If m > 1, one has to take m copies of each
vector bundle from this picture, make again trivial all gluings except the
last one, where identifications must be made using the Jordan m ×m cell
with eigenvalue λ. The necessary changes for s > 1 are quite obvious.

Corollary 8.2. Projective configurations of type Ãs are vector bundle tame
unbounded.

Proof. Let Λ = k[x, x−1]. For each vector d ∈ Zrs we define a family Vd
of vector bundles of rank r with base SpecΛ = A1 \ { 0 } just as we have
defined the vector bundles V(d, 1, λ), but replacing Oj by Oj ⊗ k[x, x−1]
and λ by x. Obviously, then V(d,m, λ) ≃ Vd(L), where L = Λ/(x − λ)m,
hence X is vector bundle tame. As we allow twists, it is enough to consider
sequences d of non-negative integers (even those containing 0). Evidently,
for every fixed degree δ = (δ1, δ2, . . . , δs) and every fixed rank r there are
finitely many such d with

∑
j≡i (mod s) dj = δi. On the other hand, the

number of such sequences d grows exponentially when r → ∞. Thus X is
indeed tame unbounded. �
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Remark 8.3. Just in the same way we can describe torsion free sheaves over
any configuration of type Ãs. The difference is that it is allowed not to
glue all basic vectors at 0 and ∞, leaving the first and the last ones “free”
(for instance, in the picture above we can exclude one of the gluings). Note
that in this case we can make all gluings trivial. It means that there are
no families of torsion free sheaves that are not vector bundles; all of them
stand apart. See [DG3] for details.

9. Cohen–Macaulay modules: generalities

From now on we consider Cohen–Macaulay modules over normal surface
singularities. For our purpose, it means a complete noetherian algebra A

over an algebraically closed field k such that

• A is normal, i.e. integral and integrally closed;
• Kr.dimA = 2;
• A/m ≃ k, where m denotes the maximal ideal of A.

Note that for 2-dimensional integral rings ‘Cohen–Macaulay ’ means that
A =

⋂
ht p=1 Ap, while ‘normal ’ means that Ap is a discrete valuation ring

for each prime ideal p of height 1. Moreover, a finitely generated module
M over such a ring is Cohen–Macaulay if and only if it is torsion free and
M =

⋂
ht p=1Mp. We denote M∨ = HomA(M,A); it is always a Cohen–

Macaulay A-module. For Cohen–Macaulay A-modules M,N we denote by
M ⊠A N their “reflexive product” (M ⊗A N)∨∨.

A family of Cohen–Macaulay A-modules based on an algebra Λ is defined
as a finitely generated A-Λ-bimoduleM such that

• M is flat as Λ-module;
• for every finite dimensional Λ-module L the A-moduleM(L) =M⊗Λ

L is Cohen–Macaulay.

Obviously, the latter condition is only to be checked for simple modules L.
Having this notion, one can define strict families, Cohen–Macaulay tame and
wild singularities just as it has been done in Section 5 for vector bundles,
so we omit the details of these definitions. We also leave to the reader
the obvious changes in these definitions, when families based on arbitrary
k-schemes are considered. We call modulesM(L) (generalized) fibres ofM.

We denote by S = SpecA and by p the unique closed point of S (corre-
sponding to the ideal m). Recall that there always is a resolution of such
a singularity, i.e. a projective birational morphism of schemes π : X → S,
where X is regular, such that the restriction of π onto X̆ = X \ π−1(p) is

an isomorphism X̆ → S̆ = S \ { p }, cf. e.g. [Lip]. The reduced preimage
E = π−1(p)red is called the exceptional curve of this resolution. It is in-
deed a projective curve, possibly singular and even reducible. We denote by
E1, E2, . . . , Es its irreducible components. We always identify X̆ and S̆ so
that the diagram

X̆
i

−−−−→ X
∥∥∥

yπ

S̆ −−−−→
j

S
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where i, j are embeddings, commutes.
To obtain a criterion of Cohen–Macaulay finiteness, as well as for some

other results, the following considerations are important. Suppose that a
finite group G acts on a normal surface singularity B and A = BG is the
ring of invariants. It is again a normal surface singularity. A Cohen–Mac-
aulay B-module N is called induced from A if it is isomorphic to B ⊠A M
for some Cohen–Macaulay A-module M . We say that B is unramified in
codimension 1 if, for every prime ideal p ⊂ A of height 1, Bp/pBp is a sepa-
rable algebra over the field Ap/pAp. Equivalently, the natural epimorphism
of B-bimodules Bp⊗Ap

Bp→ Bp splits. For instance it is so if G acts freely
on the set of prime ideals of B of height 1.

Proposition 9.1 (cf. [Her]). If the order g = |G| is invertible in k, every
Cohen–Macaulay A-module is a direct summand of a Cohen–Macaulay B-
module considered as A-module. If, moreover, B is unramified in codimen-
sion 1, every Cohen–Macaulay B-module is a direct summand of a module
induced from A.

Proof. Let M be any Cohen–Macaulay A-module. We identify it with the
A-submodule 1⊗M of B⊗A M . There is a retraction of A-modules B⊗A

M → M mapping b ⊗ v to g−1
∑

σ∈G σ(b) ⊗ v. Thus B ⊗A M ≃ M ⊕M ′

for some M ′. Taking second duals, we get B ⊠A M ≃M ⊕ (M ′)∨∨.
Suppose now that B is unramified in codimension 1. Denote by K and L

respectively the fields of fractions of A and B. Then L is a Galois extension
of K with Galois group G. Hence Le = L⊗K L =

⊕
σ∈G Lσ as L-bimodule,

where Lσ = {λ ∈ L | ∀α ∈ L αλ = λσ(α) } [DK]. Especially there is a
unique element ε ∈ Le such that λε = ελ and φ(ε) = 1, where φ denotes
the natural epimorphism Le → L. Since the restriction of φ onto Be

q splits,
ε ∈ Be

q. Therefore ε ∈
⋂

ht q=1 Be
q = B ⊠A B, so the natural epimorphism

B ⊠A B → B splits too. Let N be any Cohen–Macaulay B-module. Then
B⊗AN ≃ (B⊗A B)⊗AN , hence B ⊠AN ≃ (B ⊠A B) ⊠BN , which gives
a natural epimorphism B ⊗A N → N . It arises from B ⊠A B → B, thus
splits, and N is a direct summand of B ⊠A N . �

Obviously, in the situation of Proposition 9.1 an indecomposable Cohen–
Macaulay A-module (respectively B-module) is isomorphic to a direct sum-
mand of an indecomposable Cohen–Macaulay B-module (respectively A-
module).

Corollary 9.2. If the order |G| is invertible in k and B is Cohen–Mac-
aulay finite, tame or wild, then so is A. If, moreover, B is unramified in
codimension 1 and A is Cohen–Macaulay finite, tame or wild, then so is B.

It implies immediately the Ésnault–Auslander criterion. Namely call A

a quotient singularity if it is isomorphic to a ring of invariants RG, where
R = k[[x, y]] and G is a finite group of automorphisms of R (it is well-known
that in this case we may always suppose that G acts linearly, so it is a finite
subgroup of GL (2,k)).

Theorem 9.3 (Ésnault–Auslander). Suppose that char k = 0. Then A is
Cohen–Macaulay finite if and only if it is a quotient singularity.
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Proof. Necessity. If A is Cohen–Macaulay finite, it has in particular finitely
many rank 1 Cohen–Macaulay modules, or, the same, divisorial ideals (up
to isomorphism). Thus its Picard group (group of classes of divisors) is
finite. It is known (cf. e.g. [Lip]) that such a singularity is rational, which
means that H1(X,OX) = 0. Consider the canonical divisor K = KS , i.e.
the class of a (rational) differential 2-form. It is of finite order in the Picard
group, i.e. nK is a principal divisor for some n. Choose an ideal J of class
K; then J−n = αA and one can consider the ring B =

⊕n−1
i=0 J

−iti with

tn = α−1. It is Gorenstein and A ≃ BH , where H is the cyclic group of
order n acting naturally on B, namely leaving elements of A intact and
mapping t to εt, where ε is a primitive root of 1. For every prime q ⊂ A

of height 1 Aq is a discrete valuation ring, hence Jq = γA for some γ
such that α = µγ−n with an invertible µ. Moreover, since char k = 0, µ
is an n-th power of some element, so we may suppose that α = γ−n and
Bq = Aq[γ

−1t] ≃ Aq[x]/(x
n − 1) ≃ An

q . Therefore B is unramified in
codimension 1, so it is also Cohen–Macaulay finite by Proposition 9.1, thus
rational. But all rational Gorenstein singularities are well-known [Lau].
They are rational double points, or du Val singularities. All of them are
quotient singularities. Therefore A is quotient too.

Sufficiency follows directly from Proposition 9.1, since any regular local
ring is Cohen–Macaulay finite: all Cohen–Macaulay modules are free. �

Remark 9.4. As far as I know, the finiteness criterion is still unknown if
char k > 0, though it seems very plausible that the answer must be the
same (maybe modulo some minor changes of definitions).

10. Kahn’s reduction

In this section we recall the main results of the Kahn’s paper [Kahn] and
extend them to families of Cohen–Macaulay modules and vector bundles.

An (exceptional) cycle on X is a divisor Z =
∑s

i=1 ziEi. If zi ≥ 0 it
is called effective. We treat an effective cycle as a projective curve (non-
reduced if zi > 1 for some i), namely the subvariety of X defined by the
sheaf of ideals OX(−Z). We also denote by ωX the dualizing sheaf of X
and by ωZ = ωX(Z) ⊗OX

OZ the dualizing sheaf of Z. The latter defines
the Serre’s duality

Hi(E,F) ≃ DH1−i(E,F∨ ⊗OZ
ωZ) (i = 0, 1)

for every vector bundle F on Z, where DV = Hom(V,k), the dual vector
space to V , and F∨ = HomOZ

(F ,OZ).
For any coherent sheaf F on X denote by Fg the image of the evaluation

mapping Γ(X,F) ⊗ OX → F . If Fg = F , we say that F is generated by
global sections, or globally spanned. If the support of the factor F/Fg is
0-dimensional (i.e. a finite set of closed points), we say that F is generically
generated by global sections, or generically spanned.

The main notion of the Kahn’s theory is the following.

Definition 10.1. An effective cycle Z is called a weak reduction cycle if

1) the sheaf OZ(−Z) is generically spanned;
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2) H1(E,OZ(−Z)) = 0.
It is called a reduction cycle if, moreover,

3) the sheaf ω∨
Z is generically spanned.

A reduction cycle always exists: it easily follows from the fact that the
intersection form (A.B) is negative definite on the group of all exceptional
cycles [Lip].

We identify A-modules with quasi-coherent sheaves over S (their sheafifi-
cations). In particular, we consider the inverse image functor π∗ : A-mod→
CohX. Even if M ∈ CM(A), usually π∗M can have torsion. So we de-
fine the functor π♯ : CM(A) → VB(X) setting π♯(M) = (π∗M)∨∨, where
F∨ = HomOX

(F ,OX ). As π is isomorphism outside E and any Cohen–Mac-
aulay module M is completely defined by its stalks outside p, M ≃ π∗π

♯M ,
so this functor is full and faithful. The following theorem describes its image.

Theorem 10.2 ([Kahn]). A vector bundle F over X is isomorphic to π♯M
for some Cohen–Macaulay A-module M if and only if

1) F is generically spanned;

2) the restriction Γ(X,F)→ Γ(X̆,F) is surjective.

We call such vector bundles full and denote by VBf (X) the subcategory of
full vector bundles.

If Z is any effective cycle, we can consider the functor “restriction on Z,”
resZ : VB(X)→ VB(Z) mapping F to F/F(−Z).

Theorem 10.3 ([Kahn]). 1. The functor resZ is dense, i.e. every vec-
tor bundle over Z is isomorphic to resZ F for some vector bundle F
over X.

2. If Z is a reduction cycle, the restriction of resZ onto VBf (X) maps
non-isomorphic vector bundles to non-isomorphic ones.
We call a vector bundle over Z full if it is isomorphic to resZ F ,
where F ∈ VBf (X), and denote by VBf (Z) the category of full vector
bundles over Z.

3. The functor RZ = resZ ◦π
♯ induces a representation equivalence

CM(A)→ VBf (Z).

Note that this functor cannot be faithful, since Hom-spaces in the category
VB(Z) are finite dimensional. Moreover, it can map indecomposable vector
bundles to decomposable ones, cf. Theorem 11.1 below.

Kahn also gives a description of full vector bundles over a weak reduction
cycle.

Theorem 10.4 ([Kahn]). If Z is a weak reduction cycle, the following
conditions on a vector bundle E ∈ VB(Z)are equivalent:

1) E is full.
2) E is generically spanned and there is a vector bundle E2 over the cycle

2Z such that E2|Z ≃ E and the mapping H0(E(Z)) → H1(E) induced
by the canonical exact sequence 0 → E → E2(Z) → E(Z) → 0 is
injective.

The latter sequence is obtained by tensoring with E(Z) the exact sequence
0→ OZ(−Z)→ O2Z → OZ → 0.
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Actually we need a generalization of Theorems 10.2,10.4 for families of
vector bundles and modules based on an algebra Λ.

Definition 10.5. Let π : X → S be a resolution of a normal surface singu-
larity and Λ be a k-algebra (maybe non-commutative).

• For any coherent sheaf of OX ⊗ Λ-bimodules F we denote by Fg the
image of the evaluation mapping Γ(X,F) ⊗ (OX ⊗ Λ) → F and say
that F is generically spanned if the support of F/Fg is 0-dimensional,
i.e. a finite set of closed points.
• We call a family of vector bundles F over X based on Λ full if it is

isomorphic to π♯M = (π∗M)∨∨, whereM is a family of Cohen–Mac-
aulay modules over S based on Λ and N∨ = HomOX⊗Λop(N ,OX ⊗
Λop) for any family N of OX -modules based on Λ.
• We call a family of vector bundles over an effective cycle C full if it

possess a full lifting to a family of vector bundle over X.

To extend Kahn’s results to families, one needs some restrictions on the
base algebra Λ. For our purpose it is enough to consider algebras Λ such that
gl.dim Λ ≤ 2. The advantage is that in this case any kernel of a mapping
between two flat Λ-modules is also flat. Especially, if F is a family of
OX -modules based on Λ, U ⊆ X is any open subset and U =

⋃
i Ui is

its affine open covering, then Γ(U,F) is the kernel of the natural mapping⊕
i Γ(Ui,F)→

⊕
i,j Γ(Ui ∩Uj ,F), thus Λ-flat. As a corollary, if π : X → Y

is a proper morphism, the direct image π∗F is Λ-flat, so is a family of OY -
modules based on Λ. (We need ‘proper’ in order π∗F to be coherent.) The
same is true if we consider families based on regular schemes of dimension
at most 2, since their local rings are of global dimension at most 2.

Theorem 10.6. Suppose that Z is a weak reduction cycle for a resolution
π : X → S of a normal surface singularity and gl.dim Λ ≤ 2.

1. Let F be a family of vector bundles over X based on Λ such that
(a) F is generically spanned;

(b) the restriction Γ(X,F)→ Γ(X̆,F) is surjective.
Then F is full.

2. Let E be a family of vector bundles over Z such that
(a) E is generically spanned;
(b) there is a lifting of E to a vector bundle over 2Z such that the

induced mapping H0(E, E(Z)) → H1(E, E) is injective.
Then E is full.

Proof. 1. Set M = π∗F , F ′ = π∗M/(OX -torsion). Then F ′ can be con-
sidered as a subsheaf of F containing Fg (since global sections of M are
the same as those of F). Note that M(L) ≃ π∗F(L) is a Cohen–Macaulay
module by [EGA, Proposition 6.3.1]. Therefore M is a family of Cohen–
Macaulay modules. Since F is generically generated, its stalks Fx coincide
with Fg

x provided x is not a closed point. But as X is normal, any fam-
ily N∨ is completely determined by its stalks at non-closed points. Thus
F ≃ F∨∨ ≃ (F ′)∨∨ ≃ π♯M.

2. Suppose that En is a family of vector bundles over nZ such that
En ⊗OnZ

OZ ≃ E . Then the obstruction for lifting En to a family of vector
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bundles over (n+1)Z lies in H2(E,Hom(E , E(−n))). (It can be shown just in
the same way as in [Pet], where the complex analytic case was considered.)
But this cohomology space is 0 since dimE = 1. Hence such a lifting
is always possible, so we can construct a sequence En, where each En is a
family of vector bundles over nZ, such that En⊗OnZ

O(n−1)Z ≃ En−1. Taking
inverse limit we get a family F of vector bundles over X based on Λ such that
E1 = E and F ⊗OX

OnZ ≃ En for all n. We only have to show that F is full.
According to the Theorem on Formal Functions [Ha, Theorem III.11.1], the
m-adic completion of H1(X,F(−Z)) coincides with lim

←−
H1(E, En(−Z)). The

natural exact sequence

0→ OZ(−nZ) −→ O(n+1)Z −→ OnZ → 0

tensored with F gives an exact sequence

(10.1) 0→ E(−nZ) −→ En+1 −→ En → 0.

Since both E and OZ(−Z) are generically spanned, so is E(−nZ) for all
n ≥ 0. It means that for every n > 0 there is a homomorphism mOZ →
E(−(n− 1)Z) with the cokernel support of dimension 0. Twisting it by −Z
we get a homomorphism mOZ(−Z) → E(−nZ) with the same property,
which induces an epimorphism mH1(E,OZ (−Z))→ H1(E, E(−nZ)). Since
Z is a weak reduction cycle, we get H1(E, E(−nZ)) = 0 for all n > 0. The
exact sequence (10.1) twisted by −Z gives an exact sequence of cohomologies

H1(E, E(−(n + 1)Z)) −→ H1(E, En+1(−Z)) −→ H1(E, En(−Z)) −→ 0,

wherefrom we can deduce that H1(E, En(−Z)) = 0 by an obvious induction.
Therefore H1(X,F(−Z)) = 0 and the exact sequence 0 → F(−Z) → F →
E → 0 shows that every global section of E can be lifted to a global section of
F . But outside E every quasicoherent sheaf over X is generated by its global
sections. Hence F is generically spanned, i.e. the condition 1(a) holds. Note
also that the equality H1(X,F(−Z)) = 0 implies that H1(X,F) ≃ H1(E, E).

To verify the condition 1(b) we use local cohomologies [Gro2], especially
the exact sequence

H0(X,F) −→ H0(X̆,F)→ H1
E(X,F) → H1(X,F),

which shows that the condition 1(b) can be reformulated as follows:

1(b′) the mapping H1
E(X,F)→ H1(X,F) is injective.

Due to [Wahl, Lemma B.2] we can identify H1
E(X,F) with lim

−→
H0(E, En(nZ)),

where the limit is taken along homomorphisms

µn : H0(E, EnZ(nZ))→ H0(E, En+1((n + 1)Z))

arising from the natural exact sequence

0→ OnZ(−Z) −→ O(n+1)Z −→ OZ → 0

tensored by En+1((n + 1)Z) . Especially all µn are injective. We shall
show that under our conditions they are also surjective, or, equivalently,
all homomorphisms H0(E, E((n + 1)Z)) −→ H1(E, En(nZ)) are injective.
Actually we shall prove that even their compositions with the restrictions
En(nZ)→ E(nZ), i.e. homomorphisms

δn : H0(E, E((n + 1)Z)) −→ H1(E, E(nZ))
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are injective. The latter arise from the exact sequence

0→ E(nZ) −→ E2((n + 1)Z) −→ E((n+ 1)Z) −→ 0,

thus, by the condition 2(b), we may suppose that it is injective for n = 0.
Since Z is a weak reduction cycle, the sheaf OX(−Z)is generically spanned,
hence all sheaves OX(−nZ) are generically spanned too, so there is a homo-
morphism mOX → OX(−nZ) with the cokernel supported on a finite set
of closed points. Then the dual mapping OX(nZ) → mOX is a monomor-
phism. Tensoring with E(Z), we get a monomorphism φ : E((n + 1)Z) →
mE(Z), wherefrom we get the following commutative diagram:

H0(E, E((n + 1)Z)
δn−−−−→ H1(E, E(nZ))

H0(φ)

y
y

mH0(E, E(Z))
m δ0−−−−→ H1(E, E).

Since both δ0 and H0(φ) are injective, so is δn.
Thus H1

E(X,F) ≃ H0(E, E(Z)). Since also H1(X,F) ≃ H1(E, E), we
see that the condition 1(b) is actually equivalent to the condition 2(b). It
accomplishes the proof. �

We also need the following important, though rather simple, observation.

Proposition 10.7. If a family F of vector bundles over X based on Λ is
full, so are also all its fibres F(L) = F ⊗Λ L.

Proof. First show that H1(X̆,F) = 0. Note that since E is a closed sub-
scheme of a regular scheme X, it can be locally defined by one equation
[Ha, Proposition II.6.11]. Therefore H2

E(X,F) = 0 [Gro2] and the map-

ping H1(X,F)→ H1(X̆,F) is surjective. The exact sequence 0→ F(−E)→
F → E → 0, where E = F ⊗OX

OE , together with the obvious equalities

Hi(X̆, E) = 0, implies that Hi(X̆,F) ≃ Hi(X̆,F(−nE)) for all n. But X is
projective over the affine scheme S and −E is ample, so H1(X,F(−nE)) = 0

for some n, hence also H1(X̆,F) = 0.
Now from the Künneth formulae [CE] we obtain a commutative diagram

H0(X,F) ⊗Λ L −−−−→ H0(X,F ⊗Λ L)
y

y

H0(X̆,F)⊗Λ L −−−−→ H0(X̆,F ⊗Λ L),

where the lower horizontal arrow is an isomorphism and the left vertical
arrow is surjective. Hence the right vertical arrow is surjective too, which
means that F(L) is full. �

Remark 10.8. Obviously, the subcategory VBf (X) ⊂ VB(X) is closed under
direct summands. On the contrary, it is not the case for the subcategory
VBf (Z) ⊂ VB(Z) (cf. for instance Theorem 11.1 below). The same is true
for families too. That is why, even under the conditions of Theorem 10.6.2,
we cannot claim that a full lifting F of E is strict if so is E , though it is true
that F(L) ≃ F(L′) implies L ≃ L′. On the other hand, if F is strict, so is
the family M = π∗F of Cohen–Macaulay A-modules, since the restriction
of π∗ onto VBf (X) is an equivalence VBf (X)

∼
→ CM(A).
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11. Cohen–Macaulay types: minimal elliptic case

Recall that the fundamental cycle of a resolution π : X → S of a normal
surface singularity is the smallest effective cycle Z such that (Z.Ei) ≤ 0
for each irreducible component Ei of the exceptional curve E [Lau]. This
singularity is called minimally elliptic [Lau, Reid] if it is Gorenstein and
h1(OX) = 1 for some (hence for any) resolution π : X → S. If π is min-
imal, an equivalent condition is: (Z + K.Ei) = 0 for all i, where Z is the
fundamental cycle of this resolution and K is the canonical divisor of X. In
particular, then ωZ ≃ OZ . One can easily check that Z is a reduction cycle
in this case [Kahn, DGK].

For minimally elliptic singularities the criterion of Theorem 10.4 can be
essentially simplified and restated in terms of E itself, without references to
liftings.

Theorem 11.1 ([Kahn]). Let E be a vector bundle over Z. It is full if and
only if E ≃ G ⊕ nOZ, where

1) G is generically spanned;
2) H1(G) = 0;
3) n ≥ h0(G(Z)).

Under these conditions the full lifting F of E is indecomposable if and only
if G is indecomposable and either E = OZ or G 6≃ OZ and n = h0(G(Z)).

We can extend this result to families as follows.

Theorem 11.2. Let A be a minimally elliptic singularity, π : X → S be
its minimal resolution, and Z be the fundamental cycle of this resolution
(which is known to be a reduction cycle). Suppose that G is a family of
vector bundles over Z based on an algebra Λ with gl.dim Λ ≤ 2 such that

1) G is generically spanned;
2) H1(E,G) = 0;

We set P0 = H0(E,G(Z)). Let also P be a projective Λ-module such that
there is an embedding P0 → P . Then the family E = G ⊕ (OZ ⊗ P ) is full.

Proof. Obviously E is generically spanned. Moreover,

H1(E, E) = H1(E,OZ ⊗ P ) ≃ H1(E,O)⊗ P ≃ P,

H0(E, E(Z)) = H0(E,G(Z)) = P0,

since H0(E,OZ(Z)) = 0 for any exceptional cycle Z (cf. e.g. [Reid, Chapter
4, Exercise 14]). We have already seen that there is a lifting E ′ of E to a
family of vector bundles over 2Z. It gives an exact sequence

0 −→ E(−Z) −→ E ′ −→ E −→ 0

Denote by ξ the corresponding element of Ext1O2Z⊗Λ(E , E(−Z)) and by δ

the induced mapping H0(E, E(Z)) → H1(E, E). One can easily see that
any element from Ext1O2Z⊗Λ(E , E(−Z)) that is of the form ξ + η, where

η ∈ Ext1OZ⊗Λ(E , E(−Z)) ≃ Ext1OZ⊗Λ(E(Z), E), also defines a lifting of E to
a family of vector bundles. Moreover, such an element induces the mapping
δ + δη : H0(E, E(Z)) → H1(E, E), where δη(s) = ηs, the Yoneda product of
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η ∈ Ext1OZ⊗Λ(E(Z), E) with s ∈ H0(E, E(Z)) ≃ HomOZ⊗Λ(OZ ⊗ Λ, E(Z)).
Choose η from

Ext1OZ⊗Λ(G(Z),OZ ⊗ P ) ≃ Ext1OZ⊗Λ(OZ ⊗DΛP,G
∨(−Z)) ≃

≃ H1(E,G∨(−Z)⊗Λ P ),

where G∨ = HomOZ⊗Λ(G,OZ ⊗ Λ), DΛP = HomΛ(P,Λ). Due to the
Künneth formulae, H1(E,G∨(−Z) ⊗Λ P ) ≃ H1(E,G∨(−Z)) ⊗Λ P . The
Serre’s duality implies that H1(E,G∨(−Z)) ≃ DΛH0(E,G(Z)) ≃ DΛP0.
Since DΛP0 ⊗Λ P ≃ HomΛ(P0, P ), the mapping (s, η)→ ηs is just the eval-
uation homomorphism P0 × HomΛ(P0, P ) → P . Thus δη coincides with η
as a homomorphism P0 → P . Therefore we can choose η so that δ + δη be-
comes any prescribed homomorphism P0 → P , for instance an embedding.
Then the corresponding lifting E2 of E to a family of vector bundles over 2Z
satisfies the condition (2b) of Theorem 10.6, hence E is full. �

Corollary 11.3. Suppose that the conditions of Theorem 11.2 hold, as well
as the following:

3) G is strict and has no fibres isomorphic to OZ ;
4) H1(E,G(Z)) is flat as Λ-module;
5) P = P0.

Then the full lifting F of the family E to a family of vector bundles over X
is also strict, as well as the family M = π∗F of Cohen–Macaulay modules
over A.

Proof. Let L be an indecomposable Λ-module. The Künneth formulae imply
that

H0(E,G(Z) ⊗Λ L) ≃ H0(E,G(Z)) ⊗Λ L = P ⊗Λ L

since H1(E,G(Z)) is flat, and

H1(E,G ⊗Λ L) ≃ H1(E,G) ⊗Λ L = 0

since H2(E,G) = 0. Hence G(L) satisfies the indecomposability condi-
tions from Theorem 11.1 (with n = dimk P ⊗Λ L). Since F(L) is full and
resZ F(L) ≃ E(L), F(L) is indecomposable. Moreover, if F(L) ≃ F(L′),
then G(L) ⊕ nOZ ≃ G(L

′) ⊕ n′OZ for n′ = dimk P ⊗Λ L
′. As neither G(L)

nor G(L′) has direct summands isomorphic to OZ , the Krull–Schmidt the-
orem for vector bundles implies that G(L) ≃ G(L′), thus L ≃ L′, so F and
henceM are strict. �

Now we can use the results on vector bundle types to define Cohen–Mac-
aulay types of minimally elliptic singularities. Recall some definitions.

Definition 11.4. A normal surface singularity with a minimal resolutions
π : X → S and exceptional curve E is called

• simple elliptic if E is a smooth elliptic curve [Sai];

• cusp if E is a projective configuration of type Ã.

The latter is not the original definition (in the case char k = 0), but is
equivalent to it [Hir, Kar]. We accept it as a definition of cusp singularities
in the case char k > 0 too. It is easy to see that both simple elliptic and
cusp singularities are minimally elliptic; moreover the fundamental cycle in
these cases coincides with the exceptional curve E.
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Note that, according to the Ésnault–Auslander Theorem 9.3, neither min-
imally elliptic singularity can be Cohen–Macaulay finite (it also follows di-
rectly from the next theorem, even if char k > 0).

Theorem 11.5. A minimally elliptic singularity A is

• Cohen–Macaulay tame bounded if it simple elliptic;
• Cohen–Macaulay tame unbounded if it is a cusp singularity;
• Cohen–Macaulay wild otherwise.

Proof. Suppose first that A is neither simple elliptic nor cusp. Then the
exceptional curve E, hence also the fundamental cycle Z is vector bundle
wild, i.e. possess a strict family G of vector bundles over the polynomial ring
R = k[x, y]. Replacing G by G(m) form big enough we may suppose that G is
generically (even globally) spanned and H1(E,G) = 0. Set P = H0(E,G(Z))
and Q = H1(E,G(Z)). There is an element g ∈ R such that Q[g−1] is
flat over R[g−1]. Moreover, there is at most one point z ∈ A2 such that
G(k(z)) ≃ OZ . Choose x ∈ A2 such that x 6= z and g(x) 6= 0. Let x be

the corresponding maximal ideal of R. Set Λ = R̂x (the x-adic completion)

and Ĝ = G ⊗R Λ. Then Ĝ is a family of vector bundles over Z based on
Λ that satisfied conditions of Corollary 11.3. Thus the family Ĝ ⊕ OZ ⊗ P̂x

has a full lifting F to X, which is strict, and the family of Cohen–Macaulay
A-modules M = π∗F based on Λ is strict too. Since Λ ≃ k[[x, y]], A is
Cohen–Macaulay wild (cf. Remark 5.2.3).

If A is simple elliptic, we can use the Atiyah–Oda description of vector
bundles over E together with the calculations from [At]. The latter give the
following values of cohomologies for vector bundles Pr,d(nx) = p1∗i

∗
nxPr,d

from Theorem 3.1:

h0(E,Pr,d(nx)) =





nd, if d > 0,

1, if d = 0 and x = o,

0 otherwise.

h1(E,Pr,d(nx)) =





nd, if d < 0,

1, if d = 0 and x = o,

0 otherwise.

In particular, Pr,d(nx) is generically spanned if and only if either d ≥ r
or d = 0, r = n = 1, x = o (the latter gives the trivial bundle OE), and
Q = H1(E,Pr,d(Z)) is flat for d 6= br, where b = −(E.E) (recall that in this
case Z = E, hence P(Z) = P(−bo)). If d = br the sheaf Q is no more flat,
since its fibre at the point o jumps, but its restriction onto Eo = E \ o is
flat. Denote by Po

r,d the restriction of Pr,d onto Eo and define the families

Er,d of vector bundles over E, where r ≤ d, (r, d) = 1, as follows:

Er,d =





Pr,d, if r ≤ d < br,

Pr,d ⊕OE ⊗ (d− br)OE , if d > br,

Po
1,b, if r = 1, d = b.

In the first two cases this family is based on E, in the last one it is based on
Eo. These families satisfy the conditions of Corollary 11.3, hence they can
be lifted to families Fr,d of vector bundles over X. Denote Mr,d = π∗Fr,d.
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Then Theorems 3.1 and 11.2 directly imply a description of Cohen–Macau-
lay A-modules (also obtained in [Kahn]). Below we denote by a+ and a−

respectively the positive and negative part of a number a defined as

a+ =

{
a if a > 0,

0 otherwise;
a− =

{
−a if a < 0,

0 otherwise.

Theorem 11.6. If A is simply elliptic, all indecomposable Cohen–Macaulay
A-modules are:

• A, of rank 1;
• Mr,d(nx), of rank n(r+(d−br)+), where r ≤ d, (r, d) = 1 and x ∈ E,
x 6= o if r = 1, d = b;
• Mn, of rank n+ 1, where REMn ≃ P1,b(no)⊕OE.

In particular A is Cohen–Macaulay tame bounded, since the number of fam-
iliesMr,d with r+(d−br)+ = m is at most bϕ(m), where ϕ(m) is the Euler
function.

Let now A be a cusp singularity, E =
⋃s

i=1Ei be the exceptional curve
of its minimal resolution, Ei being the irreducible components so arranged
that Ei ∩ Ei+1 6= ∅ (as before, we set Es+i = Ei), bi = −(Ei.Ei), b =
(b1, b2, . . . , bs) and br be the r-fold repetition of b, i.e.

br = (b1, b2, . . . , bs, b1, b2, . . . , bs, . . . , b1, b2, . . . , bs) (r times).

In this case Z = E and G(Z) ≃ G(−b). If G is a vector bundle over E,

G̃ is its lifting to the normalization Ẽ, one can calculate cohomologies of G
using the long exact sequence of cohomologies corresponding to the exact

sequence 0 → G → G̃ → G̃/G → 0 and the known values of Hi(Ẽ, G̃)

(recall that Ẽ is just a union of projective lines). Applying this procedure
to the vector bundles V(d,m, λ) from page 17, one gets that these values
can be calculated as follows (cf. [DGK] for details). Define a positive part
of d = (d1, d2, . . . , drs) as a subsequence p = (dk+1, dk+2, . . . , dk+l), where
0 ≤ k < rs, 1 ≤ l ≤ rs, such that di ≥ 0 for all i = k + 1, . . . , k + l, but
either l = rs or both dk < 0 and dk+l+1 < 0 (again we set drs+j = dj). Set
θ(p) = l if either l = rs or p = (0, 0, . . . , 0) and θ(p) = l + 1 otherwise;
θ(d) =

∑
p θ(p). At last, set δ(d, λ) = 1 if d = 0 = (0, 0, . . . , 0), λ = 1, and

δ(d, λ) = 0 otherwise. Then

h0(E,V(d,m, λ)) = m

(
rs∑

i=1

(di + 1)+− θ(d)

)
+ δ(d, λ),

h1(E,V(d,m, λ)) = m

(
rs∑

i=1

(di + 1)−+ rs− θ(d)

)
+ δ(d, λ).

Moreover, V(d,m, λ) is generically spanned if and only if either d = 0,
m = 1 and λ = 1 (i.e. V(d,m, λ) ≃ OE) or the following conditions hold2:

1. d > 0 (it means that all di ≥ 0 and at least one inequality is strict).

2I must note a mistake in the preprint [DGK], where we claimed that d > 0 is enough
for V(d, m, λ) to satisfy Kahn’s conditions. It has been improved in the final version. We
are thankful to Igor Burban who has noticed this mistake.
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2. If d′ is a shift of d, i.e. d′ = (dk+1, . . . , drs, d1, . . . , dk) for some k, d′

contains no subsequence (0, 1, 1, . . . , 1, 0), in particular (0, 0).
3. No shift of d is of the form (0, 1, 1, . . . , 1).

We call a sequence d satisfying the conditions 1–3 a suitable sequence. The
inequality d > 0 implies that H1(E,V(d,m, λ)) = 0, so the vector bundles
V(d,m, λ) with suitable d satisfy Kahn’s conditions. Moreover, in this case
Q = H1(E,Vd(Z)) ≃ H1(E,Vd−br ) is flat over R = k[x, x−1] if d 6= b. If
d = b, Q is no more flat, butQ[(x−1)−1] is flat over R′ = k[x, x−1, (x−1)−1].
Set V ′b = Vb ⊗R R′ and nd =

∑rs
i=1(di − bi + 1)+− θ(d − br). Note that

nd = 0 if and only if every positive part of d− br contains 1 at most once,
all other entries of it being 0 (for instance d = b). Define, for each suitable
sequence d, a family Ed of vector bundles over E based on R if d 6= b and
on R′ if d = b. Namely,

Ed = Vd ⊕ ndOE ⊗R, if d 6= b;

Eb = V ′b.

These families satisfy the conditions of Corollary 11.3, hence can be lifted
to full families Fd of vector bundles over X, which give rise to families
Md = π∗Fd of Cohen–Macaulay A-modules. Now Theorems 8.1 and 11.2
directly imply the following description of Cohen–Macaulay A-modules.

Theorem 11.7. If A is a cusp singularity, all indecomposable A-modules
are:

• A, of rank 1;
• Md(m,λ) = Md ⊗R R/(x − λ)m, of rank m(r + nd), where d is a

suitable sequence and λ 6= 1 if d = b;
• Mb(m, 1), of rank m+ 1, where REMb(m, 1) ≃ V(b,m, 1) ⊕OE.

In particular A is Cohen–Macaulay tame unbounded.

�

12. Cohen–Macaulay types: Q-elliptic case

Using Corollary 9.2 we can extend the results of Section 11 to a wider
class of surface singularities.

Definition 12.1. 1. A surface singularity A will be called Q-Gorenstein,
if the order g of its canonical divisor K in the Picard group is finite
and prime to char k.

Just as in the proof of Theorem 9.3, one can construct the Goren-
stein cover B =

⊕g
i=1 J

−iti, where J is an ideal of class K and
tn = α−1 such that J−n = αA.

2. A Q-Gorenstein singularity A is called
• Q-elliptic if its Gorenstein cover is minimally elliptic;
• simple Q-elliptic if its Gorenstein cover is simple elliptic;
• Q-cusp if its Gorenstein cover is a cusp singularity.

Note that if A is Q-Gorenstein and B is its Gorenstein cover, the cyclic
group of order g acts on B so that A = BG and the extension A ⊆ B

is unramified in codimension 1 (cf. the proof of Theorem 9.3). Therefore
Theorem 11.5 and Corollary 9.2 immediately imply
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Corollary 12.2. A Q-elliptic singularity is

• Cohen–Macaulay tame bounded if it is simple Q-elliptic;
• Cohen–Macaulay tame unbounded if it a Q-cusp singularity;
• Cohen–Macaulay wild otherwise.

Remark 12.3. If k = 0, simple Q-elliptic and Q-cusp singularities arise as
the so called log-canonical singularities [Kaw]. Recall that a normal surface
singularity with the minimal resolution π : X → S is called log-canonical if
KX = π∗KS +

∑s
i=1 aiEi with ai ≥ −1, where π∗KS denotes the numerical

pullback of KS . The latter means that π∗KS = K ′
S +
∑s

i=1 kiEi, whereK ′
S is

the strict transform of KS (cf. [Ha, Section II.7]) and ki ∈ Q are so chosen
that (π∗KS , Ei) = 0 for all i. In other words, KX coincides with KS outside
E, while (KX .Ej) =

∑s
i=1 ai(Ei.Ej) for all j. It is proved in [Kaw, Theorem

9.6] that, if char k = 0, a log-canonical singularity is always Q-Gorenstein;
moreover, it is either quotient, or simple Q-elliptic, or Q-cusp.

We shall describe Cohen–Macaulay modules over Q-cusp singularities.
Namely, let B be a cusp singularity, T = SpecB, φ : Y → T be the minimal
resolution of T , and F =

⋃t
i=1 Fi be the exceptional curve of φ, where Fi are

the irreducible components of F so arranged that Fi ∩ Fi+1 = ∅ (as usually
we set Ft+i = Fi and use analogous identification everywhere). Suppose
that char k 6= 2 and the group G = { 1, σ } of order 2 acts on B so that the
lifting of this action onto Y is free outside F and reverse the orientation
of F (Q-cusp singularities fit this situation: it can be shown just as in
[Kaw, Theorem 9.6]). Then σ induces a reflection of ∆(F ). If we choose
F1 to be its fixed component, σ maps Fi onto Ft+2−i with the coordinate
transformation x 7→ 1/x. It induces the action of σ on vector bundles
over F such that V(d,m, λ)σ ≃ V(dσ,m, 1/λ), where (d1, d2, . . . , drt)

σ =
(d1, drt, drt−1, . . . , d2).Therefore its action on Cohen–Macaulay B modules
is (using notation of Theorem 11.7):

Md(m,λ)σ ≃Mdσ(m, 1/λ), Bσ ≃ B and Mσ
n ≃Mn

(since necessarily bσ = b). But it is known from generalities about group
actions that the restriction onto A of an indecomposable B-module M is
indecomposable if Mσ 6≃M and decomposes M = M ′⊕M ′′, where M ′,M ′′

are indecomposable and non-isomorphic, if Mσ ≃ M . Moreover, if N is
another module, N 6≃M and N 6≃Mσ, then Mσ and Nσ have no common
direct summands. Denote by Nd the following families of Cohen–Macaulay
A-modules:

• the restriction ofMd onto A if dσ does not coincide with any t-shift
of d;
• the restriction of Md[(x2 − 1)−1] onto A if dσ is a t-shift of d,

where R = k[x, x−1]. For any sequence d such that dσ coincides with a
t-shift of d denote by N ′

d(m,±1) and N ′′
d(m,±1) the indecomposable di-

rect summands of Md(m,±1). Note that always bσ = b. The previous
observations together with Theorem 11.7 imply

Theorem 12.4. In the above situation all indecomposable Cohen–Macaulay
A-modules are:
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• Nd(m,λ) = Nd ⊗R R/(x− λ)m, where λ 6= 0, and λ 6= ±1 if dσ is a
t-shift of d;
• N ′

d(m,±1) and N ′′
d(m,±1) for such d that dσ is a t-shift of d;

• A and B− = { b ∈ B |σ(b) = −b }.

Here d always denotes a suitable sequence.

13. Application to hypersurfaces and curves.

We can apply the results of Section 11 to hypersurface singularities, i.e.
rings of the shape A = k[[x1, x2, . . . , xn]]/(f), using the results of Knörrer
[Kn] (see also [Yo]) on the relations between Cohen–Macaulay modules over
A and over its suspension A♯ = k[[x1, x2, . . . , x,z]]/(f + z2). (In this sec-
tion we suppose that char k 6= 2.) Namely, for every A-module M denote
by syzM its first syzygy as of A-module and by ΩM its first syzygy as of
A♯-module. For every A♯-module N denote by resN the A-module N/zN .
These operations map Cohen–Macaulay modules to Cohen–Macaulay ones,
so we consider them as functors between categories of Cohen–Macaulay A-
and A♯-modules. As A is Gorenstein, syz can be considered as an automor-
phism of the stable category CM(A), which is the factor of CM(A) modulo
free modules. We also denote by σ the automorphism of A♯ mapping z to
−z and leaving all xi fixed, and by Nσ the A♯-module obtained from N by
twisting with σ. Then the results of [Kn] can be formulated as follows.

Theorem 13.1. 1. Let M 6≃ A be an indecomposable Cohen–Macaulay
A-module.
(a) If M 6≃ syzM , the module ΩM is indecomposable.
(b) If M ≃ syzM , ΩM ≃ Ω1M ⊕ Ω2M , where Ω1M and Ω2M are

indecomposable and non-isomorphic.
Every indecomposable Cohen–Macaulay A♯-module is isomorphic to
one of those described in items (a),(b).

2. Let N 6≃ A♯ be an indecomposable Cohen–Macaulay A♯-module.
(a) If N 6≃ Nσ, the module resN is indecomposable.
(b) If N ≃ Nσ, resN = res1N ⊕ res2N , where res1N and res2N

are indecomposable and non-isomorphic.
Every indecomposable Cohen–Macaulay A-module is isomorphic to
one of those described in items (a),(b).

We apply these results to singularities of type Tpqr. Namely, denote by
Tpqr the factor

k[[x, y, z]]/(xp + yq + zr + λxyz), where 1/p + 1/q + 1/r ≤ 1 and λ 6= 0

(we may suppose that p ≥ q ≥ r). Moreover, we demand this singularity to
be isolated, which imposes restrictions on λ in the quasi-homogeneous cases,
when (p, q, r) ∈ { (2, 3, 6), (2, 4, 4), (3, 3, 3) }. Note that in all other cases the
isomorphism class of Tpqr does not depend on λ. A hypersurface singularity
that is an (iterated) suspension of Tpqr, i.e.

k[[x, y, z, t1, t2, . . . , tm]]/

(
xp + yq + zr + λxyz +

m∑

i=1

t2i

)
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is called a singularity of type Tpqr. It is known [Lau] that the surface
singularities Tpqr are simple elliptic in quasi-homogeneous case and cusp
singularities in all other cases. Therefore they are tame, so Theorem 13.1
implies

Corollary 13.2. All hypersurface singularities of type Tpqr are Cohen–Mac-
aulay tame.

Unfortunately, we do not have precise formulae for syzygies of Tpqr-
modules, so we cannot give an explicit description of Cohen–Macaulay mod-
ules over their suspensions.

We can also use Knörrer’s correspondence to obtain a description of
Cohen–Macaulay modules over curve singularities of types Tpq, i.e. the
factors

Tpq = k[[x, y]]/(xp + yq + λx2y2), where 1/p + 1/q ≤ 1/2 and λ 6= 0

(again in quasi-homogeneous cases, when (p, q) ∈ { (3, 6), (4, 4) }, some con-
ditions must be imposed on λ in order this singularity to be isolated). To
do it one only has to note that the suspension of Tpq is isomorphic to a sur-
face singularities Tpq2 (change z to z + λxy/2). Moreover, in this case one
can explicitly calculate the action of σ on the minimal resolution of Tpq2,
thus get an explicit list of indecomposable Tpq-modules (cf. [DGK] for
details). It accomplishes the study of Cohen–Macaulay modules over tame
curve singularities, filling the flaw in [DG1], where no explicit description
of Tpq-modules was obtained (their tameness was established using defor-
mation theory).

14. Some conjectures and remarks

We end up with some conjectures and remarks (cf. [DGK]).

Conjecture 14.1. In the following cases the ring A is Cohen–Macaulay
wild:

1) A is a surface singularity that is neither quotient, nor simple Q-
elliptic, nor Q-cusp;

2) A is a hypersurface singularity that is neither simple (i.e. of types
A-D-E [AGV]) nor of type Tpqr;

3) A is non-isolated and the dimension of its singular locus is greater
than 1 (i.e. Ap is not regular for some prime ideal p of depth 2).

If this conjecture is true, we shall have a complete description of Cohen–
Macaulay types of isolated surface and hypersurface singularities. The result
is given in Table 1 (the conjectured cases marked with ‘?’). Unfortunately,
we have now no further conjectures, not even examples, for non-isolated
singularities with 1-dimensional singular locus. Probably, very few of them
can be Cohen–Macaulay tame.

Remark 14.2. All known examples of Cohen–Macaulay tame unbounded
singularities, in particular those from Table 1, are actually of exponential
growth. It seems very plausible that it is always so. Nevertheless, just as
in the case of finite dimensional algebras, it can only be shown a posteriori,
when one has a description of modules. We do not see any “natural” way
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Table 1.

Cohen–Macaulay types of singularities

CM type curves surfaces hypersurfaces

finite dominate quotient simple
A-D-E (A-D-E)

tame dominate simple of type Tpqr with
bounded Tpq with Q-elliptic 1/p+ 1/q + 1/r = 1

1/p + 1/q = 1/2 (only ?) (only ?)

tame dominate Q-cusp of type Tpqr with
unbounded Tpq with (only ?) 1/p+ 1/q + 1/r < 1

1/p + 1/q < 1/2 (only ?)

wild all other all other ? all other ?

to prove this conjecture without such calculations. That is why we prefer to
say ‘bounded’ and ‘unbounded’ instead of more usual ‘of polynomial growth’
and ‘of exponential growth.’

Remark 14.3. In the complex analytic case, Artin’s Approximation Theorem
[Art] implies that the list of Cohen–Macaulay modules remains the same
if A denotes the ring of germs of analytic functions on a simple elliptic or
cusp singularity. The lifting of families is more cumbersome. It is always
possible if the base is a finite dimensional algebra. If it is an algebraic variety
T , we can only claim that for each point t ∈ T a lifting is possible over a
neighbourhood U of t in T . It gives a lifting of an appropriate family to an

etale covering T̃ of T . If T is a smooth curve or surface, so is T̃ , therefore the
results on tameness and wildness from Sections 11,12 remain valid. On the
other hand, in the case of cusps it seems credible that the families Ed from
the proof of Theorem 11.5 can actually be lifted over T , just as in [Kahn]
for simple elliptic case.
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ume. Birkhäuser, 1998, 3–26.
[DG3] Y. A. Drozd and G.-M. Greuel. Tame and wild projective curves and classification

of vector bundles. J. Algebra 246 (2001), 1–54.
[DGK] Y. A. Drozd, G.-M. Greuel and I. Kashuba. On Cohen–Macaulay modules on

surface singularities. Preprint MPI 00–76. Max–Plank–Institut für Mathematik,
Bonn, 2000 (to appear in Moscow Mathematical Journal).

[DK] Y. A. Drozd and V. V. Kirichenko. Finite Dimensional Algebras. Springer–Verlag,
1984.

[DR] Y. A. Drozd and A. V. Roiter. Commutative rings with a finite number of integral
indecomposable representations. Izvestia Akad. Nauk SSSR 31 (1967), 783–798.
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[Sch] A. Schappert. A characterization of strictly unimodal plane curve singularities.

Singularities, Representation of Algebras, and Vector Bundles. Lecture Notes in
Math. 1273, Springer–Verlag, 1987, 168–177.

[Ses] C. S. Seshadri. Fibrés vectoriels sur les courbes algébriques. Astérisque 96 (1982).
[Wahl] J. Wahl. Equisingular deformations of quotient surface singularities, I. Ann. Math.

104 (1976), 325–356.
[Wall] C. T. C. Wall. Classification of unimodal isolated singularities of complete inter-

sections. Singularities. Proc. Symp. Pure Math. 40(2), 1983, 625–640.
[Yo] Y. Yoshino. Cohen–Macaulay Modules over Cohen–Macaulay Rings. Cambridge

University Press, 1990.

Kiev Taras Shevchenko University, Department of Mechanics and Math-

ematics, 01033 Kiev, Ukraine, and Universität Kaiserslautern, Fachbereich

Mathematik, 67663 Kaiserslautern, Germany

E-mail address: unialg@ln.ua


	Introduction
	1. An easy example: vector bundles on P1
	2. A simple example: projective configurations of type A
	3. Elliptic curves are vector bundle tame
	4. Curves of genus g>1 are vector bundle wild
	5. Vector bundle types: definitions
	6. Vector bundles and matrix problems
	7. Vector bundle types: results
	8. Vector bundles over projective configurations of type A"0365A
	9. Cohen--Macaulay modules: generalities
	10. Kahn's reduction
	11. Cohen--Macaulay types: minimal elliptic case
	12. Cohen--Macaulay types: Q-elliptic case
	13. Application to hypersurfaces and curves.
	14. Some conjectures and remarks
	References

