УДК 519.48

Строение наследственных колец Ю. А. Дрозд (Киев)

В последнее время теории наследственных колец посвящено много работ целого ряда авторов. Это связано, вероятно, с «естественностью» задачи: наследственные кольца в гомологической классификации непосредственно за полупростыми, а в то же время здесь довольно сложные классы колец и специфические трудности, вующие в полупростом случае. По-видимому, первый значительный результат о строении наследственных колец получил М. Харада [1], который показал, что полупримарные наследственные кольца изоморфны некоторым кольцам (обобщенно) треугольных матриц с простыми артиновыми блоками по диагонали. Смолл [2], используя кольца частных, распространил «треугольное представление» Харады на нётеровы справа наследственные кольца. Здесь по диагонали уже стоят первичные кольца. Наконец, Чэттерс [3] доказал, что двусторонне нётерово наследственное кольцо разлагается в прямое произведение артинова и нескольких первичных колец.

Настоящая работа посвящена структурным теоремам для наследственных колец с очень слабым ограничением конечности: существованием примитивного разложения единицы. В § 1 доказывается, что при этом ограничении наследственное кольцо изоморфно кольцу треугольных матриц с первичными кольцами по диагонали. В § 2, комбинируя критерий наследственности Харады (для полупримарных колец) с одним результатом Палмера и Рооса [4], мы даем критерий наследственности треугольного кольца. Из этих теорем в § 3 сравнительно легко выводятся результаты Харады, Смолла (вместе с одним уточнением для двусторонне наследственных колец) и Чэттерса. В § 4 к изучению строения наследственных колец применяется техника тензорных алгебр. Здесь вводится понятие «вида», обобщающее соответствующее понятие, данное Габриелем [5] для артиновых колец, и доказывается, что при выполнении одного условия («расщепляемости») наследственные кольца изоморфны тензорным алгебрам некоторых специальных видов. Отметим, что техника видов хорошо зарекомендовала себя, в частности, при изучении модулей над наследственными кольцами (см., например, [5], [6]).

Все перечисленные результаты, с соответствующими изменениями, переносятся и на полунаследственные кольца. Большая часть этих результатов была анонсирована автором в докладе [7].

§ 1. Треугольность наследственного кольца

В настоящей работе слово «кольцо» всегда будет означать ассоциативное кольцо с единицей, «гомоморфизм колец» — гомоморфизм, переводящий единицу в единицу. Все модули предполагаются унитальными, причем слово «модуль», если не оговорено противное, означает правый модуль. Соответственно термины «нётеровость», «артиновость», «наследственность» и т. п., если не оговорено противное, означают нётеровость, артиновость, наследственность и т. п. справа. С другой стороны, «идеал» всегда будет означать двусторонний идеал. Разложением единицы кольца A назовем равенство вида $1 = e_i + \ldots + e_n$, где e_i попарно ортогональные идемпотенты. Идемпотент $e \in A$ назовем примитивным (локальным, первичным), если в кольце еАе нет нетривиальных идемпотентов (соответственно если еАе локально или первично). Разложение единицы $1 = e_1 + \ldots + e_n$ назовем примитивным (локальным, первичным, центральным), если таковыми являются все идемпотенты e_i . В дальнейшем мы всегда будем предполагать, что во всех рассматриваемых кольцах есть примигивное разложение единицы. Очевидно, это равносильно тому, что регулярный А-модуль. $(\tau. e. camo A, paccмотренное как <math>A$ -модуль) разлагается в прямую сумму неразложимых модулей. В частности, такими являются все кольца, конечномерные в смысле Голди [8] (например, артиновы или нётеровы), а также все полусовершенные кольца (напомним, что полусовершенное кольцо — это такое кольцо, в котором есть даже локальное разложение единицы [8]). Известны примеры наследственных колец, не удовлетворяющих этому условию (см. [9]). Главными А-модулями назовем конечнопорожденные проективные неразложимые модули.

Разложение единицы $1=e_1+\ldots+e_n$ назовем треугольным, если $e_iAe_j=0$ при i>j. Кольцо A назовем треугольным, если в нем есть треугольное первичное разложение единицы. Основным результатом этого пункта является следующая теорема.

Теорема 1. Полунаследственное кольцо треугольно.

Доказательство. Из полунаследственности кольца A непосредственно вытекает, что если P—главный, а Q— проективный A-модули, то всякий ненулевой гомоморфизм $f: P \rightarrow Q$ есть мономорфизм. Поэтому можно ввести отношение квазипорядка \leqslant для главных A-модулей, считая $P \leqslant Q$, если $\operatorname{Hom}_A(P, Q) \neq 0$. Если одновременно $P \leqslant Q$ и $Q \leqslant P$, будем писать $P \sim Q$ и называть модули P и Q эквивалентными.

Разложим регулярный A-модуль в прямую сумму главных, расположив слагаемые в «невозрастающем» порядке: $A = \bigoplus_{k=1}^m P_k$, причем из $P_i < < P_j$ следует i < j. Объединяя эквивалентные слагаемые, получим разложение $A = \bigoplus_{i=1}^n Q_i$, где Q_i — прямая сумма эквивалентных неразложимых модулей и $\operatorname{Hom}_A(Q_j,\ Q_i) = 0$ при i > j. Пусть $1 = e_i + \ldots + e_n$ — то разло-

жение единицы, для которого $Q = e_i A$. Оно треугольно, так как $e_i A e_j \simeq \text{Нот}_A(Q_i, Q_i) = 0$ при i > j, так что остается проверить первичность колец $A_i = e_i A e_i \simeq \text{Нот}_A(Q_i, Q_i)$.

Из [10] следует, что кольца A_i полунаследственные. Кроме того, если $Q_i = \bigoplus_{j=1}^t P_{ij}$, где $P_{ij} \sim P_{ik}$ для любых j, k, то, полагая $\overline{P}_{ik} = P_{ik}e_i$, мы получим разложение регулярного A_i -модуля в прямую сумму неразложимых эквивалентных модулей: $A_i = \bigoplus_{j=1}^t \overline{P}_{ij}$, поскольку $\operatorname{Hom}_{A_i}(\overline{P}_{ij}, \overline{P}_{ik}) \simeq \simeq \operatorname{Hom}_A(P_{ij}, P_{ik}) \simeq f_k A f_j$, где f_k и f_j — такие идемпотенты из A_i , что $P_{ij} = f_j A$, а $P_{ik} = f_k A$. Поэтому остается доказать следующую лемму.

 Π емма 1. Если A — полунаследственное кольцо, то следующие условия равносильны:

- 1) А первично;
- 2) $A = \bigoplus_{i=1}^{m} P_i$, где P_i эквивалентные главные модули;
- 3) все главные А-модули эквивалентны.

Доказательство. 1) \Rightarrow 2) следует из доказанного выше: иначе в A есть треугольное разложение единицы $1 = e_1 + \ldots + e_n$ $(n \ge 2)$, а тогда идеал $I = \sum_{i < j} e_i A e_j$ нильпотентен; если же I = 0, то $A_i = e_i A e_i$ — идеалы в A и $A_i A_j = 0$.

- $2) \Rightarrow 3)$. Если P проектный A-модуль, то $\operatorname{Hom}_A(P,A) \neq 0$ и $\operatorname{Hom}_A(A,P) \neq 0$. Если P главный, отсюда следует, что найдутся два номера, i и j (не обязательно различные), для которых $P_i \leqslant P \leqslant P_j$. Но $P_i \leqslant P_i$, значит, $P \sim P_i$.
- 3) \Rightarrow 1). Пусть I и J ненулевые идеалы в A. Найдутся главные модули P и Q, для которых $PJ \neq 0$ и $\text{Hom}_A(Q, I) \neq 0$. Поскольку $P \leqslant Q$, тогда и $\text{Hom}_A(P, I) \neq 0$, значит, существует мономорфизм $f: P \rightarrow I$, откуда $IJ \supset f(P)J = f(PJ) \neq 0$. Следовательно, A первично.

Из теоремы 1 легко выводится аналог теоремы Веддербарна — Мальцева для полунаследственных колец. Точнее, для всех треугольных колец справедлив следующий результат.

Доказательство. Пусть $1 = e_1 + \ldots + e_n$ — треугольное первичное разложение единицы, $A_i = e_i A e_i$, $I = \sum_{i < j} e_i A e_j$. Тогда $I^n = 0$, а $A/I \simeq i < j$

 $\simeq \prod_{i=1}^n A_i$ —полупервичное кольцо. Поэтому I=N, и в качестве \bar{A} можно

взять подкольцо $\sum_{i=1}^{n} A_i$. Если A полунаследственно (наследственно), то полунаследственность (наследственность) \bar{A} вытекает из [10]. Остается

полунаследственность (наследственность) A вытекает из [10]. Остается проверить единственность \overline{A} с точностью до унипотентной сопряженности.

Пусть $B \subset A$ — другое подкольцо, для которого $A = B \oplus N$. Обозначим через f_i образ e_i при естественной проекции A на B. Тогда $B = \sum_{i=1}^n f_i A f_i$ и $f_i \equiv e_i \pmod{N}$. В частности, $f_1 = e_1 + x$, где $x \in N$. Поскольку $Ne_1 = 0$, из равенства $f_1^2 = f_1$ получаем $e_1 x = x$ и $x^2 = 0$. Поэтому $e_1 (1+x) = f_1 = (1+x)f_1$, т. е. $f_1 = (1+x)^{-1}e_1(1+x)$. Заменяя B на $(1+x)B(1+x)^{-1}$, можно считать, что $f_1 = e_1$. Тогда $f_2 = e_2 + y$, где $y \in N$, причем $e_1 y = 0$, а потому и $ye_2 = 0$, так как $Ne_2 = e_1 Ne_2$. Отсюда аналогично выводится, что $f_2 = (1+y)^{-1}e_2(1+y)$, причем $(1+y)^{-1}e_1(1+y) = e_1$. Продолжая этот процесс, мы построим $u \in 1 + N$ такой, что $f_1 = u^{-1}e_1 u$ для всех i, а тогда

$$B = \sum_{i=1}^{n} f_i A f_i = u^{-1} \left(\sum_{i=1}^{n} e_i A e_i \right) u = u^{-1} \overline{A} u.$$

Следствие. Если $1 = e_1 + \ldots + e_n = f_1 + \ldots + f_m - \partial в а$ треугольных первичных разложения единицы кольца A, то они унипотентно сопряжены, τ . e. m = n и индексы можно выбрать так, что $f_i = u^{-1}e_i u$ для всех i, где $u \in 1 + N$ (N — первичный радикал A).

§ 2. Наследственность треугольных колец

В этом параграфе мы дадим критерий наследственности треугольного кольца. Пусть в кольце A фиксировано некоторое треугольное разложение единицы $1=e_1+\ldots+e_n$. Положим $A_{ij}=e_iAe_j$, $A_i=A_{ii}$, $Q_i=e_iA$. Поскольку $A_i\simeq \operatorname{Hom}_A(Q_i, Q_i)$, естественно рассматривать Q_i как левый A_i модуль. Установим вначале критерий проективности A-модулей.

Лемма 2. Следующие условия равносильны:

- 1) А-модуль Р проективен;
- 2) $P \simeq \bigoplus_{i=1}^{n} (P_i \otimes_{A_i} Q_i)$, где P_i проективный A_i -модуль;
- 3) для любого і A_i -модуль $\overline{P}_i = Pe_i / \sum_{k < i} PA_{ki}$ проективен, а гомо морфизмы $\xi_{ij} : \overline{P}_i \otimes_{A_i} A_{ij} \to Pe_j / \sum_{k < i} PA_{kj}$, индуцированные умножением, мономорфны.

Доказательство. Если P_i — проективный A_i -модуль, то $P_i \otimes_{A_i} Q_i \simeq \bigoplus_{j=i}^n P_i \otimes_{A_i} A_{ij}$, а действие операторов из A определяется кольцевым умножением $A_{ik} \otimes_{A_k} A_{kj} \to A_{ij}$. Отсюда сразу следует эквивалентность условий 2) и 3).

 $2) \Rightarrow 1$) следует из [11] (предложение II.5.3).

 $1)\Rightarrow 2).$ Положим $N=\sum\limits_{i< j}A_{ij},\ \overline{A}=\overline{A}/N\simeq\prod\limits_{i=1}^nA_i.$ Если P проективен, то проективен и \overline{A} -модуль $\overline{P}=P/PN\simeq\bigoplus\limits_{i=1}^n\overline{P}_i,$ т. е. проективны все A_i -модули $P_i.$ Положим $Q=\bigoplus\limits_{i=1}^n(\overline{P}_i\otimes_{A_i}Q_i).$ Это проективный A-модуль, причем $Qe_i=\bigoplus\limits_{k=1}^t(\overline{P}_k\otimes_{A_k}A_{ki}),$ откуда $Q/QN\simeq\overline{P}.$ Поскольку N— нильпотентный идеал, отсюда следует $Q\simeq P.$

Следствие. Всякий главный A-модуль изоморфен модулю вида $P \otimes_{A_i} Q_i$, где P — главный A_i -модуль.

Из доказанной леммы уже несложно вывести требуемый критерий наследственности.

Теорема 2. Пусть $1\!=\!e_{i}\!+\!\dots\!+\!e_{n}\!-\!$ треугольное разложение единицы кольца $A;\ \overline{A}_{ij}\!=\!A_{ij}\!\!/\!\sum_{i< k< j}A_{ik}A_{kj}$. Для всякого правого идеала $I\!\subset\!A_{i}$ обозначим через $\mu^{I}_{ikj}(i\!<\!k\!<\!j)$ гомоморфизм

$$(\overline{A}_{ik}/I\overline{A}_{ik}) \otimes_{A_k} A_{kj} \rightarrow A_{ij} / (IA_{ij} + \sum_{i < l < k} A_{il}A_{lj})$$
,

индуцированный умножением в кольце А. Кольцо А наследственно тогда и только тогда, когда выполнены следующие условия:

- а) все A_i наследственны;
- б) A_{ii} плоские левые A_{i} -модули;
- в) для любого правого идеала $I \subset A_i$ правые A_i -модули $\overline{A}_{ij}/I\overline{A}_{ij}$ проективны;
 - Γ) все μ_{iki}^{I} суть мономорфизмы.

Доказательство проведем индукцией по n. Пусть вначале n=2*. Если A наследственно, то A_i также наследственны (см. [10]). Кроме того, если I—правый идеал в A_i , то $I \oplus A_{i2}$ —подмодуль в $Q_i = A_i \oplus A_i$. Он должен быть проективным, значит, по лемме 2, A_{i2}/IA_{i2} — проективный A_2 -модуль, а $I \otimes_{A_i} A_{i2} \to A_{i2}$ — мономорфизм, т. е. A_{i2} — плоский левый A_i -модуль [8]. Итак, выполнены условия а) — в), условие же г) в этом случае пусто.

Наоборот, пусть условия теоремы выполнены. Заметим, что для проверки наследственности A достаточно установить, что всякий подмодуль в каждом Q_i проективен (см. [8]). Но всякий подмодуль в $Q_2 = A_2 -$ это правый идеал в A_2 , а всякий подмодуль в $Q_1 = A_1 \oplus A_{12}$ имеет вид $I \oplus M$, где I— правый идеал в A_1 , а M— некоторый A_2 -подмодуль в A_{12} , содержащий IA_{12} . Из условий а) — в) непосредственно следует , что в обоих случаях выполнено условие 3) леммы 2 (нужно заметить, что M/IA_{12} —

^{*} В этом случае наш критерий легко следует из результата Палмера и Рооса [4], однако мы предпочли дать прямое доказательство, поскольку оно практически без изменений переносится на полунаследственный случай.

это подмодуль в проективном A_2 -модуле A_{12}/IA_{12} , и, ввиду наследственности A_2 , он также проективен). Значит, все эти подмодули проективны и A наследственно.

В фием случае положим $e=e_1$, $f=e_2+\ldots+e_n$, B=fAf, V=eAf. Тогда 1=e+f— треугольное разложение единицы кольца A, а $f=e_2+\ldots+e_n$ — кольца B. Ввиду уже разобранного случая, A наследственно тогда и только тогда, когда A_1 и B наследственны, V—плоский левый A_1 -модуль и для любого правого идеала $I \subset A_1$ правый B-модуль V/IV проективен. Но $V=\bigotimes_{i=2}^n A_{1i}$, так что плоскость V равносильна плос-

кости всех A_{1i} . По индукционному предположению можно считать, что наследственность B равносильна выполнению условий а)—г) при i>1. Наконец, проективность V/IV, ввиду леммы 2, равносильна выполнению условий в) и г) при i=1, что и завершает доказательство теоремы.

Дословно так же устанавливается и критерий полунаследственности треугольного кольца.

Теорема 2a. В обозначениях теоремы 2 кольцо А полунаследственно тогда и только тогда, когда выполнены следующие условия:

- а) все A_i полунаследственны;
- б) A_{ij} плоские левые A_{i} -модули;
- в) для любого конечнопорожденного правого идеала $I \subset A_i$ всякий конечнопорожденный A_i -подмодуль в $\overline{A_{ii}}/I\overline{A_{ii}}$ проективен;
- Γ) для любого конечнопорожденного правого идеала $I \subset A_i$ все μ^I_{ikj} суть мономорфизмы.

В следующих параграфах мы увидим, что во многих интересных случаях условие г) в теоремах 2 и 2а достаточно проверять лишь при I=0. Приведем пример, который показывает, что в общем случае это уже не так. Пусть K — произвольное поле, R=K[t] — кольцо многочленов над K. Рассмотрим кольцо A треугольных матриц вида

$$\begin{bmatrix} R & tR & R \\ 0 & K & K \\ 0 & 0 & K \end{bmatrix}.$$

Очевидно, здесь выполнены условия а)—в) теоремы 2 и, кроме того, условие г) для I = 0: μ_{123}^0 : $tR \otimes_{\kappa} K \rightarrow R$ — мономорфизм. Однако для идеала I = tR условие г) не выполнено: μ_{123}^{tR} : $(tR/t^2R) \otimes_{\kappa} K \rightarrow R/tR$ — вообще нулевой гомоморфизм. Поэтому A даже не полунаследственно.

§ 3. Кольца с условиями конечности

Накладывая на кольцо A ограничения конечности, теорему 2 можно существенно уточнить. Сформулируем ряд следствий, уточняющих эту теорему в разных случаях. Всюду, где говорится о треугольном кольце A, мы предполагаем, что в A задано некоторое треугольное первичное разложение единицы, и пользуемся обозначениями теоремы 2.

Следствие 1 (М. Харада [1]). Треугольное кольцо A совершенно и наследственно * тогда и только тогда, когда все A_i — простые артиновы кольца, а все гомоморфизмы

$$\mu_{ikj}^{0}: \overline{A}_{ik} \otimes_{A_{k}} A_{kj} \to A_{ij} / \sum_{i < l < k} A_{il} A_{lk}$$

мономорфны.

Доказательство вытекает из того, что совершенные первичные кольца — простые артиновы, что автоматически влечет выполнение условий а) — в). Кроме того, всякий правый идеал в A_i является прямым слагаемым, поэтому условие г) достаточно проверять при I=0.

Следствие 2. Нётерово треугольное кольцо A наследственно тогда и только тогда, когда выполняются условия:

- а) все A_i наследственные кольца;
- б) $A_{ij} \simeq \widetilde{A}_i \otimes_{A_i} A_{ij}$, где \widetilde{A}_i правое классическое кольцо частных A_i (оно существует и является простым артиновым кольцом по теореме Голди [8]);
 - в) \overline{A}_{ij} проективные A_{j} -модули;
 - Γ) все μ_{ibi}^{0} суть мономорфизмы.

Доказательство. Необходимость нужно проверить лишь для условия б). Но A_{ij} — плоский левый A_i -модуль, поэтому, если $a \in A_i$ — неделитель нуля, умножение слева на a — это мономорфизм A_{ij} в себя и $A_{ij} \simeq aA_{ij}$ как A_j -модуль. Применяя условие в) теоремы 2 к правому идеалу aA_{ij} , получим $A_{ij} \simeq aA_{ij} \oplus (A_{ij}/aA_{ij})$, откуда, ввиду нётеровости, $aA_{ij} = A_{ij}$, т. е. умножение на a — автоморфизм A_{ij} . Но это и означает, что $\widetilde{A}_i \otimes_{A_i} A_{ij} \simeq A_{ij}$.

Наоборот, если перечисленные условия выполнены, то, так как \widetilde{A}_i — плоский левый A_i -модуль (см. [8]), условия а) и б) теоремы 2 также выполняются. Кроме того, $IA_{ij} = (I\widetilde{A}_i)A_{ij}$, а $I\widetilde{A}_i$ — прямое слагаемое \widetilde{A}_i , поэтому условия в) и г) теоремы 2 достаточно проверить при I = 0, а тогда они совпадают с условиями в) и г) данного следствия.

Следствие 3. Двусторонне наследственное нётерово кольцо изоморфно кольцу треугольных матриц вида

$$\begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$$
,

еде A — артиново, а B — прямое произведение первичных колец.

Доказательство. Ввиду теоремы 1, достаточно проверить, что если A_1 и A_2 — первичные нётеровы кольца, а M — ненулевой A_1 - A_2 -бимодуль, нётеровый как A_2 -модуль, причем кольцо треугольных матриц

$$T = \begin{pmatrix} A_1 & M \\ 0 & A_2 \end{pmatrix}$$

двусторонне наследственно, то A_1 артиново.

^{*} Заметим, что согласно [12] для совершенных колец наследственность справа и слева равносильны.

По следствию 2, M можно рассматривать как левый модуль над простым артиновым кольцом \mathcal{A}_1 (правым классическим кольцом частных A_1). Если T наследственно слева, то M, а потому и \mathcal{A}_1 суть проективные левые A_1 -модули. Тогда найдутся гомоморфизмы левых A_1 -модулей f_α : $\mathcal{A}_1 \to A_1$ и элементы $x_\alpha \in \mathcal{A}_1$ такие, что для любого $x \in \mathcal{A}_1$ лишь конечное число $f_\alpha(x)$ отлично от нуля и $x = \sum_i f_\alpha(x) x_\alpha$ (см. [11], предложение VII.3.1). Легко видеть, что f_α , рассмотренное как отображение $\mathcal{A}_1 \to \mathcal{A}_1$, есть гомоморфизм левых \mathcal{A}_1 -модулей, поэтому он порождается умножением справа на элемент $y_\alpha = f_\alpha(1)$. При этом $\mathcal{A}_1 y_\alpha \subset A_1$ и лишь конечное число y_α отлично от нуля. Тогда $\{x_\alpha/y_\alpha \neq 0\}$ —конечная система образующих левого A_1 -модуля A_1 . Ввиду условия Оре (см. [8]), найдется такой неделитель нуля $a \in A_1$, что $x_\alpha a \in A_1$ для всех α таких, что $y_\alpha \neq 0$, откуда получаем $\mathcal{A}_1 a \subset A_1$, в частности, $a^{-1} = a^{-2}a \in A_1$, и $A_1 = \mathcal{A}_1$ —простое аргиново кольцо.

Если кольцо A двусторонне нётерово, то же рассуждение приводит к известной теореме Чэттерса [3].

Следствие 4. Двусторонне нётерово наследственное * кольцо разлагается в прямую сумму артинова кольца и нескольких первичных колец.

§ 4. Виды и тензорные алгебры

Со всяким треугольным кольцом A можно связать ациклический вид S = S(A), полагая $A_i = e_i A e_i$, а $V_{ij} = A_{ij} / \sum_{i < k < j} A_{ik} A_{kj}$, где $A_{ij} = e_i A e_j$ для некоторого треугольного первичного разложения единицы $1 = e_1 + \ldots + e_n$. По следствию из предложения 2, этот вид не зависит от выбора такого

^{*} Напомним, что для двусторонне нётеровых колец наследственности справа и слева совпадают (см. [13]).

разложения. Назовем его видом треугольного кольца $A,\;\;$ а его схему — схемой треугольного кольца $A.\;\;$

Пусть теперь N — первичный радикал треугольного кольца A, \overline{A} — такое подкольцо в A, что $A = \overline{A} \oplus N$ (оно существует по предложению 1). Кольцо A назовем расщепляемым, если в N есть такой \overline{A} -подбимодуль \overline{N} , что $N = \overline{N} \oplus N^2$. Ввиду предложения 1, расщепляемость не зависит от выбора подкольца \overline{A} , так как любые два подкольца с этим свойством унипотентно сопряжены. Легко видеть, что A расщепляемо тогда и только тогда, когда в A_{ij} есть такой A_{i} - A_{j} -подбимодуль \overline{A}_{ij} , что $A_{ij} = \overline{A}_{ij} \oplus \sum_{i < k < j} A_{ik} A_{kj}$. В этом случае $\overline{N} = \sum_{i,j} \overline{A}_{ij}$. Примером расщепляемых треугольных колец служат тензорные алгебры ациклических видов. Следующий результат показывает, что этот пример в некотором роде универсален.

Предложение 2. Всякое расщепляемое треугольное кольцо A изоморфно фактор-кольцу T(S)/J, где S=S(A) — вид кольца A, а J — идеал, содержащийся в T_+^2 .

Доказательство. Выберем $\overline{A} \subset A$ так, что $A = \overline{A} \oplus N$, и \overline{A} -подбимодуль $\overline{N} \subset N$ так, что $N = \overline{N} \oplus N^2$. Тогда, если $S(A) = (A_i, V_{ij})$, то, полагая $B = \prod_i A_i$, $V = \oplus V_{ij}$, мы видим, что $B \simeq \overline{A}$ и $V \simeq \overline{N}$ как B-бимодуль. Эти изоморфизмы однозначно продолжаются до гомоморфизма колец $\varphi: T(S) = T_B(V) \to A$. Поскольку N нильпотентен, а \overline{N} порождает N, φ — эпиморфизм, а поскольку ограничения φ на $T_0 = B$ и $T_1 = V$ — мономорфизмы, Кег $\varphi = J \subset T_+^2$, что и требовалось доказать.

Отметим один полезный случай, в котором расщепляемость треугольного кольца можно определить по его схеме. Обходом некоторой стрелки графа назовем (ориентированный) путь длины, большей 1, с тем же началом и концом.

Предложение 3. Если в схеме $\Gamma(A) = \Gamma(S(A))$ нет обходов, то треугольное кольцо A расщепляемо.

Доказательство. Очевидно, если в схеме $\Gamma(A)$ нет путей с началом i и концом j, то A_{ij} = 0, а если i и j не соединены стрелкой, то A_{ij} $\subset N^2$. Пусть в схеме $\Gamma(A)$ есть стрелка с началом i и концом j. Поскольку у нее нет обходов, для любой точки k либо A_{ik} = 0, либо A_{kj} = 0, откуда A_{ij} $\cap N^2$ = 0, и в качестве \overline{N} можно взять $\sum A_{ij}$, где сумма берется по всем стрелкам графа $\Gamma(A)$.

Назовем вид наследственным (полунаследственным), если таковой является его тензорная алгебра. Из теоремы 2 легко выводится критерий наследственности ациклического вида *.

^{*} Из результатов Ю. В. Роганова [14] следует, что этот критерий имеет место и без предположения ацикличности. По-видимому, то же верно и для критерия полунаследственности (предложение 4a).

Предложение 4. Ациклический вид $S = (A_i, V_{ij})$ наследствен тогда и только тогда, когда все A_i — наследственные кольца, V_{ij} — плоские левые A_i -модули и для любого правого идеала $I \subset A_i$ фактор-модули V_{ij}/IV_{ij} проективны как A_i -модули.

Доказательство. Пусть V_{ij} =0 при $i \geqslant j$. Обозначим через e_i единицу кольца A_i . Тогда $1 = e_1 + \ldots + e_n$ — треугольное разложение единицы кольца A = T(S), причем

$$A_{ij} = e_i A e_j = \bigoplus_{(k_1, \dots, k_s)} V_{ik_1} \otimes_{A_{k_1}} \dots \otimes_{A_{k_s}} V_{k_s j},$$

а $e_iAe_i=A_i$. В частности, $\bar{A}_{ij}=V_{ij}$, так что условия данного предложения равносильны условиям а) — в) теоремы 2 применительно к кольцу T(S). Кроме того, гомоморфизмы

$$\mu_{ikj}^{0}: V_{ik} \otimes_{A_{k}} A_{kj} \to A_{ij} / \sum_{i < l < k} A_{il} A_{lj}$$

суть расщепляемые мономорфизмы бимодулей, а тогда и гоморфизмы μ^I_{ikj} также являются мономорфизмами, поскольку $\mu^I_{ikj} = \varepsilon \otimes \mu^0_{ikj}$, где ε — тождественный гомоморфизм A_i -модуля A_i/I . Следовательно, условие г) теоремы 2 выполнено всегда, и предложение полностью доказано.

Аналогично из теоремы 2а выводится критерий полунаследственности.

Предложение 4a. Ациклический вид $S = (A_i, V_{ij})$ полунаследствен тогда и только тогда, когда все A_i — полунаследственные кольца, V_{ij} — плоские левые A_i -модули и для любого конечнопорожденного правого идеала $I \subset A_i$ всякий конечнопорожденный A_j -подмодуль в V_{ij}/IV_{ij} проективен.

Поскольку полунаследственные кольца всегда треугольны, можно говорить о виде и о расщепляемости такого кольца. Из предложений 4 и 4а непосредственно вытекает такое

Следствие. Вид наследственного (полунаследственного) кольца всегда наследствен (полунаследствен).

Подведем итог нашим рассмотрениям.

Теорема 3. Расщепляемые наследственные (полунаследственные) кольца — это в точности тензорные алгебры наследственных (полунаследственных) ациклических видов.

Доказательство. Очевидно, единственное, что нужно проверить — это то, что если расщепляемое треугольное кольцо A полунаследственно, то эпиморфизм $\varphi: T(S) \to A$, где S = S(A), построенный при доказательстве предложения 2, является мономорфизмом. Но это обеспечивается тем, что все μ_{ikj}^0 суть мономорфизмы (условие Γ) теорем Γ 0 при Γ 1 при Γ 1 при Γ 2 при Γ 3.

Заметим, что из доказательства мы получаем также такое следствие. Следствие 1. Расщепляемое треугольное кольцо наследственно (полунаследственно) тогда и только тогда, когда выполнены условия \mathfrak{A})— \mathfrak{B}) теоремы 2 (2a) и все гомоморфизмы $\mathfrak{\mu}_{iki}^{\mathfrak{o}}$ суть мономорфизмы.

Следствие 2. Расщепляемые полунаследственные кольца A и B с первичными радикалами соответственно N и M изоморфны тогда и толь-ко тогда, когда $A/N^2 \simeq B/M^2$.

Доказательство вытекает из того, что $S(A) = S(A/N^2)$.

Из предложения 3 получаем еще такой результат.

Следствие 3. Если в схеме полунаследственного кольца нет обходов, то оно изоморфно тензорной алгебре своего вида.

Для конечномерных алгебр над полем K понятие вида совпадает с понятием K-вида, введенным Габриелем [5]. Если поле K совершенно, то, поскольку всякая полупростая K-алгебра сепарабельна, всякая треугольная алгебра расщепляема, и теорема 3 превращается в хорошо известный результат.

Следствие 4. Конечномерные наследственные алгебры над совершенным полем K— это в точности тензорные алгебры ациклических K-видов.

Отметим, наконец, еще одно полезное следствие.

Следствие 5. Пусть A — наследственное (полунаследственное) кольцо, N — его первичный радикал, B — градуированное кольцо, ассоциированное с N-адической фильтрацией кольца A. Тогда B также наследственно (полунаследственно). Если A расщепляемо, то $A \simeq B$.

Доказательство следует из того, что B всегда расщепляемо, S(A) = S(B) и гомоморфизмы μ_{ikj}^0 для A и B мономорфны одновременно.

Приведенный в конце § 2 пример показывает, что это следствие нельзя обратить: для указанного там кольца A ассоциированное градуированное кольцо B наследственно.

Приведем в заключение простой пример, показывающий, что в следствии 4 нельзя отказаться от условия совершенности, а в следствии 2 нельзя отказаться от условия расщепляемости, даже заменяя квадрат радикала на любую фиксированную степень.

Пусть L— несепарабельное расширение поля K, D— ненулевое дифференцирование L над K, U— двумерное левое векторное пространство над L с базисом $\{u_1, u_2\}$. Превратим U в L-бимодуль, полагая $u_1\alpha = \alpha u_1 + (D\alpha)u_2$, $u_2\alpha = \alpha u_2$ для всех $\alpha \in L$. Рассмотрим треугольную K-алгебру A, для которой $A_i = L$, $A_{ij} = L$ при $(i, j) \neq (1, n)$, а $A_{1n} = U$, причем умножение $A_{ik}A_{kj}$ при $(i, j) \neq (1, n)$ определяется умножением в поле L, а для $\alpha \in A_{1k}$, $\beta \in A_{kn}$ произведением является $\alpha \beta u_2$. Легко видеть, что A— нерасщепляемая наследственная K-алгебра, причем, если N— радикал A, B— ассоциированная с N-адической фильтрацией градуированная алгебра и M— радикал B, то $A/N^{n-1} \simeq B/M^{n-1}$.

Поступила в редакцию 29/III 1979 г.

Литература

- M. Harada, Hereditary semi-primary rings and triangular matrix rings, Nagoya Math. J., 27 (1966), 463—484.
- 2. L. W. Small, Hereditary rings, Proc. Nat. Acad. Sci. USA, 55 (1966), 25-27.
- A. W. Chatters, A decomposition theory for Noetherian hereditary rings, Bull. London: Math. Soc., 4 (1972), 125—126.
- 4. J. Palmer, J.-E. Roos, Formules explicites pour la dimension homologique des anneaux de matrices généralisées, C. r. Acad. Sci. Paris, 273 (1971), 1026—1029.
- 5. P. Gabriel, Indecomposable representations. II, Symposia Math., 11 (1973), 81-104.
- 6. **Н. М. Губарени**, О полусовершенных наследственных справа кольцах модульноограниченного типа, Препринт ИМ-78.1, Киев, 1978.
- 7. Ю. А. Дрозд, Строение наследственных колеп, II Всес. симп. по теории колец, алгебр и модулей, Кишинев, 1974, 21—22.
- 8. И. Ламбек, Кольца и модули, Москва, изд-во «Мир», 1971.
- 9. **Л. А. Койфман**, Кольца, над которыми сингулярные модули инъективны. II, Матем. исследования, 6, № 3 (1971), 62—84.
- P. L. Sandomierski, A note on the global dimension of subrings, Proc. Amer. Math. Soc., 23 (1969), 478—480.
- 11. А. Картан, С. Эйленберг, Гомологическая алгебра, Москва, ИЛ, 1960.
- H. Bass, Finitistic dimension and homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 97 (1960), 367—409.
- D. G. Northcott, An introduction to homological algebra, Cambridge, Univ. Press, 1960.
- Ю. В. Роганов, Размерность тензорной алгебры проективного бимодуля, Матем. заметки, 18, вып. 6 (1975), 895—902.