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ABSTRACT. A new framework for the study of some modules over
algebras is elaborated and applied to a new class of representations

of Lie algebra GL(n).

1. Abstract Harish-Chandra situation

1.1. COFINITE SPECTRUM OF AN ALGEBRA.

Through the whole chapter we fix a field K. All considered algebras and categories
will be K-algebras and K-linear categories. Respectively, all homomorphisms and
functors will be K-linear. We shall write Hom, ®, dim etc. instead of Homg,
®k, dimg etc. For any algebra or category A denote A° the opposite algebra or
category.

Denote cfs(I') the cofinite spectrum of an algebra I', i.e. the set of maximal
ideals of finite codimension in I'. If m € cfs(T'), then I'/m ~ M, (K (m))
where A’ (m) is a finite dimensional division algebra over K. In particular, if K is
algebraically closed, then K(m) = K. Let Sy be the only simple left I'/m-module
and DS, = Hom(Sm, K') the only simple right I'/m-module. Then m — S, (or
DSm) is a 1-1 correspondence between cfs(I') and the set of isomorphism classes
of simple left (or, resp., right) finite-dimensional I'-modules.
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Put I'm = 1<i_m,2 I'/m™. the m-adique completion of I'. and Jy = liiqnm/llln

(this is an ideal in I'y).
Proposition 1.

I. Jm = Radl'y, (the Jacobson radical).

[\

o P’ My (D) where Ay, is a local ring.

Am/FEm ~ K (m) where Ky, = RadAyp,.

]

The proof is evident.
Sometimes the following simple observation is useful.

Proposition 2. If i is algebraically closed. then
cfs(I') x efs{\) ~ cfs(I' = A)
Namelv, this bijection is given by:
(mn)—m - A+ -n

Morcover. the corresponding simple left (right) T = \-module is Sy, = Sy (resp..
D‘-qlll \'. D.S‘n ).

The proof is immediately reduced to the finite-dimensional case. where it is
quite evident.

1.2. QUASI-COMMUTATIVE ALGEBRAS.

Call an algebra I' quasi-commutative provided Ext}(Sm.Sn) =0 for all m.n €
€ cfs(I'),m # n.

Example 3.

I. Of course. any commutative algebra as well as anv semi-simple ' one
s quasi-comntative,

2. Let ' =17(G) be the universal envelopping algebra of a finite-dimen-
sional Lie algebra G. If charh” = 0 and G is either reductive or nilpo-
tent, then I' is quasi-commutative [1].

Proposition 4. Let m.n € ¢[s(I'). m # n. and suppose that m is finitely gener
ated as left ideal. Then the following conditions are equivalent:

I. EXt}(Sln. »5'11) - 0

I semi-simple” will always mean “semi-simple artinian™.
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2. nNm=nm
3. mn € nm

Proof. Remark that n + m =1. whence n N m = nm + mn. Thus 2. «<— 3.
1. = 2. Consider the exact sequence

0 — m/nm —['/om — I'/m-—20 (1)
Here T'/m ~ v(m)Sm and m/nm ~ kS, for some integer k. Hence, (1) splits
and there are left ideals M.\ in I' such that:
M+ N=T: MnN=nom: /M ~v(m)Sy; T/N ~ kS,
Therefore. m € M.n C N and
nMimCNNM=mtmCnNm

lLe. nNm = nm.
2. = |. Consider any exact sequence of the form:

0— Sn — V — Sm — 0 (2)
Evidently. nm./ = 0. i.e. M is a module over the algebra
I['/mm=I/nNm=~ ['/n xT'/m

which is semi-simple. Hence. (2) splits and Ext{(Sm.S,) =0 Q.E.D.

Proposition 5. If T is a finitely generated algebra and [ is a left ideal of finite
codimension in I'. then [ is finitelv generated as left ideal.

Proof. Let (i be a generating set of I' and B be a basis of I'//. kor each b ¢ B

fix its representative b e [ and for any » = Y., Ab with A, € A b, € B, put
T =) . Aibi. Then it is easy to check that the set

{gb—gblgeG.be B )
generates [ as left ideal Q.E.D.

Corollary 6. If I' is a finitelv generated algebra. then the following conditions
are equivalent:

1. T is quasi-commutative.,
2. Ifm.n € cfs(I') and m # n. then mNn = nm.
3. Ifm.n € cfs(I'). then mn = nm.

Corollary 7. If T is quasi-commutative. then so is ['? .
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1.3. HARISH-CHANDRA SUBALGEBRAS.

Let T' be a subalgebra of an algebra A. Call I' quasi-central (in A) if for anv
element @ € A the bimodule 'al” is finitely generated both as left and as right
I"-module.

Proposition 8. Suppose that I' is noetherian and (7 is a set of generators of the
algebra A. Then T is quasi-central in A if and onlv if I'gl is finitelv generated
both as left and as right I'-module for each g € G.

The proof is evident as I'(ab)l" C (T'al'}(T'6') and ['(« + &)1’ C l'al + 'L,
Example 9.

1. Of course, if I" is central (i.c. contained in the centre of A). it is also
quasi-central.

2. Let A=0(G)and I' = U (H) where G is a finite-dimensional Lie algebra
and H its Lie subalgebra. Then one can easily check that TG = GI'.
By PROPOSITION 8. T is quasi-central in A.

Now, call the subalgebra I' C A a Harish-Chandra subalgebra provided it is
both quasi-central and quasi-commutative.

Example 10.

1. Any central subalgebra is a Harish-Chandra one.

2. Suppose that charkA’ = 0. If A = [(G) for a finite-dimensinal Lie
algebra G and I' = U('H) where H is either reductive or nilpotent Lie
subalgebra of G, then I' is a Harish-Chandra subalgebra of A.

3. One more example - the Gelfand-Zetlin subalgebra - will be considered
helow.

From now on, let I' be a Harish-Chandra subalgebra of A. Put I'* = T">T°. For
any a € A consider the I'-bimodule epimorphism ¢, : ' — T« mapping 3 = 7
to Bavy. Let I, = Kero, (it is a left ideal in T'¢). Define the subset X, C cfs(I')?
by the rule:

X.={ (m.n) | Sy is a composition factor of I'al'/T'em as of left I'-module }
Proposition 11. The following conditions are equivalent:

1. (m,n) € X,.

2. DSy is a composition factor of T'al' [nal as of right I'-module.
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3. nal’ + 'am # T'al’.
4. n@I°+TI'®@m°+ 1, #TI°.

Proof. Put M = 'al'/Tam. As l'al’ is finitely generated right I'-module and
I'/m is finite-dimensional, M is also finite-dimensional. Hence M considered as
left I'-module has a composition series with factors isomorphic to §; for some
ideals 1 € cfs(T"). But as I' is quasi-commutative, Sy is a composition factor of M
if and only if it is isomorphic to a factor-module of M which means, of course,
that nM # M. Therefore, 1. <= 3.

Quite analogousely, 2. <= 3. At last, 3. <= 4. is evident, Q.E.D.

Corollary 12. For any m € cfs(I') and a € A the set
X,(m)={n€cfs(l') | (m,n) € X, }
is finite.

Denote < the least preorder relation on cfs(I') containing all X, (i.e. such that
(m,n) € X, implies m < n) and A the least equivalence relation containing all
X,. Put also V =< N <! (the equivalence relation associated with the preorder
<). Let Am (resp., Vm) denotes the equivalence class of A (resp., V) containing
m and A(A,T') (resp., V(A,I') ) denotes the set of all equivalence classes of A
(resp., V).

1.4. HARISH-CHANDRA MODULES.

Remind that we consider a fixed Harish-Chandra subalgebra I' C A. For an
A-module M and an ideal m € cfs(T") put

Mm)={zeM|Ik(mz =0)}

Call M a Harish-Chandra module (with respect to T') if M = Hmecfs(r) M(m).
Of course, as I' is quasi-commutative, M is a Harish-Chandra module if and only
if it is a sum of finite-dimensional I'-submodules. Remark that any submodule or
factor-module of a Harish-Chandra module is also a Harish-Chandra module.

Example 13. Let charK = 0, A = U(G) and ' = U(H) where G is a finite-
dimensional Lie algebra and H its semi-simple Lie subalgebra. Then the notion
of Harish-Chandra modules coincides with the usual definition of Harish-Chandra
G-modules with respect to H (cf. [1]).

Denote H(A,T') the category of all Harish-Chandra A-modules with respect
to I and Irr(A, ') the set of isomorphism classes of simple modules fromH(A,T').
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Proposition 14. For any a € A and m € cfs(I")

aM(m) ¢ [ M)

neXq.(m)

Proof. If z € M(m), then 'z has a composition series with all factors isomorphic
to Sm. Of course, ax € T'al'z. The last module is an epimorphic image of
IF'al’ @ T'z. But T'al’ ®r S has a composition series with the factors isomorphic
to Sp for n € X,(m). Hence, the same is true for I'al’ @ 'z and for I'al'z. As T
is quasi-commutative, we obtain that

ral'z ¢ J[ M(n)

Q.E.D.

For any D C cfs(I'), put M(D) = [[,cp M(m). If R C cfs(I') is a relation
on cfs(T), call D R — closed provided m € D and (m,n) € R implies n € D.
Call the support of M the set

SuppM = {m € cfs(I') | M(m) # 0 }
Corollary 15. Let M € H(A,T).

1. If D C cfs(T") is <-closed, then M(D) is a submodule of M.
2. M = [lpeaary M(D) as A-module.

3. If M is indecomposable and M(m) # 0, then SuppM C Am.
4. If M is irreducible and M (m) # 0, then SuppM C Vm.

Denote H(A,T', D) the full subcategory of H(A,I') consisting of all modules
M with Supp(M) C D and Irr(A,T', D) the set of isomorphism classes of simple
modules from H(A, 1, D).

Corollary 16.

L. H(A,T') = [peaaryH(A,T, D) (the direct sum of categories).
2. Irr(A,T) = |Upev(ar) Irr(A,T, D) (the disjoint union of sets).
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1.5. CATEGORY A.

Define a new category A = Aur in the following way. The set of objects Ob.A =
= cfs(I"). The set of morphisms from m to n is

A(m,n) = lim, ,A/(n"A + Am™)

To define the multiplication A(n,l) x A(m,n) — A(m,l), take any two
elements a,b € A and consider the left [-module M = T'al'/Tam™ and the right
I-module L = I'b'/1°6T. Both of them are finite-dimensional as I is quasi-central.
Moreover, as [' is quasi-commutative,

M = My & M, where n" My =0 and nM; = M,

and
L= LO - L1 where Lon” =0 and Lln = Ll

for some natural n.

Therefore. a = ag + ay, b = by + b; where:
n"ap € Am™: a; € n"A+ Am™; bon" € I°'A; b; € 1'A+ An”

Now it is obvious that the class of bpap in A/(1°A + Am™) depends only on the
classes of @ and b in A/(n"A + Am™) and in A/(I‘A + An™) respectively. Of
course, it makes possible to define the needed multiplication.

Suppose that M is a Harish-Chandra module. If £ € M(m), then m™z = 0
for some m. For an element ¢ € A and an ideal n € cfs(I') choosc n as above.
Then the projection of ar onto M(n) again depends only on the class of a in
A/(n"A + Am™). Therefore. for any element a € A(m,n) we are able to define
the product ar € M(n). In other words, the correspondence m —— M (m)
becomes a functor from the category A to the category Vect of vector spaces over
K. Moreover, this functor is continuous if we consider the discrete topology on
vector spaces and the natural topology of the inverse limite on the sets A(m,n).
Call such functors discrete A-modules or simply A-modules.

If .V is any A-module. then we can construct the corresponding Harish-Chand-
ra module as [[,,-V(m). To define the product az for a € A, = € N(m), put
ar =) anr where a, denotes the image of a in A(m,n). This sum is finite due
to COROLLARY 12.

Hence. we obtain the following result.

Theorem 17. The category H(A.T') of Harish-Chandra modules is equivalent to
the categorv A — mod of discrete A-modules.



36

Of course. the image of a in"A(m.n) is non-zero if and only if (m.n) € X,.

Therefore,
A= J] AW

DeA(AT)

where A(D) is the full subcategory of A consisting of all objects m € D.

The following result from general nonsence seems to be rather known though
we have never seen 1t published.

Theorem 18. For any object m € ObA let Irr(m) denotes the set of isomor-
phism classes of simple A-modules M such that M{m) # 0. Then there is a 1-1
correspondence hetween Irr(m) and the set Irr A(m. m) of isomorphism classes of
simple (discrete) * A(m, m)-modules.

Proof. Let M be an A-module and let { {m) be a non-trivial A(m.m)-submodule
of M(m). Put ['(n) = A(m.n){"(m) for any object n. Then we obtain a non-
trivial submodule {7 of M. Hence. if M is simple and M(m) # 0. then M(m) is
a simple A(m,m)-module.

On the other hand, let ¥(m) be a simple A(m.m)-module. Put

N(n) = A(m.n) = gimm) -V (m)

Then the set {N(n)} can be evidently viewed as an A-module N. We claim
that N contains the only maximal submodule N/ and N (m) = 0. Really. if
L C N is a submodule and L(m) # 0. then L(m) = N(m) as the last onc is a
simple A(m, m)-module. But N(m) generates N, hence. . = N. Therefore. if
we denote N’ the sum of all proper submodules L C N, then N'(n) = 0 and N’ is
the only maximal submodule of N. I'hus M = N/N’ is a simple A-module with
M(m) = N(m).

Moreover, if A’ is any A-modulc and ¢ : ¥N(m) — VM'(m) is a homomor-
phism of A(m,m)-modules, then 1t prolongs uniquely to a homomorphism of
A-modules N — M’. In particular. if M’ is simple with M'(m) ~ M/ (m). then
we obtain an epimorphism 7 : N — M’. The kernel of 7 is a maximal submodule
of N, hence it coincides with N and M’ ~ N/N' ~ M Q.E.D.

Call the subalgebra I' big at the point m provided A(m. m) is finitely generated
as I'(m)-module (left or right or as bimodule which is equivalent as I' is quasi-
central).

Corollary 19. Suppose that 1" is big at the point m. Then:

1. The set Irr(m) is finite.

9
“in the same sence as above
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2. For any simple Harish-C'handra module M the vector space M(m) is
finite-dimensional.

Proof. Put B = A(m.m). J = Jy, (cf. section 1.1). Then B/B.J is finite-
dimensional. hence J"B C B.J for some n. If I 1s a maximal right ideal in B,
then I O J"B (otherwise I+BJ 2 [+J"B = B . whence I = B by Nakayama’s
lemma). Therefore. RadB 2 J*"B and B/RadB is finite-dimensional, which
implies both 1. and 2. Q.E.D.

2. Gelfand-Zetlin modules

2.1. GELFAND-ZETLIN SUBALGEBRA.

In this section we suppose that K is algebraically closed of characteristic 0 and
denote G,, = GL(m.K). U, = U(G,,) and Z,, the centre of U/,,. Put G =
G,. U =1, and identifv G,, for m < n with the Lie subalgebra of G generated
by the matrix units { ¢,; | i.j = l..m }. Then we obtain the inclusions: G, C
GoC...CG,=G and 7 Cl,C...Cl,=1U.1LetT be the subalgebra of
[" generated by { Z,, | m = 1l..n } . Call I' the Gelfand-Zetlin subalgebra of U
or (GZ-subalgebra. In this case the Harish-Chandra {"-modules with respect to T
are called the Gelfand-Zetlin modulcs (or (GZ-modules) [2] . Respecitvely. we shall
denote GZ and GZ(D) the categorie of GZ-modules and that of GZ-modules
with the support in D (where D C ¢fs(I') ). We shall also write in this case
for the category Ar-r (cf. section 1.5).

Proposition 20. Z,, is the polvnomial algebra in m variables {c¢;,, | k= 1..m }

where
Ckm = E €ii3€ 0500 Ciyiy

11.22...d=1..m

(cf.[3] ).

Put £ = A™*tD/2  The elements of £ will be called “tablcaux” and consid-
ered as double indexed families:

(=({lpm|m=1ln1=1.m)

Denote LT the subset of L consisting of all tableaux { such that /¢, € Z
and {;, > (-1 > (i1 for all possible values of 7.1m. For any vector a =
(Q1.@g.....an) € KT let

L.={{(el|l,=a;fori=1.n}
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and LFr=L,NLT . Clearly. LI # 0 if and only if a, € Z and a; > a;y, for

all possible 7.
[t is well-known that all finite-dimensional [ -modules are Gelfand-Zetlin ones.

Namely. the following statement holds (cf. [3] ).

Proposition 21. Let M be a finite-dimensional simple U -module. Then M pos-
scsses a base { [(] | ( € L} } for some a € K™ such that:

cim[(] = cm(O[1].

:ial (O £ 6™

where Et =€, 410 £ =€pi1 (m=1.0—1):

c-km([)_i lm+ml‘H<1— )

=1 JF

Hj'((J.mj:l - [zm)

Hj#,‘({jm - {im )

(here & € L is the Kronecker svmbol: 5”[ =1 if r=j.m=%k and 0
otherwise).

a?fn(() =F

This basc is called the Gelfand-Zetlin base of M. To precise a. we shall denote
M = M?. Remark that the dominant weight of W* is (a;+1.a242.....a, +n).

We shall also widely use the following Harish-Chandra Theorem (cf. [1] ).

Proposition 22. Let « € [7 is such that wl =0 for anyv finite-dimensional
simple U/-module M. Theu u = 0.

Consider the polynomial algebra \ in n(n 4 1)/2 variables A, where
m = l.n: 7 = l.m . lIdentifv \ with the algebra of polyvnomial functions on
L putting A, (€) = ¢,,,. Then £ 1is identified with cfs(.\). PROPOSITION 21
allows to define the homomorphism ¢:1" — \ which maps

q,,,»—»Z m-f-nzLH(l* ™. \ )

J#

It is not difficult to check that it 1s really a polynomial of degree &k in A;,. of the
form Y. Af + h with degh < k.

The symmetric group 5, actson \ permuting A, (+ = 1..m: m fixed). L'hus
the direct product S =T]" _ S, actson \. As the power sums are algebraically
independent and generate the algebra of the symmetric polvnomials. we obtain

the following
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Corollary 23. ¢ is an inclusion and its image coincides with the algebra of
invariants AS. In particular, I' is the polynomial algebra in cg, (m = 1..n; k =
1..m).

From now on identify I' with its image in A. This inclusion induces the
surjection 7 : L — cfs(I') which identifies cfs(T") with the orbit set L£/S. If
M is a GZ-module, write M({) instead M(x({)) for £ € L, GZ(D) instead
of GZ(n(D)) for D C L etc.

Let Lo be the subgroup of £ generated by all 6™ (i = 1..m; m = 1..n—1).
For two elements m,n € cfs(I') put m = n provided there exist £,¢' € L
such that m = #x(¢), n = 7(¢') and ¢ — ¢ € Ly. Of course, it is an equivalence
relation on cfs(I). Denote ) the set of equivalence classes of =. Define also two

subsets, £; and L, ,in L:
Lr={tlijn—timgZforallt£jandm=2..n—1}
Lo=LiN{ |l —Etjmy1 EZToralle,jandm=1..n—-1}

Evidently, £, and £, are stable under the congruence modulo £, and
under the action of the group S. So their images in () are well-defined. Denote
them €; and 2, respectively. Remark that both £, and L, are dense in
Zarisky topology on L. Moreover, if K = C, they are dense in usual (euclidean)

topology as well.
The main theorem of this chapter is the following one.

Theorem 24.
1. The Gelfand-Zetlin subalgebra is a Harish-Chandra subalgebra of U.
2. U=]]peqU(D)

3. If £ € L,, then there exists the unique simple GZ-module M with M({) #
0. Moreover, in this module dim(M({)) = 1.

4. If D € Qy, then there exists the unique simple GZ-module M in GZ(D).
Moreover, Supp(M) = D.

2.2. SOME IDENTITIES IN [.

For any element r € M and any tableaux ¢ € LI let x, beits [{]-coefficient
with respect to GZ-basis, i.e.

(cf. PROPOSITION 21). For u € U denote L, the set of all such tableaux 6 € £
that there exist £ € Lt and o € S with (u[€])s0(5) # 0. As U is generated
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by the elements EX (m = 1..n — 1), it follows from PROPOSITION 21 that L,
is finite and L, C Ly. Say that u relates € with {’ provided { = o({ + 6) for
some o € S and 6 € L,. Denote u({) the set of all # € £ such that u
relates ¢ with ¢'. Thus, for any ( € L1 we have:

=) O(u.l.8)[f+ 4]

S€Ly

for certain coefficients f(u.¢,6) € K (some of them may be 0).
Any 6 € L defines an automorphism A — A of A where A = A, + bim.
Forany z € I' and u € ' form the polynomial

Fu (T A) = [J(T-+)

sel,

Clearly, F,. € '[T].as L, is, by definition, stable under the action of S.

Lemma 25. Let z €[ and F,.= Zz—T’ol where o; € I' and i runs through
all possible multy-indeces. Then ). z'uo, = 0.

Proof. By PROPOSITIONS 21 and 22. we need only to prove that Y . z'uo,[f] =
=0 forany ¢€ L*. But

Y 2uglll = FueO)f] =) o) D 0u o) +6] =

P ? 1 teLY

_Zouuz(zw) O +8 = Bul8)F (0.0 +6=0

6€£u Kecu

Q.E.D.

Remark. The same result remains valid for =z € Z,, if we replace F,. by

Fu,:.m(Tﬂ’\m) = l__[ (T_zé)

(€Lum

where A, = (A, Aome s Amm) and L., denotes the set of the m-th rows
(81ms O2ms -y Omm) of all elements 6 € L,,.

Corollary 26. T is a Harish-Chandra subalgebra in (.

Proof. Evidently. F,.=T* + Yoick Toi for k= card(L,). So. by LEMMA 23,
fu € Zf;ll z'ul’. As T is a finitely generated algebra. it follows that [ul is a
finitely generated I''module. But the standard involution of U (mapping g € G

to —g, cf. [1]) maps [ to T'. So Tul' is also finitely generated as left I'-module
Q.E.D.
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Corollary 27. Suppose that (m,n) € X, where m = n({), n = n({'). Then
¢ e u(l).

Proof. Let (" ¢ u(f).1.e. n # w({+6) forall 6 € £,. Then there exists z € [
lying in all #({+6) but not in n. As (m,n) € X,, there exists v € Tul'/Tum
such that v #0 and nv = 0. But we have:

0= zug;=» z'u(é—ai(0)) + Z Zugi(l) =

= ug + Z ziqbi(f)u =wuo+ Fy.(z,0)u
where ug € T'um, whence

0=Fo:(z.0v = Fu:(z(€).Ov = T] (2(6) = 2(£ 4 8))v = 2(¢)*v

SELy
This is a contradiction as v #0, z(¢') #0 Q.E.D.

Corollary 28. AC = .ie. (m,n)€ A implies m=n.?

COROLLARY 26 coincides with p.I. of THEOREM 24 and COROLLARY 28 evi-
dently implies p.2. of it. To prove the rest of the theorem. we need the following
observations.

PROPOSITION 21 implies that the coefficients 6(u,¢,8) are rational functions
in ¢;,. So they can be considered as elements of the field of fractions @ of A
which we denote 6{u, A,8). Moreover. the denominator of 8(u,,d) is a product
of some of A\, = A, — & (i # 7) . where k is some integer. Thus 8(u,,8) is
defined for any { € £;. Remark that 6{wu.f.0) is obviousely S-invariant. Hence,
it lies in @ which is the field of fractions of A% =1",

Lemma 29. Let again =z € I'. Put 8, = 8(u.A.0) = 3,/y, where 3,,v, €T

and
FL.T) = [T (@-="=) Tw

5€L,\0

Then

Yu E Tur = 5, E 2wy
t t

The proof 1s quite the same as that of LEMMA 25, so we omit it.

3¢f. section 1.4 for the definition of the relation A.
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2.3. MovuLes M(L).

Take a coset L € L/Ly and suppose that L C L£;. Consider the vector space
M(L) with the basis { [(] | { € L } and put. for every w e [":

ul(] =) 0(u L8 +¢]

fely

PROPOSITIONS 21 and 22 evidently imply then that M(L) becomes a GZ-module
over [ with Supp.M(L)=L and dimM(L)({)=1 forall (€ L.
[or any ( € L denote M, the submodule of M(L) generated by [{].

Theorem 30. There exists the unique maximal submodule M/, C M, and the
factor-module V, = M,/ M is the unique simple GZ-module with V;({) # 0.

Proof. As dimM,(¢{) =1. NV({) =0 for any proper submodule N C .M, which
implies the existence and uniqueness of M!. Hence. 1, is really a well-defined
simple GZ-module with dimV;({) = 1. [ts uniqueness follows from THEOREM 18
and the next fact.

Proposition 31. If m = #({) and { € L;. then U(m.m) is isomorphic to a
factor-algebra of T(m). *

Proof. Take any w € [". If 0 ¢ L£,. then the image of u in U(m.m) is
zero by COROLLARY 27. If 0 € £,. find = € T such that e m™ for all
§€L,\0 and z —1 € m". Use LEMMA 29. Here all 1, € m™ except vy =1
for k= card(L, \0). So we have vezfu = 3,25 +up where ug € U'm™ . whence
in U/{m™ 4+ m™) the images of 4,u and J3, coinside. But as { € £, .
the image of 4, in I'(m) is invertible. Hence the image of v in U(m.m)
coinsides with that of 3,/4, Q.E.D.

THEOREM 30 implies p.3. of THEOREM 24. At last. p.1. of it 1s now a
consequence of the following theorem.

Theorem 32. If D € (), . then all objects in U(D) are isomorphic.

Proof. Let n €' and uw = E_ nE} . Denote also § = 6(u.A.0) = 3/4 with
3,4 € I'. PROPOSITION 21 implies that

Z )\+6zm (A)I](A+(5”n)

*Probably, in the case U {m,m) >~ I'(m) but we have no proof of it. At least. (m.m) # 0
as there exist GZ-modules M with AM(£) # 0.
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(cf. ibid. for notations). Suppose that ( € L, and put m = 7({), m; =
m({+87). As { € L;. we have ~({) # 0. Moreover. the elments ¢, ¢+ 6™, ¢+
§m . (4 &M — 8™ (j # 1) lie in different S-orbits. Hence, they have different
images under 7 and we are able to choose 1 and = €' such that:

nUL+E")=1. n({L +6™) =0 for j # i

Sl)y=1. L+ & =™y =0for j #i
Now use LEMMA 29. Remark that in our case £, \0 = { 8™ —&™ |5 #1 }.
Therefore. we obtain that 4(m) # 0 and all ¢(m) =0 except ¢H(m) =1
for A = card(L, \ 0). Hence. the image of v in U(m,m) is invertible. Denote
¢ the image of EF in U(m.m;) and e the image of E; 7 in U(m;,m).
It follows then (just as in the proof of PROPOSITION 31) that e; e/ is invertible
and ¢} is left invertible. Quite analogouse calculation shows that el is right
is invertible and m ~ m; in U. As i,m were arbitrary

i
+
and Lo is generated by &7 it implies the statement Q.E.D.

7

invertible. Thus €]
Corollary 33. If L C £, . the module M(L) is the unique simple GZ-module
in GZ(I).
Now THEOREM 21 1s completely proved.

Conjecture. For any D € Q the set Irr({.1.D) 1is finite.

Really. this conjecture would follow from the following two:

1. For any m € cfs(I') the subalgebra T 1is big at the point m, hence the set
[rr(m) s finite (cf. COROLLARY 19). 2. For any D € Q there are only finitely
many non-isomorphic objects in U(D).
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