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We write A € B if A is a subset of B and A c B if it is a proper subset,
that is Ac B and A #+ B.

We suppose all rings commutative and with unit (usually denoted 1), all
homomorphisms of rings mapping unit to unit. An algebra over a ring A is
a ring B together with a fixed homomorphism ¢ : A - B. Then we write ab
or ba instead of t(a)b for all a € A,be B.

We will often use the well-known fact from the set theory called the Zorn
lemma. Let M be a (partially) ordered set with a (partial) order <. A subset
£SO is called a chain if it is totally ordered, that is, for any two elements
a,b e £, either a < b or b <a. An upper bound of a subset 9t c 91 is an
element b € M such that a < b for any a € N.

Zorn Lemma. Suppose that every chain £ < 9N has an upper bound. Then
there are maximal elements in 9, i.e. such elements a € M that a £ b for
any b+ a.

For references to elementary properties of groups, rings and modules we
address the reader to the book of Artin [I]. For other references, exercises
and additional topics we recommend the books [2 Bl 6, [7] and [4].
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1. IDEALS AND NULLSTELLENSATZ

We start with some geometry.

Let k be a field. We usually write A" (or Ay if necessary) instead of k"
and call it the n-dimensional affine space over the field k. Often we suppose
the field k algebraically closed (for instance, the complex field C).

Definition 1.1. For a subset S ¢ k[x] = k[z1,22,...,2,] we denote by
var(S) the set {a = (a1,a2,...,a,) | f(a) =0 for all f € S} and call it the
closed subset defined by the set of equantions f(x) =0, f €.S. The closed
subsets var(g) are called hypersurfaces.

Let I be the ideal generated by S, i.e. consisting of all (finite) sums
Sk gifi, where f; € S, g; € k[x]. Obviousely, var(S) = var(I). Moreover,
we can restrict by a special class of ideals.

Definition 1.2. (1) An ideal I of a ring R is called radical if a € I as

soon as a™ € I for some m.

(2) The set /T ={ae R|a™ eI for some m} is called the radical of the
ideal 1.
One can check that \/T is an ideal (prove it).

(3) In particular, the ideal v/0 = {a € R | a™ = 0 for some m} is called
the nilradical of the ring R and denoted by nil R. If nil A = {0}, the
ring A is called reduced.

Obviously, var(I) = var(\/T) for any ideal I € k[z1,2o,...,2,], hence a
closed subset in A" is defined by a radical ideal of the ring k[z1,x2,...,Zy]-

Consider now some general properties of ideals of a ring. The following
facts are evident.

Proposition 1.3. (1) var(Xie5 i) = Niegvar(L;) for any set of ideals
{I; |1 €T}.
(2) var(TTf i) = U, var(L).
(3) var({0}) = A".
(4) var({1}) = @.

Therefore, the set of all closed subsets defines a topology on A" called
Zariski topology. Their compliments, D(S) = A" \ var(S) are called open
subsets of A™. For instance, the sets D(g) = {a | g(a) # 0} are called
principal open subsets. They form a basis of the Zariski topology. Every
subset X € A" inherits the Zariski topology from A”™.

Note that this topology is rather weak and not Hausdorff. For instance,
if n = 1, the only proper closed subsets of Al are finite sets. Moreover, if
k is infinite, hence D(g) # @ for every nonzero g € k[x], an intersection of
any two nonempty open subsets is nonempty, so every open subset in dense
in the Zariski topology. Nevertheless, it is a T1-topology, that is every one-
point set {a} is closed (why?).

For any subset X ¢ A" set I[(X) ={f ek[x]| f(a)=0forallae X}. It
is a radical ideal in X and var(I(X)) = X, the closure of X in the Zariski
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topology (why?). Also evident that I(varI) 2 v/I. The famous Hilbert
Nullstellensatz (”theorem on the places of zeros”) shows that, under obvious
restriction, we actually have equality here.

Theorem 1.4 (Hilbert Nullstellensatz). If the field k is algebraically closed,
then I(var(I)) = /I for every ideal I € k[x]. Therefore, the maps I +
var(I) and X — I(X) establish a one-to-one correspondence between the
radical ideals of k[x1,x2,...,x,] and the Zariski closed subsets of A™.

Note that this theorem is equivalent to the following one, which is also
usually cited as Nullstellensatz.

Theorem 1.5. If the field k is algebraically closed, then var(I) = @ if and
only if I>1.

Indeed, if is true and var(I) = @, then /T = I(var(I)) = k[x], so
VT 51, hence also I 5 1. On the other hand, let is true and f € I(var(I)).
Consider the ideal J = Ik[x1, 2, ..., Zp1 ]+ (T f (21, 22,...,2,)—1). Ob-
viously, var(J) = &, hence

k

1= Zgi (1'1,1'2, ce ,:L‘nJrl) fZ (1’1,1’2, ce ,{L‘n) +
i=1

+h(x1, 29, ... xni1) (per f (21,22, .. 2p) — 1)
for some f; € I, gi,h € k[x1,22,...,2p4+1]. Substitute here z,41 = 1/f. It

gives

k
1= Zgi(:cl,:cg,...,a:n,l/f)fi (x1,m9,...,2,).

i=1
Multiplying by the common denominator, we get
E k
fmzz f]i(wl,wg,...,xn)fi(xl,xg,...,mn),
i=1i=1

hence f € V.

We will prove Nullstellensatz in Section 4.9

Definition 1.6. (1) A proper ideal I c R is called mazimal if there are
no ideals J such that I c J c R.
(2) A proper ideal I is called prime if a ¢ I, b¢ I implies ab ¢ I.
We denote by spec R the set of prime ideals of R and by max.spec R the
set of its maximal ideals.

Exercise 1.7. (1) Let a = (a1,a2,...,a,) € A", my = I({a}). Prove

that my = (21 — a1,22 — ag,..., T, — a,) and is a maximal ideal in
k[z1,x2,...,2Tn]

(2) Using Nullstellensatz, prove that if the field k is algebraically closed,
every maximal ideal in k[x1,z2,...,2,] coincides with some m,.

Therefore, the points of A" are in one-to-one correspondence with
max.speck[x1,z2,...,2,].
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Definition 1.8. Let R be a non-zero ring.

(1) R is called a field if R* = R~ {0}, i.e. all nonzero elements of R are
invertible.

(2) Anelement a € R is called a zero divisor if there is a non-zero element
b such that ab = 0.

(3) R is called a domain (or an integral domain) if all its non-zero ele-
ments are non-zero-divisors.

Exercise 1.9. Let R be a non-zero ring, I c¢ R be a proper ideal. Prove
that

(1) I is maximal if and only if R/I is a field.

(2) I is prime if and only if R/I is a domain.
(3) Every maximal ideal is prime.

(4) The ideal {0} c Z is prime but not maximal.

Theorem 1.10. Let R be a ring, I ¢ R be a proper ideal. There is a maximal
tdeal m 2 1.

Proof. We use the Zorn lemma. Let 9 be the set of all proper ideals J 2 I
ordered by inclusion, £ € 9t be a chain and M = Ujce J. If a € M, evidently
ba € M for any b € R. If a,b € M, there are J € £ and J' € £ such that
a€J, beJ. As £is a chain, either J ¢ J', hence a,be J and a+be J c M,
or J' ¢ J, hence a,be J and a+be J c M. Therefore, M is an ideal. If
M = R, then 1 € M, that is 1 € J for some J € 9, whence J = R, which
is impossible. Hence M € 9 and is an upper bound of £. By the Zorn’s
lemma, 991 has maximal elements. Each such element is a maximal ideal
containing /. ([

Theorem 1.11.
nilR= () »p.
pespec R

Proof. Let N = Npespec r - Obviously, every nilpotent element belongs to
N. Conversely, let a € N. Suppose that it is not nilpotent. Consider the
set 9 of all ideals I c R such that a™ ¢ I for all n. It is not empty, since
{0} e M. Tt is ordered by inclusion and if £ < 9 is a chain, M = Usen I is
an ideal, obviously belonging to 91, hence an upper bound for £. By Zorn
lemma, 9 has a maximal element J. Suppose that b,c ¢ J but bc € J. Then
a” € J+ Rb and a™ € J + Rc for some n, m, whence a”*" € J + Rbc = J which
is impossible. Therefore, J is prime and a ¢ J, so a ¢ N, a contradiction. [J

We denote by V(I) the subset {p € specR | p 2 I} € spec R. Recall
that there is a bijection between the ideals of R/I and the ideals J ¢ R
containing I such that R/J ~ (R/I)/(J/I). Therefore, there is a bijection
between spec R/I and V(I), as well as between max.spec R/I and Viyax(I) =
V(I) n max.spec R.

Corollary 1.12. /I = Mpev(r) P- In particular, an ideal I is radical if and
only if it is an intersection of prime ideals.
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2. NOETHERIAN RINGS

Let aj,as,...,a, be elements of a ring A. We denote by (a,as,...,an)
the ideal {¥1" b;a; }, where b; run through A. We call a1, as, ..., an, genera-
tors of the ideal I = (ay,a2,...,a) and say that I is finitely generated. For
instance, in the ring Z every ideal is finitely generated (it is of the form (a)
for some a € Z). The same is true for the polynomial ring k[x], where k is
a field.

Proposition 2.1. The following conditions for the ring A are equivalent.

(1) Every ideal I € A is finitely generated.

(2) There are no infinite ascending chains of ideals Iy c Iy c ...c I, c ...
in A.
Then they say that A satisfies the ascending chain condition, or
ACC.

(3) Every non-empty set M of ideals of A has a mazimal element (with
respect to inclusion).

A ring satisfying these conditions is called Noetherian.

Proof. (1)=(2)Let Iy c Iy c...c I, c... be an ascending chain if ideals, I =
Us2, I;. Then I is an ideal, hence I = (a1, ag, ..., ay) for some ay,aq, ..., an.
Every a; belongs to some ideal I;,. If i* = max{i; | 1 < j < m}, then all
a; are in I;+, so I = I;» and the proper inclusion [;+ c ;1 is imposiible, a
contradiction.

(2)=(3) Suppose there are no maximal elements in 9. Let I; € M. As
it is not maximal in 91, there is an ideal Is € 91 such that Iy c I5. As Iy is
not maximal in 9, there is an ideal I3 € 9 such that Is c I5. Iterating this
procedure, we obtain an infinite ascending chain Iy c Iobc...c I, c..., a
contradiction.

(3)=(1) Let I be an ideal. Consider the set 9t of all ideals of the
form (ay,as9,...,ay), where all a; € I. It has a maximal element J =
(a1,a9,...,ay) for some a; € I. If J # I, there is an element a € I \ J.
Then J' = (ay,as,...,am,a) belongs to M and is strictly bigger than I,
which is impossible. Hence I = J = (a1,a2,...,an). O

Exercise 2.2. Prove that if A is Noetherian, so is every quotient A/I.

Every principal ideal ring, such as Z or k[z] (k a field) is obviously
Noetherian. The following theorem gives a lot of examples of Noetherian
rings, which play a crucial role in Algebraic Geometry.

Theorem 2.3 (Hilbert Basis Theorem). Let the ring A be Noetherian. Then
so are also

(1) the polynomial rings A[x1,22,...,Ty];

(2) the formal power series rings A[[x1,x2,...,2Tn]].

Proof. We prove (2) following [7, Thm.3.3]. As for (1), the reader can see
[2, Thm.7.5] or [3, Thm.1.2] or can prove it himself modelling the nearby
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method with more or less evident changes (recommended). Obviously,
it is enough to prove the theorem for the ring A[[x]], the general case is
obtained by an easy induction.

Let B = A[[z]] and I c B be an ideal. Denote by I(d) the set of elements
a € A such that I contains a series az? + ¥;.4a;2'. Obviously, it is an ideal
in Aand I(0)cI(1)<cI(2)c.... As A is Noetherian, there is m such that
I(d) = I(m) for all d > m. Let {b;q} be a set of generators of I(d) for d <m
and g;q be a series from I such that g;q = bjdxd + Y gaix’. We claim that
G ={gja|0<d<m} is a set of generators of 1.

Indeed, let J be the ideal generated by the set G and f = Y% a;z’ € I.
Then apg = Zj Cjobjo. Set h() = Zj 50950 and f1 = f - h(). Then f1 = Zf:l agxz.
Again aj = >; ¢jibj1 and, if we set hy = >;¢j1gj1 and fo = f1 — h1, then
fo = X%, as'. Note that hg and hy are in J, while f; and f» are in I.
Iterating this procedure until d = m, we obtain a presentation f = h + f*,
where h e J, f*el, f* =Y, naiz’. As I(m+1) = I(m), we have a}, | =
2 Cim+1bjm. Set g1 = > Cjm+1TGjm. Then fi = f"—q has zero terms with
2’ for i <m+ 1. In the same way, f; = f5 + g2, where ¢y = > cj7m+2x29jm.
Iterating, we obtain that

oo (e e]
f* = Z Cj,m+d$dgjm = Zgjm Z Cj,m+dxd €J.

d=1 7 d=1
Therefore, f € J. ([
If B is an A-algebra and by,bo,...,b, are elements from B, there is a
natural homomorphism (“evaluation”) ev : A[x1,x2,...,2,] — B mapping
YiaiX' to ¥;a;b'. Here we write i instead the multiindex 41,1, ...,4, and
x' means zi'zy ...z, (the same for b’s). If Im(ev) = B, they say that

b1,b2,...,b, is a set of generators of the algebra B. If such a finite set of
generators exists, they say that the A-algebra B is of finite type (or finitely
generated algebra). Note that then B ~ A[xy,xo,...,2,]/Ker(ev), so we
have the following

Corollary 2.4. If the ring A is Noetherian, any A-algebra of finite type is
Noetherian as well.

A useful tool in considering Noetherian rings is the following.

Lemma 2.5 (Noetherian induction). Let A be a Noetherian ring, & be a
property of its ideals. Suppose that an ideal I € M has the property & as
soon as all ideals J € M such that J > I have this property (in particular,
all mazximal ideals containing I have this property). Then every ideal from
M has property .

Proof. Otherwise, let I be maximal among the ideals that does not have the
property &2. By the supposition, it has this property, a contradiction.  [J
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Theorem 2.6. Let A be Noetherian ring, I ¢ A be a proper ideal. There are
prime ideals p1,p2,...,pm in V(I) such that every p € V(I) contains some
p; and p; pp; if i # 5. Moreover, N7, p; = V1.

We denote {p1,p2,.--,Pm} by Vinin ().

Proof. If I is prime (for instance, maximal), we are done with Vinin(1) =
{I}. Suppose that I is not prime and every ideal J > I has this property.
There are bigger ideals J,J' o I such that I ¢ JJ'. By the supposition,
we have Vmin(J) = {pl,pg,. ,pm} and Vmin(J,) = {ql,qg,.. .,qk}. If p=2
J, it contains some of p; and if p 2 J', it contains some of q;. But if
p 212 JJ, it contains either J or J’, hence either some p; or some q;.
Therefore {p1,p2,...,Pm,q1,92,---,qk} = Vimin(I). For the last claim, use
Cor.[LT12 O

Exercise 2.7. In the notations of Thm.[2.6] Uj2; p; is the set of zero divisors
modulo \/7, that is elements a € A such that ab € /T for some b¢ V.

This fact has an important geometrical corollary.

Definition 2.8. A topological space X is called irreducible if, as soon as X =
X1 u X5 where both X; are closed, either X; = X or X9 = X. Equivalently,
any nonempty open subset U ¢ X is dense un X (explain it).

For instance, if k is infinite, A™ is irreducible with respect to to Zariski
topology (why?). The following results use Nullstellensatz.

Theorem 2.9. Let the field k be algebraically closed.

(1) A closed subset X ¢ A" is irreducible if and only if the ideal I(X) is
prime.

(2) Every closed subset X < A™ can be presented as UJ"; X;, where all
X; are closed and irreducible and X; ¢ X; if i # j.

The subsets X1, Xa,..., X, are called the irreducible components of X .

Proof. Let P =1(X).

(1) If P is not prime, there are bigger ideals I > P, J o P such that I.J ¢ P.
By Nullstellensatz, Y =var(l) c X, Z =var(J)c X, but YUZ = X, so X is
not irreducible.

On the contrary, it X =Y uZ, where Y, Z are proper closed subsets, then
P=InJ21J, where I = I(Y), J = I(Z) are strictly bigger than I(X),
hence I(X) is not prime.

(2) P = N2y ps, where {p1,p2,....0m} = Viin(P). All var(p;) are irre-
ducible, var(p;) ¢ var(p;) if i # j and X = var(P) = N2 var(p;). O
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3. NOETHERIAN MODULES

Recall that a module over a ring A is an abelian group M together with
the “multiplication” A x M — M, (a,v) ~ av such that

a(u+v) = au + av,
(a+b)v=av+bv,
(ab)v = a(bv),

lv=v

for all u,v € M, a,be A. Again, we address the reader to the book [I] for
elementary properties of modules. The set of homomorphisms of A-modules
M — N is denoted by Hom 4 (M, N). It is also an A-module according to the
usual addition of homomorphisms and the action of elements a € A defined
as (af)(z) = af(z) = f(ax).

A set of elements {u; | i € 3} of an A-module M is called a set of generators
if every element of M can be presented as a sum Y. ;.y a;u;, where a; € A and
almost all a; = 0. If, moreover, such presentation is unique, this set if called
a basis of the A-module M. A module having a basis is called free. If M
has a finite set of generators {uy,us, ..., un}, we write M = (uy,ug, ..., Up)
(or, if necessary, M = (u1,usg,...,um) ) and say that M is a finite (or a
finitely generated) A-module.

If B is an A-algebra, we can consider it as an A-module. If it is finite, we
say that B is a finite A-algebra. If, moreover, the map ¢: A — B is injective,
we say that B is a finite extention of A. Obviously, any finite algebra is of
finite type.

For every set J there is a free module whose basis is in a one-to-one
correspondence with the set J. Namely, we consider new symbols e; (i €
J) and the set A®) of formal linear combinations ey aie;, where a; € A
and almost all a; = 0. We set Y,cyaie; + Yiegbie; = Yie5(a; + bi)e; and
aYeya:€; = Yieq(aa;)e;. If the set J is finite, J = iq,49,...,4,, we usually
identify Y7 aje;; with the vector (a1,as9,...,a,) and write A" instead of
A®) . The main property of free modules is the following.

Proposition 3.1. Let {v; |i €T} is a set of elements of an A-module M, F
be a free A-module with a basis {u; | i € I}. There is a unique homomorphism
ev: F — M mapping u; to v;. Namely, ev(Y e ait;) = ¥ieq ai0;.

Obviously, the map ev is surjective if and only if {v; midi € T} is a set
of generators of M and bijective if and only if it is a basis of M. Since
Imev ~ F'/Kerev, we have the corollary.

Corollary 3.2. If {v; | i € 3} is a set of generators, M ~ AQ)IN for some
submodule N ¢ AP, In particular, every finite A-module is isomorphic to
a quotient A"|N for some n and some submodule N c A™.

Proposition 3.3. Let N be a submodule of M, L = M|N.
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(1) If M 1is finite, so is L.
(2) If N and L are finite, so is M.

Proof. (1) is evident.

(2) Let N = (ug,ug,...,uy) and L = (v1 + Nyvg + N,...,u + N). We
claim that M = (uy,us, ..., Unp,v1,02,...,0;). Indeed, let v € M. Then, in
the quotient M /N, v+ N = Zf:l a;(v;+N) = (Zf:l a;v;) + N for some a; € A.
It means that v = w+ Zi-“:l a;v; for some w e N. Then w = Z’j”:l bju; for some
bje Aand u= Y74 bju;+ YF | av;. O

Exercise 3.4. In the notations of Prop.[3.3] prove that if both NV and L are
free, so is M.

If B is an A-algebra, M is a B-module, we can consider M as an A-
module.

Exercise 3.5. If B is a finite A-algebra, B = (b1,be,...,b,), and M is a
finite B-module, M = (v, v2,...,vn) . Prove that M is a finite A-module,
namely, M = (bjvj | 1<i<n,1<j<m)a.

Proposition 3.6. Let M be an A-module. The following conditions are
equivalent.

(1) Every submodule N € M is finite.

(2) There are no infinite ascending chains Ny c Ny c ...c N, c ... of
submodule of N.

(3) Ewery set of submodules of M has a maximal element (by inclusion).

A module M satisfying these conditions is called Noetherian.

Proof. 1t is the same as of Prop.[2.1] so left to the reader. O

Certainly, Noetherian induction (Lem. can also be used for submod-
ules of a Noetherian module.

Proposition 3.7. Let N € M be a submodule, L = M/N. M is Noetherian
if and only if so are both N and L.

Proof. Let M be Noetherian. If N’ is a submodule of N, it is also a sub-
module of M, so finite. Hence N is Noetherian. If L’ is a submodule of L,
M’ ={ue M |u+N € L'} is a submodule of M containing N and L' ~ M'/N.
As M’ is finite, so is L', so L is Noetherian too.

Let now N and L be Noetherian, M’ be a submodule of M, L' = M'+ NN
and N’ = M'n N. Then L' and N’ are finite and M'/N’ ~ L. Therefore,
M’ is finite and M is Noetherian. O

Corollary 3.8. (1) The direct sum @} M; is Noetherian if and only
if so are all modules M;.
(2) If A is Noetherian, so is every finite A-module.
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(3) If M is Noetherian, so is A/ Anny MD In pafrticular, if there is an
exact Noetherian A-module, A is also Noetherian.

Proof. (1) follows from Prop.[3.7]if n = 2, then use induction.
(2) By (1), A" is Noetherian for all n. Now use Cor.[3.2]and Prop.[3.7]
(3) Let uj,ug,...,uy, be a set of generators of M. Define p : A - M"™
such that ¢(a) = (auy, aug,...,auy). Obviously, Kerp = Anng M, so Im ¢ ~
A/ Anny M. As M™ is Noetherian by (1), so is A/ Anny M. O

An important property of finite modules is the Nakayama’s lemma. For
an A-module M and an element a € A we denote by ajs the homomorphism
M — M sending u — au (multiplication by a).

Lemma 3.9 (NAK lemma)ﬂ Let M be a finite nonzero A-module and I ¢
A be an ideal such that IM = M. There is an element a € I such that
(1-a)M =0.

Proof. Let uy,us,...,u, be a set of generators of M. Then there are el-
ements c;; € I such that u; = Zj”il cijuj. It can be wriiten as u = Cu or
(1 -C)u =0, where u is the column (uy,us, ..., uy)", 1 is the unit m x m
matrix and C is the m x m matrix (¢;;). Multiplying by the matrix adjoint
to 1 — C, we obtain det(1 — C)u; = 0, whence det(1 - C)M = 0. Note now
that det(1-C) =1-a for some a € I. O

Most often this lemma is used when I is the radical of A.

Definition 3.10. The intersection of all maximal ideals of A is called the
(Jacobson) radical and denoted by rad A. Obviously, rad A 2 nil A.

Proposition 3.11. rad A= {a € A|1 - ab is invertible for any be A}.

Proof. If a € rad A, also ab € rad A, hence ab € m for all maximal ideals
mc A. Then 1-ab ¢ m for all m, hence the ideal (1 -ab)A is not proper, so
(1-ab)A>1, so there is c € A such that (1 -ab)c=1.

On the contrary, let a ¢ rad A. There is a maximal ideal m ¢ a. Then
aA+m = A, so there are elements b € A and ¢ € m such that ab+c¢ = 1.
Therefore, 1 — ab = ¢ € m, hence is not invertible. O

Corollary 3.12 (Nakayama’s lemma). Let ¢ be the radical of A.
(1) If M is a finite A-module and tM = M, then M =0.
(2) Let N be a submodule of M such that M|N is finite. (If M is finite,
N can be arbitrary.) If N +tM = M, then N = M.

Exercise 3.13. Prove that a homomorphism « : M - N, where the module
N is finite, is surjective if and only if so is the induced homomorphism

M/tM - N/tN.

1 Recall that Anna M = {a € A|av =0 for all v e M}. If Anna M = 0, the module M
is called ezact.

2Sometimes this assertion is also called “Nakayama’s lemma”, though Nakayama at-
tributes it to Krull and Azumaya. Following Matsumura, we call it “NAK lemma”.
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4. NOETHER NORMALIZATION AND HILBERT NULLSTELLENSATZ

We are now going to prove the Hilbert Nullstellensatz. We will prove it
in the form of Thm.[I.5] The main tool in this proof is the technique of
integral extensions of rings.

Definition 4.1. Let B be an A-algebra, that is a homomorphism of rings
t: A — B is fixed.
(1) An element b € B is called integral over A if there are elements
ai,as,...,a, € A such that

(4.1) P+ ab” P agh” 2+ +a, =0.

(2) We denote by Int(A, B) the set of all elements of B integral over A
and call it the integral closure of A in B.

(3) If Int(A, B) = B, we call B an integral A-algebra. If, moreover, ¢ is
injective, we call B an integral extension of A.

(4) If the homomorphism ¢ is injective and Int(A,B) = A, we call A
integrally closed in B. In particular, if a domain A is integrally
closed in its field of fractions, we call A an integrally closed domain
or a normal Ting.

For instance, if A is a factorial domain (see PS 1), it is integrally closed
(Prove it).

Note that if A is a field, “integral” coincides with “algebraic.” The fol-
lowing results (as well as their proofs) just copy the corresponding results
on algebraic elements and algebraic extensions.

Lemma 4.2. Let B be an A-algebra b € B. The following conditions are
equivalent:

(1) b is integral over A.

(2) The subring A[b] = {f(b)| f € A[z]} € B is finite as A-module.

(3) There is a finite A-submodule M < B such that bM < M and M
contains a non-zero-divisor from B.

In particular, any finite A-algebra is integral. On the other hand, the
ring of algebraic numbers Int(Z,C) is an integral but not finite Z-algebra
(Explain it).

Proof. (1)=>(2). If b satisfies the equation (4.1, then A[b] is generated by
1,b,b?,... bn L

(2)=(3) is trivial: set M = A[b].

(3)=(1). Let M be generated by wi,ug,...,u,. Then bu; = YL, ciju;
for all i, or (bl, - C) (u1,uz,...,u,)" =0, where C is the matrix (c;;) with
coefficients from A. Multiplying by the matrix adjoint to bl, — C, we get
that det(bl,, — C)u; = 0 for all 4. It implies that det(bl, — C)M = 0. As
M contains a non-zero-divisor, det(bl,, — C') = 0. But one easily sees that
det(bI, = C) = b" + a1b" 1 + bob"2--- + @, for some a; € A. O
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Corollary 4.3. (1) Int(A, B) is an A-subalgebra in B.
(2) If by, ba, ... by, are integral over A, the A-algebra A[by,ba, ..., by] is
finite.

Proof. (1) Let b,c € Int(A,B), M,N are A-submodules such that bM <
M,cNc N, M =(uy,uz,...,uyn), N=(v1,v2,...,0,), € M and B € N are
non-zero-divisor. One easily sees that MN = (uv; | 1 <i<m,1<j<n),
bMN c MN and ¢eMN € MN. Then (b+¢)MN c MN, beM N ¢ MN and

M N > af which is a non-zero-divisor.

(2) is obtained by induction from Lem.[4.2{2) and Exer.[3.5] O

Corollary 4.4. If an A-algebra B is generated by elements integral over A,
it is integral over A.

If B is an A-algebra and C is a B-algebra, C can also be considered as
an A-algebra.

Corollary 4.5. Int(A,C) = Int(B',C), where B' = Int(A, B). In particular,
Int(A, B) is integrally closed in B, and if B is integral over A and C is
integral over B, then C is integral over A.

Proof. Obviously, Int(A4,C) ¢ Int(B’,C). Let t € Int(B’,C), t"™ + byt" ' +
bot™ 2+ +b, = 0, where b; € B’. Then t is integral over B” = A[by,ba, ..., b,],
i.e. tM c M for some finite B”-module M ¢ C containing a non-zero-divisor.
By Lem.[4.2(2) and Exer.[3.5, M is also a finite A-module. Therefore, ¢ is
integral over A and Int(B’,C) c Int(A, C). O

Lemma 4.6. Let B 2 A be an integral extension. If an element a € A is
invertible in B, it is invertible in A. In particular, if B is a field, so is A.

Proof. As a! is integral over A, there are ¢; € A such that a™ + cia'™ +

20> + -+ + ¢, = 0. Multiplying by ¢!, we get that ™' € A. O
Exercise 4.7. Let B 2 A be an integral extension. Prove that B is a field
if and only if B has no zero divisors and A is a field.

Example 4.8. Let K = Q(V/d), where d ¢ {0,1} is an interger free of
squares, A = Int(Z, K) (thathe ring of integers in K). Note that o : a+b\/d
a —bV/d is an automorphism of K and o(z) = z for z € Z. It implies that
a+b\/d is integral over Z if and only if so is a—bv/d. Therefore, if a+b\/d € A,
the sum 2a and the product a® - b%d of a + b\/d are integers. If a € Z, also
b’d € 7. As d is square free, b € Z. Suppose that a = m/2, where m € Z is
odd. Then m?/4 + b%d € Z, which implies that b = n/2, where n € Z is odd.
Then m? —dn? =0 (mod 4). As m and n are odd, m? =n? =1 (mod 4),

hence d =1 (mod 4). So, we have proved that
Z[Vd] ifd=2or3 (mod4),
Int(Z,Q(\/d)) =
ni(Z, Q(V)) {Z[%ﬁ] ifd=1 (mod 4).

The following theorem (Noether normalization) is the crucial step in the
proof of the Hilbert’s Nullstellensatz.
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Theorem 4.9 (Noether normalization). Let k be a field, A be a k-algebra
of finite type. There is a subalgebra Ag ~k[z1,xo,...,24] (d<n) such that
A is integral over Ay.

Proof. Let A = k[ay,as,...,a,]. We use induction by n. Let n =1, A =
k[a]. If a is algebraic, hence integral over k, set d = 0, Ag = k. If a is
transcendent, set d = 1, N = A ~ k[z]. Suppose that the claim is true for

algebras with n—1 generators. If f(ay,ag,...,a,) # 0 for all polynomials f €
k[x1,22,...,2,], we can set d =n and N = A ~ k[x1,x9,...,2,]. Therefore,
we suppose now that there is a nonzero polynomial f € k[x1,z3,...,2,] such

that f (a1,a2,...,a,) =0.
Choose an integer ¢ which is bigger than any power of every x; that occur
1—1
in f and set b; =a; —af for 2<i<n. If k= (ki,ko,...,ky), then

m(k)-1

+ ailgi(bg,...,bn)
i=1

ki Kk kn _ m(k)
ay ay° ... .an" =ay

for some polynomials g;, where m(k) = Z?:l quj’l. Moreover, as all k; < q,
we have that m(k) # m(k’) as soon as k # k'.
Let m = maxm(k) for all monomials x’fl ...xkn that occur in f. Then

m—1

f(at,az,...,a,) = Az + > hi(ba, ... by)al.
i=1

As f(ay,aq9,...,a,) =0, we see that a; is integral over the subalgebra B =
k[bo,...,b,]. Therefore, A is integral over B. Since B has n — 1 generators,
it contains a subalgebra Ag ~ k[z1,z9,...,24] (d < n—1) such that B is
integral over Ag. By Cor.[L.5] A is integral over Ay O

Corollary 4.10. If a k-algebra A of finite type is a field, it is an algebraic
extension of k.

Proof. By Noether Normalization, there is a subalgebra Ag such that A is
integral over Ag and Ay ~ k[z1,x9,...,24]. By Lem. Ap is a field, hence
d=0, Ap =k and A is algebraic over k. O

Corollary 4.11. Let m be a mazimal ideal of a k-algebra A of finite type.
Then A/m is an algebraic extension of k. In particular, if k is algebraically
closed, Ajm ~ k.

Now we are ready to prove the Hilbert’s Nullstellensatz in the form [I.5]

Proof of Nullstellensatz. Recall that now the field k is algebraically closed.
If m is a maximal ideal of k[z1,x2,...,2,], then k[aj,ag,...,a,]/m ~k by
Cor. so we have a homomorphism ¢ : k[z1,x2,...,2,] = k with the
kernel m. Set a; = ¢(x;). Then f (a1,as2,...,a,) = ¢(f) =0 for every fem.
Thus var(m) # @. If I is any proper ideal, there is a maximal ideal m 2 [.
Then var(]) 2 var(m) # @. O
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Corollary 4.12. Let k be an algebraically closed field. The map a — I(a)
is a bijection between A" and max.speck[xy,zo,...,xy].

Proof. Exercise. O

5. LOCALIZATIONS

Let A be a ring, S € A be a multiplicative subset, which means that 1€ S
and if a € S, b € S, also ab € S. Consider the set P of pairs (a,s), where
a€ A, seS. We define operations on P setting

(a,s) + (b, t) = (at + bs, st),
(a,s)(b,t) = (ab, st).

We also define an equivalence relation ~ on P such that (a,s) ~ (b,t) if
and only if there is 7 € S such that art = brs. We denote by A[S™!] the
quotient P/ ~, that is the set of equivalence classes with respect to ~. The
equivalence class of the pair (a,s) is denoted by ¢ or a/s.

Exercise 5.1. (1) Prove that ~ is indeed an equivalence relation, that
is reflexive, symmetric and transitive.
(2) Prove that if (a,s) ~ (d’,s") and (b,t) ~ (¥',t"), then (a,s) + (b,t) ~
(a',s")+ (b, t") and (a,s)(b,t) ~ (a’,s")(V',t).
Therefore, these operations induce operations on the quotient set
A[S7].
(3) Prove that these operations define the structure of a ring on A[S™!].
What are the zero and the unit elements of this ring?
(4) Prove that the map tg : a = a/l is a homomorphism of the ring A
to the ring A[S™'] and Kertg = {a € A|sa =0 for some s € S}.

The ring A[S™!] is called the ring of fractions of A with respect to S. If
p c Ais a prime ideal, the subset S = A\p is multiplicative. The ring A[S™!]
is denoted by A, and called the localization of A at the prime ideal .

Obviously, tg(s) = s/1 is invertible in A[S™!]. Actually, tg is universal
with respect to to this property.

Exercise 5.2. (1) Prove that if ¢ : A - B is a homomorphism of rings
such that ¢(s) is invertible for every s € S, there is a unique homo-
morphism v : A[S™}] - B such that ¢ = 11g.

(2) Let v: A - C be a homomorphism such that ~(s) is invertible for
every s and if ¢ : A > B is a homomorphism of rings such that ¢(s)
is invertible for every s € S, there is a unique homomorphism ) :
C — B such that ¢ = 1y. Prove that there is a unique isomorphism
6: A[S71] - C such that 0(a/s) = vy(a)y(s)™ .

(3) Deduce that if T'c A be another multiplicative subset, A[(ST)™]
A[STM[(T/1)7']. In particular, if p 2 q are prime ideals, A,
(AP)qu‘

~
~
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If M is an A-module, we define in the same way the A[S~!]-module
M[S™1]), called the module of fractions of M with respect to S (restore
the details). Again, the homomorphism ¢p; : M — M[S7!], u = u/l is
defined and Kervpy ={ue M | SnAnngu# @}. If S = A\ p, they write M,
instead of M[S™] and call M, the localization of M at the prime ideal p.

Exercise 5.3. (1) Prove that the ring A[S™!] is zero if and only if S 5 0.
(2) Let the module M is finite. Prove that the module M[S™!] is zero
if and only if SnAnny M # @.
(3) Let M = Q/Z considered as Z-module, S = Z \ {0}. Prove that
Anng M = {0} but M[S~!]=0.
(4) Prove that tg is injective if and only if S contains no zero divisor.

In what follows we always suppose that 0 ¢ S.

We consider the correspondence between submodules of M and M[S™!],
in particular, between ideals of A and of A[S™!]. For a submodule N ¢ M
we identify N[S™'] with {u/s | u € N,s € S} ¢ M[S™']. On the contrary,
if L is a submodule of M[S™1], set Ln M = {u e M | u/l ¢ L}H Note
that we can consider A[S™!] as an A-algebra. Then, if I is an ideal of A,
I[S7]=1A[S™].

Proposition 5.4. (1) (LnM)[S7] = L for every submodule L ¢ M[S™].

(2) N[S7']nM ={ueM|rueN for some r e S}.

(3) If B is a prime ideal of A[S7'], then P n A is a prime ideal of A
and (PnA)nS=a.

(4) If p is a prime ideal of S such that pnS = @, then p[S~'] is a prime
ideal of A[S™'] and p[S~']n A =p. Therefore, there is a one-to-one
correspondence  between prime ideals of A[S™'] and prime ideals
p c A such that pn S = @, in particular, between prime ideals in Ay
and prime ideals q C p.

(5) If N,N' are submodules of M, then (N+N)[S™1] = N[S7}]+N'[S™!]
and (NN N")[S71] = N[ST ] nN'[S7!].

(6) If I ¢ A is an ideal and N ¢ M is a submodule, then (IM)[S™'] =
I[STYIN[S™1.

Proof. (1) If u/s € L, then u/1 = (s/1)(u/s) € L, hence v € L n M and
u/se(LnM)[S].

(2) u/1 € N[S7'] means that there are v € N, s € S such that u/1 = v/s,
i.e. tsu =tv e N for some t € S and ts € S. On the contrary, if ru € N for
some 7 € S, then u/1 = ru/r e N[S7!].

(3) ab € P n A means that ab/1 = (a/1)(b/1) € B. As B is prime, either
a/l €P, hence a e Pn A, or b/1 € P, hence be Pn A. If s € P n A for some
s €S, then 1/1 = s/s € P, which is impossible, since ‘B is a proper ideal.

31f S contains no elements that are zero divisors on M , that is g is an embedding of
M into M[S™'], it is indeed the intersection.



COMMUTATIVE ALGEBRA 17

(4) If (a/s)(b/t) = ab/st € p[S7], there is r € S such that rabep. Asr ¢ p,
ab € p, hence either a € p, hence a/s € p[S~'] or b € p, hence b/s € p[S~!].
Moreover, if ra € p for some r € S, then a € p, hence p[S~!]n A = p.

(5) and (6) are left to a reader as easy exercises. O

Corollary 5.5. If a module M is Noetherian, so is M[S™']. In particular,
if a ring A is Noetherian, so is A[S7'].
Is the converse true?

Example 5.6. If p c A is a prime ideal, the set S = A \ p is multiplicative,
so the ring of fractions A[S™'] is defined. It is denoted by A, and called the
localization of A at p. In the same way, the Ay,-module M[S™'] is denote by
M,. The set {p e spec A | M, # 0} is called the support of the module M and
denoted by supp M. Obviously, if p € supp M and p’ 2 p, also p’ € supp M
(why?). Note also that if p 2 Anngv = {a € A | av = 0} for a nonzero
element u € M, then p e supp M (why). In particular, we have the following
corollary.

Corollary 5.7. (1) M =0 if and only if My =0 for every mazimal ideal
m (explain it).
(2) If N,N' c M are submodules and Ny 2 N, for every mazimal ideal
m, then N 2 N’ (apply (1) to N+ N'/N ).

Exer. shows that, if M is finite, supp M = V(Ann M). On the other
hand, if M = Q/Z considered as Z-module, then Anng M = {0}, so {0} €
V(Anngz M), but My, =0 (Exer.(?))).

Note that, if A is a domain, the ideal {0} is prime and Aygy is just the
field of fractions of A.
The localizations A, are important examples of local rings.

Definition 5.8. A ring A is called local if it has a unique maximal ideal
m. The field A/m is called the residue field of the local ring A. Obviously,
m=rad A. Note that any field is a local ring and is its own residue field.

From Prop.[5.4] we immediately obtain the following result.

Corollary 5.9. The ring Ay is local and pAy is its unique mazximal ideal.
Prime ideals of Ay are just the ideals qAy, where q runs through all prime
vdeals q C p.

The residue field A,/pA, is called the residue field of the ring A at prime
ideal p. Ome can verify that it is isomorphic to the field of fractions of
the domain A/p: just map the coset (a/s) + pA, to the fraction of cosets
(a+p)/(s+p) (check it!).

If a: M - N is a homomorphism of modules and S is a multiplicative
set in A, we define a[S71]: M[S™] - N[S7!] setting a[S~1](v/s) = a(v)/s
for ve M, s € S (check that it is well defined). Obviously, (af)[S™!] =
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a[S71]B[S71]. Therefore, the map M ~ M[S™!] defines a functor A-Mod —
A[Sl]—Modé
Proposition 5.10. Ker(a[S™!]) = (Kera)[S™!] and Im(a[S7!]) = (Ima)[S71].
If N ¢ M is a submodule, then (M/N)[S™1]~ M[S™1]/N[S7].
Proof. If v € Kera, s € S, then v/s € Kera[S™']. On the contrary, if v/s €
Kera[S7!], that is a(v)/s = 0 in N[S7!], there exists r € S such that
ra(v) = 0. Then v/s = rv/rz and a(rv) = 0, hence v/s € (Ker a)[S7].

The proof for images is quite analogous and left to the reader.

The isomorphism (M/N)[S™!] ~ M[S7']/N[S~!] is given by the map
(u+ N)/s (u/s) + N[S7] (verify it). O

Corollary 5.11. The functor M + M[S™'] is exact, that is if a sequence

Qn+1 Qn
o> My —— M, — M1~ ...

is exact, so is the sequence

an+1[S71] an[S7H]

o My [S7Y] M,[S™' ] == M, 4[S7'] ...

In particular the localization functor M ~ M, is exact.

Localization of modules can be presented as tensor product (see App..
Proposition 5.12. For every A-module M the map A[S™ @M - M[S™1],
(a/s) ® ur (au)/s is an isomorphism.

(Verify that it is well defined.)

Proof. The inverse map is defined as u/s — (1/s) ® u (check it). O

Corollary 5.13. The A-algebra A[S™'] is flat (see App.for details about
flatness).

Together with Cor.[5.7] it implies that localizations completely control
exactness.

Corollary 5.14. Let

An+1 Qn
o> My —— M, — M1~ ...

be a sequence of homomorphisms of A-modules. It is exact if and only if the
seqeunce

(am+1) (an)m
= (M) — (M) ——> (Mpp-1) ) = .
is exact for each maximal ideal m c A.
In particular, o : M — N s injective (surjective) if and only if so is oy
for all m e max.spec A.

The following consequences of the Nakayama Lemma are rather often
used. Let gen 4 (M) denote the minimal number of elements in sets of gen-
erators of M.

4Gee Appendix A for generalities about functors and exactness.
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Corollary 5.15. Let A be a local Noetherian ring with the maximal ideal
m and the residue field k = A/m, M be a finite A-module. For an element
veM we denote v =v+mM e M/mM.
(1) geny (M) = dimy M /mM. Namely, if {01,02,...,0m} is a basis of
M, {v1,v2,...,0m} is a minimal set of generators of M.
(2) M is free if and only if it is flat.

Proof. 1) By Cor. if v1,02,..., 0y, generate M /mM, also v1,va,...,Um
generate M and vice versa. As a basis is a minimal set of generators of the
vector space M /mM , it proves the assertion.

2) Every free module is obviously flat. On the contrary, let M be flat. Let
V1,02, ..., Uy be a minimal set of generators of M, F' = A™ and {e1, ea,...,en}
be a basis of F. There is an epimorphism 7 : F - M mapping ¢; to v;. Let
K = Kerm, so we have an exact sequence 0 - K - F' - M — (0. Tensoring
with A/m and using Prop. we obtain an exact sequence

0— K/mK - F/mF - M/mM - 0.

As F/mF ~ M/mM ~ k™, the last map in this sequence is an isomorphism.
Therefore K /mK =0. By the Nakayama Lemma, K =0 and M ~ F. O

6. ASSOCIATED PRIMES

Our aim now is to obtain an analogue of the well known theorem about
decomposition of integers (or polynomials in one variable, or elements of a
principal ideal domain) into products of primes:

a :plfl p§2 pﬁm all p; are not associated,

or, in terms of ideals,

(a) =(p1)* N (p2)™ N0 ()™,

decomposition into intersection of powers of different prime ideals, and
uniqueness of such decomposition. Later (Thm. we will see that it
is the case if A is a Dedekind domain (a normal Noetherian domain of di-
mension 1). Actually, it is a unique class of Noetherian domains with this

property.

Definition 6.1. An ideal I of a ring A is called irreducible if I + Iy n I for
any Iy ol and Ir > 1.

One easily proves that if a ring A is Noetherian, every ideal can be pre-
sented as an intersection of irreducibles N, I,;,, where I; ¢ I; for i # j
(why?). In a principle ideal ring irreducible ideals are just the powers of
primes and this intersection is unique. The next examples show that in
general it is not the case.

Example 6.2. (1) Let A = k[x,y], where k is a field, m = (z,y), I =
(x,4%). Then m is a maximal ideal, m > I >m? and I # I n I, for
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any I; o I and Iy > I (prove it). Therefore, I is not an intersection
of powers of prime. ideals.

(2) The same holds in A = k[x,y]/(2? - 4?). (It is one-dimensional but
not normal: x/y ¢ A.)

(3) Let A, m and I be as in Example 1, J = (22, zy). Then J = (z)nI =
(z) nm? (check it).

(4) Let A = k[x,y,2]/(zy — 2?), p = (z,2). Then p is prime but p? =
(z) n (2%, 2) is not irreducible (prove it). Note that this ring is
normal (it can be proved as in Exam.4.8)).

So we have to modify the framework and to investigate to what extent
we can guarantee existence and uniqueness of “good” decompositions. The
first step in this direction is the notion of associated primes.

Definition 6.3. Let M be an A-module, p € spec A. We say that p is
associated to M if there is an element u € M such that p = Anngu = {a €
A | au = 0}. Obviously, then p 2 Anng M. We denote by Assy M (or
Ass M if A is fixed) the set of prime ideals of A associated to M. Hence
Assa M c V(AHHA M)H

Note that Ass{0} = @, since Ann0 = A. So in what follows we suppose
that M is a nonzero module. First, we establish some elementary properties
of Assy M. Note that, if p is prime, Annu = p for every nonzero u € A/p, so

Ass Afp ={p}.

Proposition 6.4. If p is maximal among the annihilators of non-zero ele-
ments of M, it is prime.

Proof. Let p = Annwu and ab € p, i.e. a(bu) =0. If bu = 0, then b € p. Let
bu # 0. As Annbu € Annwu and p is maximal, Annbu =p, so a € p and p is
prime. ([

Certainly, maximal annihilators need not exist. But they always exist if A
is noetherian. Hence, Assq4 M # & if the ring A is Noetherian and M # {0}.

Proposition 6.5. Let A be Noetherian, S c A be a multiplicative set, M be
an A-module. Then

Ass M[S™1]={p[S']|peAssM, pnS =g}

Proof. Let p= Annu and pn S = @. Then p[S~!] ¢ Ann(u/1). Moreover, if
a/s € Ann(u/1), there is r € S such that rau = 0. Therefore, ra € p and a € p,
since r ¢ p.

Let now ¢ A[S™!] be a prime ideal such that B = Ann(u/s), p = L n A.
Then B = p[S~!]. If a € p, then (a/1)(u/s) = 0, i.e. there is 7 € S such
that aru = 0. As p is finitely generated, there is a common r € S such
that p(ru) = 0. On the other hand, if a(ru) = 0, then (a/1)(u/s) = 0, so
aePnA=pand p=Ann(ru). O

5 Sometimes the prime ideals associated to the module A/I are called the prime ideals
assiciated to the ideal I. We will not use this term to prevent possible misunderstanding.
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Proposition 6.6. (1) If N ¢ M is a submodule, AssN < AssM ¢
Ass N uAss(M/N).
(2) Ass(@®F, My,) = Uk Ass M;.
(3) If N1, Na,..., Ny are submodules of M such that ﬂf;l N; =0, then
Ass M c UF | Ass(M/N;).

Proof. (1) Obviously, AssN € Ass M. Let p = Annu (u € M). Then Au ~
A/p and Annv = p for every v € Au. Hence, if AunN # 0, we have p € Ass N.
If Aun N =0, the projection A - M /N gives an embedding Au — M/N.

Therefore, p = Ann(u + N) € Ass(M/N).
(2,3) Exercise. (For (3), construct an embedding M - @F,(M/N;)).
([

Theorem 6.7. Let M be a finite module over a Noetherian ring A.
(1) There is a finite filtration

(6.1) 0=MycMicMyc...cM, =M

such that M;/M;—1 ~ Alp; for some prime ideals p;.
We call such a filtration a coprime filtration of M.

(2) For a coprime filtration (6.1)), Assa M < {p1,p2,...,Pm} S supp M
and the minimal elments of these three sets coincide.

(3) Upeassym b = Z(M), where Z(M) is the set of zero divisors on M,
i.e such elements a € A that au =0 for some nonzero u e M.

In particular, Ass M is finite and contains Vipin(Anny M).

Proof. (1) As we have just seen, there is a prime ideal p; such that M
contains a submodule M; ~ A/p;. In the same way, M/M; contains a
submodule Ny ~ A/py, where po is prime. Let Ms be the preimage of Ny
in M. Then MQ/MI ~ Ny =~ A/pg Now M/M2 O N3 =~ A/pg which gives a
submodule M3 5> My such thar Ms/Ms ~ A/ps. Ttereting this prodedure, we
obtain the filtration . It is finite since M is Noetherian.

(2) It follows from Prop.that Ass M c U, Ass M/ M;—1. As M;/M;_q ~
A/pz, ASSMZ‘/MZ‘_l = {pz} Hence Assy M ¢ {pl,pg, . ,pm}

Prop. implies that the filtration gives a filtration of My with the
quotients (M;/M;_1)q ~ (A/p;)q which is non-zero if and only if q 2 p;. Hence
{p1,p2,...,pm} S supp M and these sets have the same minimal elements.

Finally, let p be a minimal element of supp M. Then pA, € supp M, and
is minimal there. As it is a unique maximal ideal of Ay, supp M, = {pA,}.
As Ass M, # @, also Ass M, = {pA,}. By Prop. p=pA,nAecAssM.

(3) Exercise. O

Corollary 6.8. Let A be a Noetherian ring.
(1) Ass(A/NT) = Viin(I) for every ideal I c A.
(2) If A is reduced (that is nilA = 0), then Z(A) = Uj_;n;, where

ny, N, ..., s are all minimal prime ideals of A.
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Proof. (1) V1 = NpeViin(r) P as V1 is a radical ideal. Now use Prop.(3).
(2) follows from Thm.(3). O

The following lemma will be often used.

Lemma 6.9 (Prime Avoidness). Let p1,pa,...,pm be ideals of a ring A and
at most two of then are not prime, I be an ideal. If I < U, p; then I C p;
for some 1.

Proof. Obviously, we can suppose that p; ¢ p; if i # j. We use induction by
m. Let m =2. Then I \p; Cp; (j #1). Suppose there are a; € I \ p;. Then
a +ag ¢ p1Ups.

Suppose now that m > 3 and the claim holds for m — 1 ideals. Let p;
be prime. Note that I = U, (I np;). If pyn 1 c p; for some j > 1, then
I c U, pi, therefore, I € p; for some i. Suppose that p;nI ¢ p; for any j > 1.
Then py N1 ¢ U, pi. Choose a € (p1nI)~ (Uypi). On the other hand, if
I'¢pq,also Ipy...pm Ep1. Choose be (Ipy...pm) Np1. Then I3 (a+d) ¢p;
for any 1. O

Corollary 6.10. Let I be an ideal of a Noetherian ring A, M be a finite
A-module. If Tu + 0 for every nonzero element uw € M, there is an element
a € I which is a non-zero-divisor on M.

Proof. Iu # 0 for any u # 0 means that I ¢ Annu, hence I ¢ p for any
p € Ass M. Therefore, I ¢ Upeassmr p = Z(M), that is contains some a which
is a non-zero-divisor on M. O

7. PRIMARY DECOMPOSITION

Definition 7.1. A submodule N c M is called primary if, as soon as au € N
for some a € A and w € M \ N, there is m such that a™M ¢ N. In particular,
an ideal P ¢ A is called primary if, as soon as ab € P for some a,be A, b ¢ P,
there is m such that a™ € I.

Proposition 7.2. Let A be a Noetherian ring, M be a finite A-module and
N ¢ M be a submodule. N is primary if and only if Assa(M|N) consists of
a unique prime ideal p. In this case p =~/Anng M /N and N = M n N,.
If Ass(M/N) ={p}, the submodule N ¢ M is called p-primary. In particu-
lar, if Ass(A/P) ={p} is a prime ideal, the ideal P is called p-primary.

Proof. Replacing M by M /N we can suppose that N = 0. If Asso(M) = {p},
then, by Thm.3), Z(M) = p, hence if au = 0 for some u # 0, then a € p.
Moreover, by Thm.(2), p is a unique minimal prime ideal containing
Anny M, hence also /Anns M. By Cor.w, VAnny M = p. Therefore,
a*M =0 for some k, so 0 is a primary submodule. Also, if v # 0 and av =0,
then a € p, whence M n0, = {v | sv =0 for some s ¢ p} =0.

On the contrary, if 0 is a primary submodule in M and p = Annyg u for
some u # 0, then a*M = 0 for every element a € p and some k. Therefore,
a® € Anng M and p ¢ /Anny M. As any associated prime ideal contains

VvV Anny M, it implies that p = /Anng M and is unique. O
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Remark 7.3. If \/Ann o (M /N) = p, where p is maximal, then N is p-primary,
but it is not necessarily true if p is not maximal. For instance, it is not the

case for the ideal p? from Exam.(4).

Definition 7.4. A submodule N c¢ M is called irreducible if it cannot be
presented as an intersection Ny n No, where N; # N (i = 1,2). For ideals it
repeats the definition from Rem.[6.1]

In what follows we suppose that the ring A is Noetherian and the module
M finite. Then every submodule can be presented as a finite intersection
NinNyn---n Ny, where all N; are irreducible and N; ¢ N; if ¢ # j.

Proposition 7.5. An irreducible submodule is primary.

Proof. Again we can change M to M/N, so suppose that N = {0}. Let
AssM > py,p2 and py # p2. There are uy,us € M such that Annw; = p;,
that is Au; ~ A/p;. Then Annv = p; for every nonzero v € Au;. Therefore,
Auy n Aug = {0} is not irredicible. O

Proposition 7.6. Every submodule N ¢ M is an intersection of irreducible
(hence primary) submodules.

Proof. If N is not irreducible, N = Ny n No for some bigger submodules.
If both N; and Ns are irreducible, we are done. If Nj is not irreducible,
N7 = Nj1 n Npg for some bigger submodules. Iterating this process, we

obtain a necessary presentation (it must stop since M is Noetherian). [
Proposition 7.7. If N = Oy N;, then Ass(M/N) c U2, Ass(M/N;). In
particuar, if all N1, Na, ..., Ny are p-primary submodules, so is N.

Proof. The homomorphism M /N — @[, (M /N;) such that
u+ N~ (u+ Ny,u+ Na,...,u+ Np)
is injective. Hence the claim follows from Prop.[6.6 O

Theorem 7.8 (Primary decomposition). Let Ass(M/N) = {p1,p2,---,Pm},
where p; # p; if i # j. There are p;-primary submodules N; > N such that
N =N Ny, but N # Nz N; for any j. Moreover, if p; is a minimal element
of Ass(M|N), then N; = M n N,,, hence is uniquely defined.

A presentation of N as an intersection of p;-primary submodules with
different p; is called a primary decomposition of N and the modules N; are
called p;-primary components of N.

Proof. From Prop.[7.6] and [7.7] it follows that N = 0| N;, where each N; is
pi-primary for some p;, p; # p; for i # j and N} = N, N; # N. It remains
to prove that Ass(M/N) = {p1,p2,...,Ppm}. We use induction. The case
m = 1 is trivial, so we suppose that the claim holds for intersections of
m — 1 submodules, hence Ass(M/N;) = {p; | j #i}. Note first that M/N 2
N//N ~ N/ + N;/N; € M/N;. As Ass(M/N;) = {p;}, also Ass(N//N) = {p;}
and p; € Ass(M/N). Therefore, Ass(M/N) 2 {p1,p2,...,pm}. By Prop.[7.7,
also Ass(M/N) c {p1,p2,...,Pm}-
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Let now p; be minimal. Note that p; ¢ p for every p € supp(M/N;). Hence
p; ¢ supp(M/Nj) if j # i, since p; 2 p; for j # i. Therefore (M/Nj),, =0,
which means that (Nj)p, = (M;)p,- Then Ny, = N7 (Nj)p, = (Ni)p,- As
Ann(M/N;) € p;, we have that N; = M n (N;),, = M n N,,. O

Exam.[6.2(2) shows that if p; is not mininal in Asss N, the p;-primary
component can be not unquely defined (take p; = (z,y)).

Corollary 7.9. Fvery nontrivial ideal I is an intersection of primary ideals:
I =N" 1;, where I; is p;-primare and all p1,P2,...,pm are different. If p;
is minimal among P1,P2,...,Pm, then I; = I, n A is uniquely defined. In
particular, if I is a radical ideal, this decomposition is unique.

8. DIMENSION. ARTINIAN RINGS. PRINCIPAL IDEAL THEOREM

Definition 8.1. (1) The height htp of a prime ideal p is the supremum
of such integers h that there is an ascending chain of prime ideals

(8.1) Pocpic...cpp=p.
(2) The dimension of a ring A is
dim A = sup{ht m | m € max.spec A}

We will prove that, if A is Noetherian, htp < oo for every prime p. In
particular, if A is local and Noetherian, dim A < co. If A is Noetherian, but
not local, it is not neccesary so (see Nagata’s Example in Appendix . We
will also prove that, if k is a field, dimk[z1, z9,...,2,] = n. It implies that
dim A < oo for every algebra of finite type over a field.

Suppose that k is an algebraically closed field, I c k[z1,zo,...,2,] is an
ideal, A = k[x1,22,...,2,]/] and X = var(I). Then dim A is the maximal
length of chain of prime ideals I =pgcp; cpsc...cpg. It is just the same
as the maximal length of chains of irreducible closed subsets X = Xy > X1 >
X2 5...2 X, (the dimension of X as it is defined in Algebraic Geometry).

We start with Noetherian rings of dimension 0. They happen just to be
Artinian rings.

Definition 8.2. An A-module M is called Artinian if its satisfies the de-
scending chain condition, DCC: there are no infinite strictly descending
chains of submodules M = My > M7 > My > ... > M, o .... Equivalently,
every subset of submodules of M has a minimal element (with respect to
inclusion). If A is Artinian as A-module, that is has no infinite strictly
descending chains of ideals, it is called an Artinian ring.

Note that a vector space is Artinian if and only if it is Noetherian and if
and only if it is finite dimensional. For instance, a finite dimensional algebra
over a field is both Artinian and Noetherian.

Proposition 8.3. Let N be a submodule of M. M is Artinian if and only
if both N and N/M are Artinian.
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Proof. Obviously, if M is Artinian, so are N and M /N. Prove the inverse.
For a submodule L ¢ M set L'’ = Ln N and L” = L+ N/N ¢ M/N. If
Ly 2L, also L] = L' and LY 2 L”. Suppose that L} = Ly and LY = L".
The latter equiality means that Ly + N = L+ N. If vy € L1, then v1 = v +u,
where v € L,u € N. Hence u =v1—-ve LinN =LnN and vy € L, that
is Ly = L. Therefore, any strictly descending chain of submodules of M
produces a strictly descending chain of submodules of M /N or of N, which
is impossible if both are Artinian. O

Just as for Noetherian modules and rings, we have the following corollary
(with the same proof).

Corollary 8.4. (1) If a ring A is Artinian, so is every finite A-module.
(2) If a finite A-module M is Artinian, so is A] Anng M.

Definition 8.5. Ideals I and J are called coprime if I+.J = A. For instance,
so is if I is maximal and J ¢ I.

Note that if I, J; are coprime as well as I, Jo, then [ is coprime with J;Jo
(just multiply (I + J1)(I + J2)).

Proposition 8.6 (Chinese remainder theorem). Let any two of the ideals
I, Iy, ..., I, be coprime. Then N}y I; = [1j-1 I; and A/ TTj I ~ TTjw, A/ L.

Actually, the last assertion means that given any elements a1, ao,...,ay
from A, there is an element a € A such that a = a; (mod I;) for all 7 and a is
unique up to a summand from []7; I;.

Proof. If n =2, let ¢1 +co =1, where ¢; € I;. If be [y n Iy, then b=c1b+cobe
I1I5. Therefore, A/I1Io = A/I} n I3 and the map ¢ : A/I1I, - Al x A]I,
is injective. Given a; € A (i = 1,2), set a = cjaz + cea;. Then a = q;
(mod I;) (i =1,2), hence ¢ is also sutjective.

Now use induction, supposing that the assertion is true for n — 1 ideals.
Then J = N4 I; = [1j-, and is coprime with I. Therefore, N, I; =I1nJ =
Ilj = H?:l IZ and

A/HL = A/Ilj ~ A/Il X A/J ~ A/Il X HA/IZ
i=1 =2

(The last isomorphism follows from the inductive conjecture for Io,..., I,.)
O

Theorem 8.7. The following conditions for a ring A are equivalent
(1) A is Artinian.
(2) A is Noetherian and dim A = 0.

Proof. (1)=(2). Note that if m; are different maximal ideals of A, then A >
m; Dmymy D Mymomg O ... is a strictly descending chain. As A is Artinian,
it cannot be infinite, so max.spec A is finite: max.spec A = {my,mo, ..., My, }.
Set m; =m; ifi= ] (IIlOd m) and Ik = H?zl m;. Then Ik—l/Ik = Ik_l/mklk_l is
a vector space over the field A/my. It is Artinian, hence finite dimensional,
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hence Noetherian. Let R = I, = rad A, so R" = I,;,,. As A is Artinian,
the descending chain R 2 R? 2 R 2 ... must stop: R" = R™*! for some n.
Suppose that R™ # 0 and let J = Anny R™ = Anny R™'. As J # A, there
is an ideal J’ o J minimal among the ideals properly containing .J. Take
aeJ' \J, then J' =aA+J, so J'/J is finitely generated (even cyclic). By
Nakayama lemma, aR + J # J', hence aR+ J = J and aR € J = Anngq R".
Therefore, a € Anny R = J, a contradiction. Hence R™ = 0 and we obtain
a finite filtration A = Ip 2 [y 2 I 2 ... 2 I;;,, = R™ = 0 with Noetherian
quotients Ij_q/I. Therefore, A is Noetherian. Moreover, as R is nilpotent,
R c p for every prime ideal p, whence p 2 m; for some ¢, thus p = m;. So all
prime ideals are maximal and dim A = 0.

(1)=(2). As dim A = 0, all prime ideals are maximal, hence also they
are minimal, so there are finitely many of them: specA = max.specA =
{my,mg,...,m,,} and rad A = nil A. Define I and R as above. This time R is
nilpotent, so we obtain a finite filtration A=Ip21121,2...2 1, =R"=0
whose quotients Ij_1/Ij are Noetherian vector spaces, hence also Artinian.
Therefore, A is Artinian. O

Corollary 8.8. If a ring is Artinian, every element a € A is either zero
divisor or invertible.

Proof. If a ¢ m for every maximal ideal m, it is invertible. As all maxi-
mal ideals are minimal, hence associated to 0 by Thm.[6.7]), any element
belonging to a maximal ideal is zero divisor by the same theorem. O

Corollary 8.9. If a finite module M is Artinian, supp M is finite.

Exercise 8.10. Let m be a maximal ideal of a Noetherian ring A, M be a
finite A-module and N c¢ M be its submodule. The following conditions are
equivalent::

(1) N is m-primary.

(2) VAnnyu(M/N) =m.
(3) supp(M/N) = {m}.
If these conditions hold, M /N is Artinian.

We apply these results to prove Krull principle ideal theorem. First, a
definition and an auxiliary result.

Definition 8.11. For a prime ideal p c A, set
p(™ = (p"Ap)nA={aecAl|sacp” for some s ¢p}
and call p(”) the n-th sympolic power of p.

Exercise 8.12. Prove that if m is a maximal ideal, then m(™ = m" for all
n.

Lemma 8.13. Let p c A be a finitely generated prime ideal. If p(™ = p(+1)

p is a minimal prime ideal.
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Proof. We can replace A by the localization A, and suppose that A is local
and p is its maximal ideal, so p = rad A. Then p™ = p™. As p is finitely
generated, so is p” and if p” = p"*! Nakayama lemma implies that p™ = 0.
Therefore, p = nil A is minimal. O

Theorem 8.14 (Krull principle ideal theorem). Let A be a Noetherian ring,
a € A be neither invertible nor zero divisor, p be a minimal prime ideal
containing a. Then htp =1.

Proof. Replacing A by A, we can suppose that A is local and p is its maximal
ideal. Then p is a unique prime ideal in A/aA. By Thm. AlaA is
Artinian. p is not a minimal prime ideal of A, since it contains a non-
zero-divisor. Hence htp > 1. Let q c p be a smaller prime ideal. The
descending chain of ideals (q™ + aA)/aA of the ring A/aA must stop, so
g™ +aA = g+ + @A for some n. Let b e q™, then b = b’ + ac for some
b e q(”+1) and ¢ € A. It implies that ac € q(”), so sac € q" for some s ¢ q.
As also a ¢ q, then ¢ € g, which gives that ¢ = aq™ +q(™*1). Note that
a € p =rad A. By Nakayama lemma, q") = q**1) and q is minimal by the
preceding lemma. Therefore, htp = 1. (I

Corollary 8.15. A Noetherian domain is factorial if and only if every prime
ideal of height 1 is principal.

Proof. Exercise. O

9. PARAMETER SETS AND DIMENSIONS OF FLAT EXTENSIONS

9.1. Parameter sets. From Krull principle ideal theorem we are going to
obtain the following results relating heights with generators of ideals.

Theorem 9.1. Let A be a Noetherian ring, I = (a1,as,...,a,) be an ideal
and p be a minimal prime ideal containing I. Then htp < n. In particular,
htp < oo for every prime ideal of A and, if A is local, dim A < co.

Note that this theorem also implies that in a Noetherian ring there are
no infinite descending chains of prime ideals.

First we establish the following “bypass lemma.”

Lemma 9.2 (Bypass lemma). Let A be a Noetherian ring, q1,q2,...,q, be
prime ideals of A and pg > p1 > ... p; be a chain of prime ideals such that
po ¢ q; for all i. There is a chain of prime ideals po 2 p1 > ... 2P, D P
such that p’; ¢ q; for all i,j.

Proof. Obviously, we can suppose that p; € q; for all 7. So we can replace A
by A/p; and suppose that p; = 0 and A is a domain. We can also suppose,
using induction, that p;_o ¢ q; for all ¢, so, by Prime Avoidness (Lem.,
there is an element a € p;_5 such that a ¢ q; for all 7. Let p; ; be minimal
among prime ideals contained in p;_o and containing a. Then p; | # p;_o,
since htp;_, = 1 by Krull principle ideal theorem (Thm. and htp;_o > 2.
Therefore, we have obtained the necessary chain. O
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Proof of Theorem[9.1 Replaicing A by A,, we can suppose that A is local
and p is its unique maximal ideal. Moreover, replacing A be A/nil A, we
can suppose that A is reduced, hence, by Cor.[6.8] its zero divisors are just
elements of minimal ideals. Then the case n =1 follows from Krull principle
ideal theorem. So we use induction. As p ¢ n for each minimal prime ideal
n, the Prime avoidness lemma implies that some of a;, say a,, is a non-
zero-divisor. Let J = (a1,aq9,...,an-1). and qi,qs2,...,q, be all minimal
prime ideals containing J. If p = q;, then htp; < n — 1 by induction. Let
p #q; for all ¢ and p = pp o p1 o ...p; be a chain of prime ideals. By
Lem.[9.2) we can suppose that p;_; ¢ q; for all i. Set A= A/J, a=a+J,
q; = q;/J and p; = p; + J/J. Then 1,42, ...,q, are all minimal prime ideals
of A, and p is minimal among prime ideals containing @,,, hence htp < 1.
As p;1 ¢ g, p is minimal among the prime ideals containing p;_; or, the
same, p is minimal among the prime ideals containing J + p;_1. Therefore,
in the quotient A/p;_q the ideal p/p;_1 is minimal containing J + p;_1/p;_1.
By induction, ht(p/p;-1) <n -1, hence [-1<n-1and I < n. O

There is also a result converse to Theorem [0.1]

Theorem 9.3. Let p be a prime ideal of a Noetherian ring A and htp =n.

There are elements ai,ao,...,a, € p such that every prime ideal containg
(a1,a9,...,ay) is of height n. In particular, p is also minimal prime con-
taining (a1, a9, ..., an).

Such set of elements is called a parameter set for the ideal p.

Proof. Using induction, we will prove the following result which is stronger
than the theorem.

Claim. Let p = p, D Ppp1 O ... D P1 D po be a chain of prime ideals
starting with p., There are elements ai,asg,...,a, € p such that, for every
0<m<n, pm 2 Iy, = (a1,a2,...,am) and all minimal primes containing
(a1,a9,...,am) are of height m.

Replacing A by A/nil A, we can suppose that A is reduced. For m =1,
take any non-zero-divisor a; € p;. Suppose that m < n and we have already
found aq,ae,...,am,-1 such that p,,—1 2 I,,-1 and every prime ideal containg
Ip-1 is of height m — 1. Let Viyin(Im-1) = q1,92,.--,qr. Then p,, ¢ qs,
hence there is an element a,, € p,, such that a,, ¢ q; for every i. Then
Iy, = (a1,a2,...,amm) ¢ q;- Let q € Vipin(L,). Then q o g; for some i. As
htq; =m -1, htq > m. But htq <m by Thm.[0.I] therefore, ht q = m. O

Corollary 9.4. Let A be a local Noetherian ring with the maximal ideal m.

dim A equals the minimal n such that m = \/(a1,a2,...,a,) for some ele-

ments ai,az,...,a,. Equivalently, Al (a1,as,...,ay) is Artinian (explain
it ).
Such set of elements is called a parameter set for the ring A.

Definition 9.5. Let A be a local ring with the maximal ideal n and residue
field k. We call geny m = dimy m/m? the embedding dimension of A and
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denote it by emb.dimA. By Cor.0.4] dimA < emb.dimA. If dimA =
emb.dim A, we call A a regular local ring. .

Exercise 9.6. Prove that a regular local ring is a domain.

Hint: Use induction by d = dim A, the case d = 0 is trivial. Choose a € m
such that a ¢ m? and a ¢ q for every minimal prime q and prove that a
minimal prime q c (a) is zero.

9.2. Flat extensions. Polynomial rings. These results are useful for
studying dimensions of extensions of rings, in particular, of polynomial rings.

Theorem 9.7. Let A= B be a homomorphism of Noetherian rings, 3 be
a prime ideal of B and p = 1"*(°R). Then

(2) If B is flat over A, the preceding inequality is actually an equality.

Proof. Replacing A be A, and B by By, we can suppose that both A and
B are local with the maximal ideals, respectively, p and B, so htp = dim A
and htP = dim B. Then the assertion becomes dim B < dim A + dim B/pB.

(1) Let {a1,as,...,a,} be a parameter set for A, {by,ba,...,by} be a
parameter set for B/pB and b; be preimages of b; in B. There are integers
k,l such that p* ¢ (a1,as,...,a,) and P’ c (by,bo,...,by) + pB. Then
B ¢ (a1, az,...,an,b1,bz,...,by), hence dim B < n + m.

To prove (2) we need a lemma.

Lemma 9.8 (Flat Going-down). Let A %> B be a homomorphism of Noe-
therian rings, B be a prime ideal of B and p = . (*B). Suppose that B is
flat over A and q c p be a prime ideal in A. There is a prime ideal Q c B
such that . 1(Q) =q.

Proof. Again we can suppose that A and B are local with the maximal
ideals, respectively, p and . Moreover, we can suppose that q is maximal
properly contained in p. We claim that M ® 4 B # 0 for every M + 0. Indeed,
suppose that M ® 4 B =0. As B is flat, then N®4 B = 0 for every submodule
of M. Let N ¢ M be nonzero and finitely generated, N’ ¢ N be its maximal
submodule. Then N/N’ ~ A/p and (N/N')®4 B ~ B/pB = 0, which is
wrong, since pB ¢ P. Therefore, in particular, (p/q) ®4 B ~pB/qB # 0, i.e.
pB > qB. Also B’ = By/qBy ~ B®4 (Aq/q4,4) # 0. Let m’ be a maximal
ideal of B', m be its preimage in By and Q =mn B. Then mn A4, = g4, so
NANA=q. O

Now we prove (2). Let PBo > P12 ... 2P, 2 pB be a chain of prime
ideals in B. Then B, n A =p. Let also p, 2 Pps1 D ... O Pram be a chain of
prime ideals of A. Using Lem. one can construct a chain B, 2 P12
... 2 PBpim of prime ideals of B such that Py N A = p;. for k > n. Therefore,
dim B > dim A+dim B/pB. Together with (1) it accomplishes the proof. O
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Corollary 9.9. Let A be a Noetherian ring. Then
dim A[x1,x9,...,2,] =dim A + n.

In particular,
(1) if k is a field, then dimk[xz1,22,...,2,] =n;
(2) dimZ[z1,x9,...,x5] =n+1.

Proof. Obviously, we can suppose that n = 1. Let B = A[z], P is a max-
imal ideal in B and p = An‘B. Then B/pB ~ A[z], where A = A/p.
Hence By/pBy ~ (B/pB)y ~ K[z]y, where K = A, ~ A,/pA, is a field,
As dim K[z] = 1, dimByg/pByp < 1 and ht’ < htp + 1. As obviously
dim B > dim A + 1 (explain it), it accomplishes the proof. O

Exercise 9.10. Let A be a Noetherian ring. Prove that

dim A[[z1,x2,...,2,]] = dim A + n.

10. INTEGRAL EXTENSIONS AND ALGEBRAS OF FINITE TYPE

Theorem 10.1. Let A € B be an integral extension. Then dim A = dim B.

The proof consists of several assertions that are also of independent in-
terest.

Claim 1. For every prime ideal p ¢ A there is a prime ideal P c B such
that PN A =p.

Proof. Replacing A by A, and B by B,, we can suppose that A is local
and p = rad A. It is enough to prove that pB # B, since then we can take
for P a maximal ideal of B containing pB. Suppose that pB = B. Then
1 =Y" aib;, where a; € p,b; € B. As B is integral, B’ = A[by,ba,...,bn]
is a finite A-module and pB’ = B’, which contradicts Nakayama lemma. It
accomplishes the proof. O

Claim 2 (Going-up principle). Let p o q be prime ideals of A, Q c B be a
prime ideal such that qn A = Q. There is a prime ideal B > Q such that
PnA=p.

Proof. Alq ¢ B/Q is also an integral extension, so there is a prime ideal
B c B/AQ such that Pn(A/q) =p/q. Take for B the preimage of P in B. O

Claim 3. Let pp o p1 ... 2 p; be a chain of prime ideals of A, P, c B be
a prime ideal such that P;n A =p;. There is a chain Py 2 P12 ... 2P, of
prime ideals of B such that PB; N A =p;. Therefore, dim B > dim A.

Proof. Case | =1 is just Claim 2. The general case folows by the evident
induction O

Claim 4. Let A ¢ B be an integral extension, B =Po 2 P12 ... 2P, be a
chain of prime ideals of B, p =B N A and p; =P;nA. Then p=pg>dp1 >
...2p;. Therefore, htp > htP and dim A > dim B.
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Proof. Obviously, it is enough to prove the assertion for [ = 1. Replacing A
and B by A/p; and B/, we can suppose that B is a domain and have to
prove that if B c B is non-zero, P n A # 0. Take a non-zero

b ePB. Then b + a1bF 1 + -+ ai, = 0 for some ay,as,...,a; € A and if k is
minimal, ax # 0. But a; € P n A. O

Exercise 10.2. Let A ¢ B be a finite extension of a Noetherian ring A.
Prove that #{B espec B |*Pn A=p} <geny B.

Remark 10.3. If p c A is a prime ideal, h = htp, then dim A/p < dim A - h.
Here is an example showing that this inequality can be strict.

Let A = k[[t]][x] (polynomials over the formal series ring k[[¢]]) and
a=tr—1. Then A/(a) ~k((t)), the field of formal Laurant series (prove it).
Therefore, (a) is a prime ideal of height 1, but dim A/(a) = 0 # dim A-ht(a).

Nevertheless, the situation becomes much better if we consider the “ge-
ometrical case,” when A is an algebra of finite type over a field. First we
consider extensions of normal rings, that is integrally closed domains, and
establish the so called Gauss lemma.

Lemma 10.4 (Gauss lemma). Let A be a normal ring, K be its field of
fractions, f(z) € Alz] and g(z) € K[x] be monic polynomials such that
g(x) | f(x). Then g(x) € Alz].

Proof. Let degg = n. In some extension L of the field K it decomposes as
g(z) =TI  (x = Ni). As f(\;) =0, all \; are intergal over A. Therefore, the
coefficiens of g, which are polynomials in )\; with integral coefficients, also
are integral over A. As A is normal, they belong to A. O

We also need a slight generalization of the criterion for integral elements.

Lemma 10.5. Let A € B be an extension of rings, I ¢ A be an ideal and
be B. The following conditions are equivalent:

(1) For some n there are elelments ay,as,...,a, € I such that b" +
ab” - +a, =0.

(2) There is a finitely generated submodule M € B such that Anng M =0
and bM < IM.

If A and B are domains, A is normal and I is prime, these conditions
are also equivalent to

(3) The minimal polynomial for b has all coefficients from I, except the
leading one.

Proof. (1) < (2). Just repeat the proof of Lem.[.2]

(3) = (1) is trivial.

(1) = (3). Let f(x) = 2" + a1z™ ' +--- + a, = 0, where a; € I, be such
that f(z) =0 and g(z) be the minimal polynomial of b. Then g(z) € A[x]
and f(x) = g(x)h(z) for a monic polynomial h(x). By Gauss lemma, g(z)
and h(x) are from A[z]. Then 2" = g(z)h(x) (mod I). As A/I is a domain,
g(x) = 2™ (mod I) for some m. O
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Theorem 10.6. Let A c B be a finite extension of Noetherian domains, A
be normal, p be a prime ideal of A and B be a prime ideal of B.
(1) If B is a minimal prime ideal of B containing p, then Pn A =p.
(2) (Going-down for normal rings). If PN A =p and q c p is a prime
ideal of A, there is a prime ideal Q of B such that S > Q and
AnA=gq.
(3) If Bn A =p, then ht*P = htp.

Proof. (1) Let I =/pB, P =P1,PBs, ..., Bx be minimal prime ideals of B
comtaining I. Then I = ﬂle PB;. Suppose that p’ =P n A # p. Choose
a €N, PP and bep’ ~p. Then abe I, so (ab)” € pB for some r. Let
2" + 12"t + .- + ¢, € A[z] be the minimal polynomial of a”. Then the
minimal polynomial for (ab)” is 2™ + c1b"z™" L +--- + ¢,b'™. By Lem.M(B),
cb"epforalli. Asb¢p, all ¢;ep and a” € pB c B, a contradiction.

(2) Just take for Q a minimal prime ideal such that 3 > Q 2 qB.

(3) htp > ht*P is Claim 4 of Thm.[10.]] An obvious induction using (2)
shows that if p = pg > p1 2 ... 2 p, is a chain of prime ideals in A, there is
a chain of prime ideals g =Py > P1 > ... 2P, in B such that P; N A = p,.
Therefore, ht ‘B > ht p. O

Now we go to the geometrical situation.

Theorem 10.7. Let A be an integral algebra of finite type over a field k. If
p is a prime ideal in A, then htp +dim A/p = dim A.

Proof. By Noether Normalization, there is a subalgebra N ¢ A such that
N ~Xk[ay,as,...,aq] and A is integral (hence finite) over N. Then dim A = d.
Let htp = h. We will prove the theorem by induction on h. Note that N is
factorial, hence normal, therefore, ht(p n N) = h by Thm.m(?)).

Let h =1. As N is factorial, pn N = (f), a principal ideal, by Cor.
Just as in the proof of Thm. we can suppose that f =z} + giaj™ +
o+ gn, where g; € k[z1,29,...,2p-1]. Let N' = k[zq1,29,...,20-1, f]. Tt
is isomorphic to k[z1,x2,...,zy], hence of dimension d, and N is integral
over N’ hence so is also A. Moreover, N'np = (f), hence N'/(pn N') ~
k[z1,22,...,2n-1], so Aim N'/(p n N") = d - 1. Obviously, A/p is integral
over N/(pn N'), thus also dim A/p=d - 1.

If h > 1, consider a chain of prime ideals 0 c p; cpa c ... c pp =p. Then
htp; = 1, therefore, as we have just proved, dim A/p; = d - 1. Obviously,
htp/p; = h - 1. By induction, dim A/p = (d-1) - (h—-1) =d - h. O

Corollary 10.8. Let A € B be an integral extension of domains that are
algebras of finite type over a field, p € spec A, P € spec B and P n A = p.
Then htp = ht .

Proof. Obviously, B/B is an integral extension of A/p. Hence htp = dim A -
dim A/p = dim B - dim B/} = ht‘B. O
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Remark 10.9. If A = k[x1,22,...,2,]/1(X), where X is an irreducible closed
subset in A", and Y is the irreducible closed subset in X defined by the ideal
p, they call htp the codimension of Y in X and denote it by codimY. It
is the maximal length of chains Y =Yy c Y] c ... c Y} = X of irreducible
closed subsets of X. Theorem [[Q.7 claims that dimY + codimY = dim X.
An important corollary is the following. Let Y be a hypersurface in X,
that is Y = V(f) for a nonzero element f € A. By Krull principle ideal
theorem, all minimal prime ideals p > f are of height 1, hence, dimensions
of all components of Y equal dim X — 1. On the contrary, suppose that A is
factorial (for instance, X = A") and dimY = dim X —1. Then htp =1, hence
p is principle by Cor. It means that Y = V(f) is a hypersurface in X,
that is defined by 1 equation. In general case, when A is not necessarily
factorial, we can only claim that there is one element f € A such that Y is
an irreducible component of a hypersurface V(f) and all other components
are also of codimention 1.

11. NORMAL RINGS. DEDEKIND DOMAINS

Recall that a normal ring is a domain intergrally closed in its field of
fractions. First we consider the case of local rings of dimension 1.

Theorem 11.1. Let A be a local Noetherian ring with the maximal ideal m.
The following conditions are equivalent:

1) A is normal and dim A = 1.

2) A is a principle ideal domain.

3) A is regular of dimension 1.

4) A is normal with the field of fractions K and there is an element
g€ K\ A such that gm c A.

If these conditions hold, A is called a discrete valuation ring.

(
(
(
(

Proof. (3)=(2). Note that (3) means that m is of height 1 and is generated
by an element a. Then m” = (a™). Let q be a minimal prime ideal. If b € q,
then b = ac for some c. As a ¢ q, ce€q, hence q = aq and q = 0 by Nakayama
lemma, so A is a domain. Since a” is a non-zero-divisor, a"A ~ A, hence
m-m” =m""! is a unique maximal ideal properly contained in m™. If I is a
nonzero ideal, then m is a unique prime ideal containing I, hence VI =m,
i.e. I2m" for some k, thus I ¢ m**!. Let n be the biggest such that I ¢ m™.
If I cm™, it is contained in the unique maximal ideal properly contained in
m”, that is in m™*!, which is implossible. Therefore, I = m"™ = (a").

(2)=(1). A principle ideal domain is of dimension 1 and factorial, hence
normal.

(1)=(4). Let 0# aem. As dimA =1, \/(a) = m, i.e. m" c (a) for some
n. Let n be minimal and b e m"™* \ (a). Then q = b/a ¢ A, but gm ¢ A.

(4)=(3) If gm < m, then ¢ is integral over A, hence ¢ € A, which is
excluded. Therefore, gm = A and m = ¢ 'A. As A is not as field, dim A = 1
and A is regular. O
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The following theorem gives a criterion for a Noetherian domain to be
normal.

Theorem 11.2. Let A be a Noetherian domain with the field of fractions
K,P={pespecA|htp=1} (minimal nonzero prime ideals). The following
conditions are equivalent:

(1) A is normal.

(2) For every p € P the localization Ay is a discrete valuation ring and

A= mpeP Ap-

Proof. (2)=(1), since all discrete valuation ring are normal and intersection
of normal subrings of K is obviously normal.

(1)=(2). If A is normal, so is every ring of fractions A[S~!], hence all
Ay with p € P are discrete valuation ring. Let g € Nyep Ap and I = {a € A |
aq € A}. Suppose that ¢ ¢ A, hence I +# A, and let p be a minimal prime
ideal containing I. Then ¢ ¢ Ay, hence p ¢ P. Note that \/IA, = pA,y,
that is pkAp ¢ 1A, for some k and pkAp -q € Ay. Let k be minimal and
ac p’“_lA,J be such that aq ¢ Ay. Then (ag)pA, € Ap. By Thm. Apisa
discrete valuation ring, hence htp =1 and p € P, a contradiction. Therefore,
A= Nyep Ap. O

Exercise 11.3. We have seen that for local rings of dimension 1 “normal”
and “regular” is the same. The following example shows that it is not the
case for bigger dimensions. We consider the local ring A = k[[z,y, z]]/(zy —
2?), where k is a field of characteristic not 2.

(1) Prove that A is normal (use the fact that k[[x,y]] is factorial).
(2) Prove that dim A = 2, but gen 4 m = 3, where m is the maximal ideal.

Definition 11.4. A normal Noetherian domain D of dimension 1 (that is
such that every nonzero prime ideal is maximal) is called a Dedekind domain.

Thm.01.2] shows that a Dedekind domain is a Noetherian domain such
that for every maximal ideal m c D the localization Dy, is a discrete valuation
ring.

Dedekind domains are just those rings whose arithmetics is the most

similar to that of integers or polynomials.

Theorem 11.5. Let A be a Dedekind domain M = max.specA. FEvery
nonzero ideal I ¢ A uniquely decomposes as

(11.1) I=T]e" = p",
peM peM
where almost all ky =0 (as usually, we denote p° = A).
Proof. Note that, as p and q are coprime for any two maximal ideals, so

are also p* and q!, hence the intersection of such powers always coincides
with their product. Note also that qA, = Ay, since Anna(A/q) =q ¢ p. If
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I is an arbitrary nonzero ideal in A, for every maximal ideal p there is an
integer ky > 0 such that IA, = pk*’AP. Moreover, almost all k, = 0 (why?).
Set I' = Npep pk». Then I, = I! for all maximal ideals p ¢ A, hence I = I’
Moreover, if any presentation is given, I, = p? Ay, hence the powers k;
are uniquely defined. O

Definition 11.6. A fractional ideal of a domain A is a nonzero A-submodule
J ¢ K, where K is the field of fractions of A such that aJ € A for some
nonzero a € A. Sum and product of fractional ideals are evidently fractional
ideals. We denote J™' = {qe K |qJc A}. If JJ™1 = A, we call J invertible.

Exercise 11.7. Prove that
(1) An invertible ideal is always finitely generated.
(2) Let A be a Noetherian domain. Prove that it is a Dedekind domain
if and only if every maximal ideal of A is invertible.

Corollary 11.8. If A is a Dedekind domain, every fractional A-ideal is in-
vertible and is uniquely (up to permutation) is presented as in (11.1) (where
kp € Z and almost all ky, = 0).

Proof. Exercise. O

Exercise 11.9. Let A be a Dedekind domain, M be a finite periodic D-
module (periodic means that Yv e M Ja € A av =0). Prove that:
(1) If Assqa M = {p1,p2,...,pn}, then M ~ @I (M/N;), where N; is the
p;-primary component of 0 in M.
(2) If AssM = {p}, then M ~ M,.
Let now D be a discrete valuation ring with maximal ideal p = (p), M be a
finite D-module such that p™ M = 0. Prove that:
(3) If N ¢ M is a submodule and ¢ : N - D/p"™D is a homomorphism,
there is a homomorphism ¢ : M - D/p™D such that ¥|x = ¢.
Hint: Let e be the generator of A/p™A. Suppose that M = N+(u) for
some u and 7 is the smallest such that p"u = 0. Then Nn(u) = (p*u).
If p(pFu) = ae, set ¥(u) = p~Fae.

(4) If p™ 1M # 0, then M ~ D/p™D & M’ for some submodule M’ c M.
(5) M ~ @™, (D/p* D) for some k;.
Deduce that every finite periodic module over a Dedekind domain D is iso-
morphic to @?:I(D/pfi) for some prime ideals p; (not necessarily different)
and some k;.

12. FILTRATIONS. ARTIN-REES LEMMA. GRADED RINGS

Definition 12.1. (1) A (descending) filtration of a ring A (of a module
M) is a descending chain of ideals (of submodules) A=1Iy21; 2152
(MZM()QMlQMQQ...).

(2) Given a filtration .# = {I,,} of a ring A and a filtration .# = {M,,}
of an A-module M, they say that the filtration . is
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(a) & -compatible if L, My, 2 My, in;
(b) #-stable if, moreover, there is an integer n such that M, =
I M, for every k >0
(3) If a is an ideal in A, the a-adic filtration of A is the filtration with
I, = a". The a-adic filtration of an A-module M is the filtration with
M, =a™M. A filtration .# of M is called a-compatible (a-stable) if
its compatible (stable) with respect to the a-adic filtration.

Definition 12.2. (1) Let a be an ideal of a ring A. The blow-up of A
at the ideal a is the ring A= @, a" with the natural multiplication
arising from the equalities a™a™ = a™*".

(2) If A is an a-compatable filtration on an A-module M, we define

the A-module M = @, M,, with the natural multiplication arising
from the embeddings a”M™ c M™*".

If A is Noetherian, so is A, since, if a = (a1, as, . ..,a,), A= Ala1, a9, ..., an],
where a; are considered as elelents from the direct summand a of A. On the
other hand, it is not always the case with M.

Lemma 12.3. Let A be a Noetherian ring, M be a finite A-module % = {I,,}
be a filtration on A and A ={M,} be an a-compatible filtration of M. The
A-module M is Noetherian if and only if the filtration 4 is .7 -stable.

Proof. Consider A-submodules M,, = (@, M;) ® (&5, I M,,) of M. Ob-
viously, they are finitely generated and M,, € M,.,. Therefore, M is Noe-
therian if and only if the ascending chain {M,} stops, that is there is n
such that ]\mek = Mn for all £ > 0. But the last equality just means that

I, My, = My, for all k> 0. (]

Corollary 12.4 (Artin-Rees lemma). Let A be a Noetherian ring, % =
{I,} be filtration A, M be a finite A-module and 4 = {M,} be an I -
stable filtration of M. Let also N € M be a submodule. Then the filtration
N ={M, n N} of the module N is also ¥ -stable. In particular, if a is an
ideal of A, there is an integer n such that a™**M N = a*(a"M A N) for all
k>0.

Proof. N is a submodule of M. O

Corollary 12.5.E| Let A be a Noetherian ring, a be an ideal of A, M be a
finite A-module and M = N2, a"M. There is a € a such that (1-a)u =u
for all we M. In particular:

(1) Ifacrad A, then N2, a"M = 0.

(2) If N is a submodule of M and a c rad A, then N;2,(a"M + N) =

(3) If A is a domain, then M52, a™ =0.

Proof. As a®M n M = M, so, by Cor. M = aM. Now use the NAK
lemma [3.9 O

6 This corollary is also cited as Artin—Rees lemma.
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Filtrations are closely related to graded rings.

Definition 12.6. (1) A graded ring is a ring A together with a decom-
position of its additive group A = @, Aq such that AgAgy ¢ Ad+d/E|
One set A, = @72, Ag. Obviously, Ag is a subring and A, is an ideal
of A.

(2) If a € Ay, they say that a is homogemeous of degree d and write
dega=d. If a = Y7 aq (almost all ag = 0), they call ag homogeneous
components of a.

(3) A graded module over a graded ring A is an A-module together
with a decomposition of its additive group M = @}2° My such
that AgMg € Mg,qs. Homogeneous elements and homogeeous com-
ponents of elements of graded modules are defined analogously to
elements of graded rings.

(4) A submodule N of a graded module M (for instance, an ideal of a
graded ring) is called homogeneous if N = @4 N n My. Equivalently,
if a € N, all its homogeneous components are also in N. Evidently,
it means that N can be generated by homogeneous elements. In
this case M /N can also be considered as graded setting (M/N)4 =
Md/ NN Md.

An important class of graded rings and modules arises from filtrations.

Definition 12.7. Let A be a ring with a filtration . : A=[p211 21, 2....
The associated graded ring is gr A = @;2y Ay, where A, = I,,/I,,1 and the
multiplication A, x A, = Apym is defined by the rule (a+ I41)(b+ Ipe1) =
ab+ Ipinit.

In the same way, given an A-module with an .#-compatible filtration
M M =My2 My 2 M, 2 ..., we define the associated graded gr A-module
ng = @;O:o Mn/Mn+1-

There is a simple condition for a graded ring to be Noetherian.

Proposition 12.8. A graded ring A is Noetherian if and only if Ay is
Noetherian and A is an Ag-algebra of finite type.

Proof. “If” part follows from Cor.2.4] Prove the“only if” part. As A is
Noetherian, the ideal A, is finitely generated: A, = (aj,a2,...,a), and
we can suppose that all a; are homogeneous. Let dega; = d;, b € A, and
b= Y cia;. Obviously, one can suppose that ¢; € A,,_4,. Using an obvious
induction, one can show that b€ Ag[a1,as,...,a,]. O

Obviously, if A is Noetherian, every Ay is a finite Ag-module. Moreover,
if M is a finite graded A-module, My = 0 for d < oo (i.e. for d < dy for some
do) and all My are finite Ag-modules.

The graded modules and homogeneous ideals behave well with respect to
associated primes.

7 Sometimes one consider graded rings when the components are numbered by elements
of more general semigroups.
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Proposition 12.9. Let M be a graded module over a graded ring A, p €
Assqg M. Then p is a homogeneous ideal.

Proof. Let p = Anny u. If u is homogeneous, so is p. Let u = Z?zl u;, where
u; are homogeneous and deguq < deguo < --- < deguy. Use induction by k.
Let aep and a = Zle a;, where a; are homogeneous and dega; < degas <

- < dega,. Obviously, it is enough to prove that a; € p. In any case,
ajuq =0, so aqu = Zf:2 aju;. Let I = Anngaqu. If p = I, p is homogeneous
by induction. If not, let b € I N\ p. As baju =0, ba; € p, hence ay € p, which
accomplishes the proof. O

Definition 12.10. A graded ring A is called connected if Ag is a field. For
instance, so are associated graded rings of local rings with respect to the
filtration defined by the powers of the maximal ideal. Then A, is a unique
maximal graded ideal of A. The set of graded prime ideals p # A, is called
the projective spectrum of the connected graded ring A.

We will use the so called shift of grading.

Definition 12.11. Let M be a graded module over a graded ring A. By
M (k) we denote the graded module which coincide with M, but with the
grading such that M (k)g = Mg,k.

13. LENGTHS OF MODULES. POINCARE SERIES AND HILBERT
POLYNOMIAL.

Definition 13.1. A composition series in a module M is a chain of sub-
modules 0 = My ¢ My ¢ My c ... ¢ M; = M such that all quotients
M;/M;-; (0 < i <) are simple module. These simple modules are called
the composition factors of this series.

Theorem 13.2 (Jordan-Holder). (1) Let 0 = My ¢ My c My c ... c
M; = M be a composition series in M, N € M be a submodule and
L = M/N. There are composition series in N and L such that the
union of the sets of their composition factors coincides with the set
of composition factors of the given composition series of M.
(2) All composition series of a given module have the same lengths and
the same combinatz’onﬂ of composition series.

PT’OOf. (1) Set Nyj=NnM,;<c N and L; = M; +N/N ¢ L. Then Ml/NZ ~ L.
Therefore, we obtain commutative diagrams with exact columns and exact

8 Recall that combinations are finite sequences where the order of elements is not es-
sential, that is two sequences obtained from each other by a permutation of elements are
considered as equal.
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first and second rows:

0 0 0
0——=N;-1 — M,;4 L4 0
0 N; M; L; 0
0 U; Vi W; 0

0 0 0

where Uz = Ni/Nifly ‘/z = Mi/Mifla Wz = Lz/Lz—l By the 3 x 3-lemma,
(Lem.[D.10|(1)), the third row is also exact. Hence U; can be considered as
a submodule in V; with the quotient W;. As V; is a simple module, either
U;=V;and W; =0, or U; = 0 and W; = V;. Therefore, if we consider the
chains of submodules0 = Ngc Ny € Noc...c Nyj=NandO=LgcLicSLyC

. € L; = L and cross out all submodules that coincide with the previous
ones, we obtain composition series in /N and L with the necessary properties.

(2) follows from (1) by a simple induction (explain the details). O

Definition 13.3. If an A-module M has a composition series, it is called a
module of finite length, the length of a composition series is called the length
of M and denoted by £4(M) and the composition factors of a composition
series are called the composition factors of the module M.

Obviously, modules of finite length are just those which are both Noether-
ian and Artinian. In particular, Thm.[8.7] implies that every finite module
over an Artinian ring is of finite length. Assertion (1) of Thm.[I3.2]implies
that the length is additive, i.e. €a(M) = La(N) +l4(L) if N ¢ M is a
submodule and L = M/N.

Exercise 13.4. Let 0 > My > My —» --- —> M”, — 0 be an exact sequence of
modules of finite length. Prove that Y7, (-1)"¢4(M;) = 0.

Definition 13.5. Let A be a Noetherian graded ring such that Ag is Ar-
tinian, M be a finite graded A-module. The Poincaré series of M is the
formal Laurent series

+00
P(t,M) =5 La,(Mg)t".
d=—o0
Note that actually this series only has finitely many terms with negative
degrees of t. Note also that if dg is the least integer such that Mg, # 0, then
P(t,M) =t~ P(t, M(~dy). Therefore, in what follows we will consider the
case of positibely graded modules, i.e. such that My =0 if d < 0.
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Theorem 13.6 (Hilbert—Serre). Let A be a Noetherian graded ring with
the Artinian component Ay and A = Aglai,as,...,a,], where a; are ho-
mogeneous with dega; = d; > 0. Let M be a Noetherian positively graded
A-module. There is a polynomial f(t) € Z[t] such that

f()
(1= tdi)
Proof. We use induction on n. If n = 0, i.e. A = Ap, the module M
only has finitely many non-zero components, hence P(t,M) is a polyno-
mial. Thus we can suppose that the theorem holds for the graded ring

A/(a1) = Aolag,...,an]. Consider the map M > M(dy), v ~ ajv. Let
K =Kera and C = Cokera = M /Im«. Then we have an exact sequence

P(t,M) =

0—>K—->M>M(d)—C—0.
Recall that M (dy)g = Mgsq,- By Exer.m
Cao(Ka) = €ay(Ma) +La,(Masay) = £4,(Ca) = 0.
If we multiply all terms by t4*% and take the sum, we get
thP(t, K) - t"P(t, M) + P(t, M) -t" P(t,C) = g(t),

where ¢(t) arises from the terms with t*, k < d;. Note that K and C are
actually A/(a1)-modules, so we can suppose that the assertion is valid for
their Poincaré series. Therefore, we have

h(t
ﬁw(t),

which implies the necessary result. O

P(t,M)(1-tM) =

If A is generated in degree 1, that is A = Ag[A1], it implies the following
result.

Theorem 13.7. Let A be a Noetherian graded ring generated in degree 1

with Artinian Ay and M be a finite A-module. There is an integer r and a

polynomial Hr(t) with rational coefiicients such that € 4,(Mg) = Hyr(d) for

e(M)tm™1

————, wheree(M) >0
m—1)!

is an integer and m is the order of the pole of the Poincaré series at t = 1.

The number e(M) is called the multiplicity of the module M. If A =
k[x1,22,...,2,]/I, where I is a homogeneous radical ideal, e(A) is called
the multiplicity of the projective variety pr.var(I).

all d > r. The leading term of this polynomial is

Proof. The Poincaré series of M is of the form

f(t)

PUM) = G- f

where f(1) #0. Let r = deg f.
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By the Newton binomial formula
& - X (m+k-1
-0 e ()= 2 (M)
k=0 k=0
If f(t)=Y50 apt”, its gives us, for d > r,
" m+d-k-1
Cag(Mq) = > ak( ),
k=0 -1

that is £4,(Mg) = Hy(d), where Hps(d) is a polynomial with rational coef-

, , e(M)tm 1 ,
ficients and the leading term -1 where e(M) = Y5 _qar = f(1) e Z
m—1)!
and e(M) > 0, since Hys(d) >0 for d > r. O

Remark 13.8. Note that if A = Ag[aq,aq,...,a,], the construction implies
that m < n.
Example 13.9. (1) If A = Kk[=zg,x1,...,2,], where k is a field, then
d"”
dimy Ay = (”;;d) — +0(d"). Hence e(A) = 1.
n!

(2) Let now A =k[xg,21,...,2,]/(F), where F is a homogeneous poly-
n+d) _ (n+d—m) _

nomial of degree m. Then, for d > m, dimy Ay = ( M o

mdn—l
(n-1)!

the mupltiplicity of a hypersurface equals the degree of its equation.

+0(d"1). Hence e(A) = m. Geometrically, it means that

Exercise 13.10. They say that an ideal I c k[xg,x1,...,2,] (or the va-
riety var(l)) is a complete intersection if I = (f1, f2,..., fm), where, for
every i, the element f; is not a zero divisor modulo (f1, fo,..., fi-1) (in par-
ticular, f1 is a non-zero-divisor). Find the multiplicity of the graded ring
k[x1,x2,...,2,]/I if each f; is a homogeneous polynomial of degree m;.

14. APPLICATIONS TO LOCAL RINGS.

Corollary 14.1. Let A be a Noetherian ring, a c A be an ideal such that Ala
is Artinian, M be a finite A-module with an a-stable filtration A = {M,}.
(1) There is a polynomial X 4(t,M) € Q[t] such that {5o(M/M,) =
Xz (n, M) forn> 0.
The last claim means that there is ng such that €4 (M /M) = x_»(n, M)
for all n > ng.
(2) The leading term of the polynomial x 4(t, M) does not depend on
MH™
the choice of an a-stable filtration .# and is of the form M
m!
for some integer ea(M) >0, where m < gen 4(a/a?).

The polynomial x_,(t, M) is called the characteristic polynomial of the
filtration . The integer eq(M) is called the multiplicity of the ideal A in
the module M. The integer eq(A) is called the multiplicity of the ideal a. If
A is a local ring with the maximal ideal m and .Z = {m"M} is the m-adic
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filtration, this polynomial is called the characteristic polynomial or Samuel
polynomial of the module M and denoted by x(¢, M).

Proof. (1) Applying Thm.|[13.7 to the graded module gr M = @,, M,,/ M,+1

over the graded ring gr A = @,, a"/a™"* we see that £ (M,/M,_1) = H 4 (n, M)
M tm—l

for some polynomial H ,(t, M) with the leading term % for n > ng.
m—1)!

Now take for x_4(t, M) a polynomial such that H ,(t,M) = x 4 (t,M) -

X (t—1,M) and x_z(no, M) =a(M/M,,) (it exists and is unique).

(2) It is known (and easy to see) that the leading term of x_ (¢, M)
e(M)t™

m!
adic filtration {a”M}. Note that M, 2 a™M, hence x_z(n, M) < xq(n, M).
On the other hand, Artin-Rees lemma shows that there is r such that
My = a"M, € a"M, hence x yz(n+r,M) > xq(n,M). It implies that

must be Let xq(t, M) be the corresponding polynomial for the a-

t,M

limy_, 0o M = 1 which means that these polynomials have the same
Xa(t, M)

leading terms. O

From now on we suppose that A is Noetherian and local with the maximal
ideal m and the residue field k, M is a finitely generated A-module. We denote
x(t, M) = xm(t, M), d(M) = deg x(t, M) and are going to prove that d(M) =
dim M, where we set dim M = dim A/ Anny M.

Lemma 14.2. (1) Let N ¢ M be a submodule, L = M/N. Then d(M) =
max{d(N),d(L)}.
(2) d(M) =d(A), where A=A/ Anny M.

Proof. (1) Consider the m-stable filtration .4 = {N nm"M} of N. Note
that m"M/N nm"M ~ m"™ + N/N = m"L. As N/Nnm"” ~ N + m"/m"
and M/N +m"™ ~ L/a"L, we have an exact sequence 0 - N/N nm"M —
M/m"M - L/m"™L — 0, whence x(t,M) = x4 (t,N) + x(t,L). As leading
coefficients of these polynomials are positive, it implies the claim.

(2) Obviously, d(M™) = d(M), in particular, d(F') = d(A) if F is a finite
free A-module. As every module is a quotient of a free one, d(M) < d(A).
On the other hand, we have seen that A embeds into M" for some r, whence
d(A) <d(M). a

Therefore, from now on we can suppose that M is exact (i.e. Annyg M =0)
and we only have to prove that d(A) = dim A.

Lemma 14.3. If an element a € m is a non-zero-divisor on M, then d(M [aM) <
d(M)-1.

Proof. Consider the submodule N = aM ~ M (since a is a non-zero-divisor
on M). As in the proof above, x(t, M) = x_»(t,N) + x(t, M/aM). As the
leading terms of x_y (¢, N) and x (¢, M) are the same, d(M /aM) < d(M). O

Theorem 14.4 (Hilbert-Samuel). d(M) = dim M.
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Proof. Lem.[I4.2] shows that it is enough to consider the case M = A. Recall
that dim A is the least number n such that there is an m-primary ideal a with
n generators. As m 2 a 2 mF for some k, xm(d, A) < xa(d, A) < xpr(d, A) =
Xm(kd, A) for d >> 0. It implies that degxm(t,A) = degxa(t,A) < n by
Cor.[14.1)2).

To prove that dim A < d(A) we use induction by d(A4). If d(A) = 0,
La(AJmF) = £4(A/mF*) for some k, that is mF = mF*! and m* = 0 by
Nakayama lemma. Therefore, m = nil A is a unique prime ideal and dim A =
0. Suppose now that the theorem holds for all rings with smaller value
of d(A). Choose a chain of prime ideals pg ¢ p1 © ... € p,, where n =
dim A, and consider the ring A" = A/pg. Obviously, dim A" = dim A and
Car(AJmFA") < £4(AJ/mFA), hence d(A’) < d(A). Let a € py \po. It is a
non-zero-divisor in A’, hence d(A"/aA") <d(A")-1<d(A)-1. On the other
hand, dimA’/aA" = dim A’ -1 = dim A - 1. By the inductive conjecture,
dim A -1<d(A) -1, which accomplishes the proof. O

We apply these results to regular local rings, i.e. such that m is generated
by n elements, where n = dim A.

Theorem 14.5. If A is a regular local ring of dimension n, then gr, A ~
k[z1,x2,...,2,], hence x(t, A) = (t;")

Proof. As gen 4 m = n, there is a natural epimorphism ¢ : k[z1,x2,...,z,] >

gr, A. Suppose that Ker¢ > f, where f is homogeneous of degree k. Then,

for d > k,

d+n—1) _(d—k:+n—1) _ kd™? +o(d"2),
-1 (n-2)!

and the degree of the Hilbert polynomial for gr,, A is at most n—2. Therefore

deg xm(t, A) <n -1, which is impossible, since dim A = n. O

dimy (gry )a < (
n-1

The following fact is almost obvious.
Proposition 14.6. If gr,, A is a domain, so is A.
Proof. Exercise. O

Remark. The converse is not true in general, as the example of the ring
A=Xk[[z,y]]/(2° ~y®) shows, where gr,, A = k[z,y]/(2?).

Corollary 14.7. A regular local ring is a domain.

15. COMPLETIONS

Definition 15.1. (1) An inverse system of groups (rings, modules) is
a set A = {M;,¢; | i € N}, where M; are groups (rings, modules)
and ¢; : M;1 - M; are homomorphisms. It is called surjective if all
homomorphisms ¢; are surjective.
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(2) The inverse limit gn/// = linl M; is the subgroup of the cartesian
product 172, M; consisting of all sequences (a; | i € N) such that
a; = gbi(aHl) for all .

(3) A morphism of inverse systems « : .# — A", where A4 = {N,1,;} is a
set of homomorphisms {«; : M; - N; | i € N} such that a;¢; = V41
for all i. We define Ker a (Im «) as the inverse system {Ker o, ¢ilkera;,, }
(respectively, {Im a;, ¥ilima,,, }) (check that they are well de-
fined).

Thus ezxact sequences of inverse systems are defined.

(4) If « : A4 — & is a morphism of inverse systems, its inverse limit

hma = hm «; is defined as the homomorphism hm/// limJV

mapping (a;) to (ai(a;)).

Inverse limit is a functor from the category of inverse systems to the
category of groups. The next results shows that it is left exact.

Proposition 15.2. If a sequence of inverse systems 0 — M <> N L Z -0
is exact, the sequence

lim « lim 8

(15.1) 0 - lim.Z —— lim .4/ —— lim.%
Pa— «— «—
is exact. Moreover, if the inverse system M is surjective, the whole sequence

lim lim 3

(15.2) 0->limA — limAV — lim.¥ -0
<« Pa— Pa——
1S exact.

Proof. Let A = {M;,¢;}, N = {Ny,1;}, £ = {L;,0;}. Obviously, lim o
is injective and (limB)(lima) = 0. If lim 8(a;) = (Bi(a;)) = O then a; =
az(bz) for each 7. As also Ozigﬁi(blq.l) = @Diai+1(bi+1) = 1/1i(az~+1) = Qa; and (67
is injective, ¢;(bi+1) = b; and (b;) € 1111/, hence (a;) € Iml(igla and the
sequence (15.1]) is exact.

Suppose that all maps ¢; : M;.1 — M; are surjective. Let (a;) € hm,,?
We have to construct b; € N; such that a; = 8;(b;) and ¥;(b;11) = b;. We do it
recursively, starting from any choice of b;. Let we have already constructed
bl,bg,.. . ,bi and let Qi1 = IBi+1(C). Then ﬁﬂ[)l(c) = 91'5”1(6) = a; = /Bl(bl)7
that is bl - lﬁl(c) € Ker Bz = IIIlOéi. Let bl - ¢1(C) = O[Z'(C,). There is ¢’ € Mi+1
such that ¢’ = p;(¢"). Then b; — ¥;(c) = ;i (") = Y1 (). Therefore,
if we set bi+1 =C+ Oti_,.l(C"), we obtain that ’(/}/L(b1/+1) = bl and ,67;+1(b2'+1) =
Bi+1(c) = aj41, just what we need. Hence the sequence is exact. O

Definition 15.3. (1) Let § = {F'M | i e N} be a (descending) filtration
in M, i.e. a set of subgroups such that F!M ¢ F*!M for all i.
Then % = {M/M;, f; - M[M;,1 - M/M;}, where f; is the natural
epimorphism, is an inverse system. Its inverse limit hmf is called
the completion of M with respect to the filtration § and denoted by
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Mjz. We define the homomorphism ¢5 : M — Mz mapping an element
v to the sequence (v;), where v; = v + F'M € M/F'M
(2) Let ais an ideal of a ring A, M be an A-module. The filtration §,
such that F'M = a*M is called the a-adic filtration. Its inverse limit
is called the a-adic completion of M and denoted by M, and write
Lq instead of ¢, .
(3) Every homomorphism o : M — N induces homomorphisms M/ a’M —
N/a'N, hence a morphlsm of inverse systems and a homomorphism
of inverse limits &, : M - N
Obviously, Kervg = N2, F'M ‘M. 1In particular, Ker¢q = N2y a’M. For
instance, if A is local Noetherian with maximal ideal m and M is finite, ¢y
is injective due to Artin-Rees lemma (Cor.[12.5).

Example 15.4. If A=Xk[z1,29,...,2,] and m = (21, 22,...,2,), then Ay =
k[[x1,22,...,2,]] (expalin it).

If A=7 and p = (p), they write Z, instead of Z(p) and call this ring the
ring of p-adic integers. Its field of quotients is denote by Q, and called the
field of p-adic numbers. One can verify that Q, ~ Z, ®7 Q, but Q,, is not the
p-adic completion of Q (try to explain it).

One can check that every p-adic integer can be uniquely written as cg +
c1p +cap® + ..., where 0 < ¢; < p. For instance, -1 =(p-1)+ (p-1)p+ (p -
Dp?+....

Note that the a-adic filtrations are always surjective. Nevertheless, we
cannot apply Prop.to a-adic completions, since the functor M — M /a™ M
is not exact. We are going to fix this fault in Noetherian case.

Example 15.5. Let A be local Noetherian and m be its maximal ideal. If
Ay is a domain, so is A (since ty is an embedding). The following example
shows that converse is not true.
Let A = Ik[a: yl/(y? -2t =2 )7 where k is a field m = (,y). Then Ay, is
a domam Am = k[[z,9]]/(y* - 2% - 2°). One can see that k[[z,y]] 3 z such
that 2% = 2% + 2% (set z = 2v/1 +z and use Newton binomial formula). If g
and z are images of y and z in Ay, then (-2)(g+2z)=0, though 7 + +Z.
We call two filtrations § and & on the same module M commensurate if
for eviery i there are v(i) and (i) such that F'M 2 G*M and G'M 2
Fr@ pr.
Lemma 15.6. If two filtrations § and & on the same group M are com-
mensurate, Mg Me.

Proof. We can suppose that v(i+1) > v(i) > i. Define a new filtration &
setting G'M = GY M. One can easily see that M~ ~ Mg. On the other
hand, the natural epimorphisms M /G'M — M|F ’M define a morphism of
inverse systems, hence a homomorphism Mg — Mg Just in the same way
one defines a homomorphism Mg - Mg and one easily verifies that these
two homomorphisms are mutually inverse (restore the details). O
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Corollary 15.7. Let a be an idgal in aring A. If § is an a-stable filtration
in an A-module M, then Mg~ M,.

Corollary 15.8. Let A be a Noetherian ring, a c A be an ideal.

(1) If 0 > N - M - L - 0 is an exact sequence of finite A-modules,
then the sequence of completions

(15.3) 0— Ny = My— Ly—0
is also exact.
(2) If M is a finite A-module, then the homomorphism vy : Aq®4 M —
My mapping (a;) ® v~ (a;v) is an isomorphism.
(3) Aq is a flat A-module.
Proof. (1) As M is Noetherian, we can use the Artin-Rees lemma (Lem.|12.3)
and replace a-adic filtration of N by the a-stable filtration { Nna”M}. Then
there are exact sequences
0->N/Mna"N —> M/a"M — L/a"L - 0.

and we just have to apply Prop.[15.2]

(2) There is an exact sequence P’ - P - M — 0, where P and P’ are finite
free A-modules. Obviously, vp is an isomorphism. Therefore, we obtain a
commutative diagram with exact rows

Ag@a P — = Ag@4a P——= Ag@s M —=0

R

N ~

P! P, M, 0

As «p and «ypr are isomorphisms, so is ;.
(3) By (1) and (2), the map A; ®4 N - Ay, ®4 M is injective for every
injective map of finite modules N — M. It remains to apply the criterion of

flatness (Thm.B.11]). O

Corollary 15.9. Let A be a Noetherian ring, a and I be ideals in A, M be
a finite A-module.

(1) (TA)a = I1,. A

(2) The map 4 is an isomorphism, where a = aA,.

Proof. We write M instead of M.

(1) Left side of this equality is the image of the map (I ® 4 M) ®4 A —
M4 A, while the right side is the image of the map I®A(M®AA) — M®4A.
Now use the associativity of tensor product.

(2) Evidently, M/a"M =~ M/a"M. From (1) we see that M/a"M =
M]a"M ~ M/a"M, hence M =~ M. O

Remark 15.10. Note that always & = aA, ¢ rad A. Indeed, if a € a, then
l+a+a®+---=(1-a)™!, so use Prop.[3.11
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Theorem 15.11. Let A be a Noetherian ring, a ¢ A be an ideal. The
following conditions are equivalent:

(1) acrad A.
(2) M #0 implies M ® 4 Aq # 0.

(3) A, is faithfully flat over A, that is a sequence of A-modules N >

P 1
M 5, L zs ewact if and only if so is the sequence N ® 4 Aq o®,

M®AAa—>L®AAu- R

(4) If M is an A-module, N,N' ¢ M its submodules and A ®4 N =
A®4 N', then N = N'.
(If M is finite, it means that if N’ = N, then N = N'.)

(5) NnM = N for every submodule N of a finire A-module M; in
particular, IMa NM =IM for every ideal I € A.

(6) TAqn A =1 for every ideal I c A.

Proof. (1) = (2). Let M >v+0, N=Avc M. Then aN # N by Nakayama
lemma, hence N®4 Ay~ Ny #0. As the map N®4 Ay > M ®4 Aq is an
embedding, M ® 4 A, # 0.

(2) = (4). Let firsts N' ¢ N, L = N'/N. If A@q4 N = A®, N’, then
L =0, hence L =0 and N = N'. In general case, set N” = N + N'. Then
A4 N"=A®@s N=A®4 N’', whence N =N =N"'.

(4) = (3). As A is flat, Im(a®1) = Ima®4 A and Ker(8®1) = Ker @4 A.
(4) implies that if Im(a®1) = Ker(8® 1), then Ima = Ker 3.

(3) = (2) is obtained if we consider the sequence 0 — M — 0.

(2) = (1). If a ¢ m for some maximal ideal m, then a + m = A, which
implies that aAd+mA = A. As aA crad A, we have that mA = A, whence
Ao, (Ajm)=0.

(1) = (5). An element v € M belongs to N if and only if for each k there
is an element v, € N such that v = v, (mod a*), that is v € N + a¥. As
N2, (N +ak) = N, it means that v e N.

(5) = (6) is trivial.
(6) = (1). Suppose that a ¢_ m for some maximal ideal m. Then m+a = A.
Therefore a(A/m) = A/m, A/m=0and A=ta=mA, somAnd=Azm O

16. COMPLETE LOCAL RINGS. HENSEL LEMMA

Definition 16.1. A local ring A with the maximal ideal m is called complete
if the homomorphism ¢, : A — Ay is an isomorphism.

Actually it means that, given a sequence ay,ao,...,ax,... of elements
from A such that ag, = a; (mod m¥) for all k, there is a unique element
a such that a = a; (mod m*¥) for all k. Then we write a = lima®. In
particular, M2 mF =0, like in Noetherian case.
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Theorem 16.2. Let A be a complete local ring with the maximal ideal m,
fsg,h be monic polynomials from Al[x], and d € A be such that

(a) de(g,h).
(b) f=gh mod d’m

There are monic polynomials g, h € A[t] such that

(1) f=gh. i
(2) g=g mod dm and h =h mod dm.

Proof. We shall construct monic polynomials gg, by such that

(1k) f = gkhk mod d2mk.
(21) gr+1 = gr. mod dmF and hy,y = by mod dm”.

Then, as A is complete, we can set of g = limy, g and h = limy, hy.

We proceed recursively, starting from ¢ = ¢ and hy = h. Let we have
constructed g, and hy. Then f = gphy + 7, where r € d*>mFA[t]. As d €
(g,h), 7 = gu + hv for some u,v € dm*A[z]. Replacing v by its residue
modulo g, we can suppose that degv < degg. Then degu < degh. Set
Jk+1 = gk +v and hgiq = hg +u. Then ggy1hry1 = grhi + (gru+ hyv) +uv. Note
that gru + hpv = gu + hv = r mod d?mF*! and uv € d*>m?* A[z]. Therefore,
Gri1his1 = guhi +7 = f mod d?>m**! and we are done. O

Remark 16.3. Actually we can always effectively construct an element from
A belonging to (g,h). Let g(x) = apx™ + a12™  +--- + a,, and h(z) = boz™ +
b1zt + -+ by,. Set R(g,h) = det R, where

a 0 O 0 b 0 O 0

ay agp 0 0 bl b() 0 0

R - as ai ag 0 bQ bl bo 0
- az as aj 0 b3 b2 bl 0
0O 0 0 ... ap O O O ... by

(of size (m+n) x (m+n); m columns for a; and n columns for b;). Then
there are polynomials u(x),v(z) such that degu < m, degv < n and gu +
hv = R(g,h). (R(g,h) is called the resultant of g and h). To prove it,

write v and v with “indeterminate coefficients”: u = Y"5' u;2™ 1~ and

v = Z?:_Ol v;2" "1 and obtain a system of linear equations for u;,v; with R
. . T

as the matrix of coefficients. Now take for (W05 ULy« -+ s Uppp—1, V0, U1y -+ - 5 Up—1)

the last column of the adjoint matrix R.

Corollary 16.4 (Hensel lemma).ﬂ Let A be a complete local ring with
the maximal ideal m, f € A[t] be a monic polynomial and a € A are such
that f(a) = 0 mod f'(a)?>m. There is a € A such that f(a) =0 and @ = a
mod f'(a)m.

9 We also refer to Thm. as to “Hensel lemma”.
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Proof. Let f(x) = (x —a)g(x) +r(x). Then r(z) = 0 mod f’'(a)*m, hence
f'(z) = g(x) + (x - a)g’(x) mod f'(a)’m and f'(a) = g(a) mod f’(a)*m.
As always g(a) € (x — a,g(x)), we can apply Thm. to the polynomials
fi9,x—a. It gives us @ =a mod f'(a)m and g such that f(z) = (x-a)g. O

The simplest case of Thm.[16.2| and Cor.[16.4]is when d = 1 (respectively,
f'(a) ¢ m). Then they can be easily generalized using induction (we leave
the details to the reader).

Corollary 16.5. Let A be a complete local ring with the maximal ideal m.

(1) If f=g192--.9m mod m, where f,g1,92, ..., Gm are monic polynomi-
als and g1, 92, . .., 9m are pairwise coprime (that is (gi,g;) 3 1 for all
i #j), there are polynomials g1, G2, ..., Gm such that f = g1G2...Jm
and §; = g; mod m.

(2) Let A, A2y, Am € A be such that f(X\;) = 0 mod m, f'(\;) £ 0
mod m and \; # \; mod m ifi # j. There are elements 5\1, 5\2, e S\m
such that f(S\Z) =0 and \; = \; mod m.

Exercise 16.6. Let fi, fo,..., fn € A[z1,29,...,2,], where A is a complete
local ring with the maximal ideal m,

Oh  Of L

or1 Oxze °°° Oxn

Ofs Ofa Ofa

J: 8561 6932 axn

Ofn  Ofn Ofn

o0z Oxo O0zn
and D = detJ(a). Let a = (aj,as,...,a,) € A" be such that f;(a) =0
(mod D?m) for all i. Prove that there is a = (ay, as,...,a,) € A™ such that

fi(d) =0 and @; = a; (mod Dm) for all i.

Theorem 16.7. Let A be a ring, B be a local complete A-algebra with the
mazimal ideal n and by, bo, ..., b, be elements from n.

(1) There is a unique homomorphism of A-algebras ¢ : A[[x1,x2,...,2n]]
B such that @(x;) = b;.

(2) If the map A - B/n is surjective and n= (by,ba,...,by) g, then ¢ is
surjective.

(3) If the induced map of graded rings Alx1,x2,...,2,] — gr,B is a
monomorphism, so is .

Proof. (1) There is a homomorphism of A-algebras @ : A[x1,z2,...,2,] > B
mapping x; — b;. It induces homomorphisms ¢, : A[x1,z2,...,2,]/m™ -
B/n™, where m = (x1,x2,...,2,). They are compatible with the epimor-
phisms A[z1,22,...,2,]/m"" - A[z1,29,...,2,]/m" and B/n"*! » B/,
hence induce a homomorphism of inverse limits ¢ : A[[z1,22,...,2,]] = B.
Obviously, ¢ is unique.
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(2) Under these conditions, the induced maps m* — n¥/nf*1 are surjective.
If b e n, there is a; € m such that b= p(ag) + by, where by € n2. In the same
way, we construct by, bs,... such that b— Y%, e n**! and by = ¢(a), where
ar emF. Set a = Y72 ar. Then ¢(a) = b (mod n™1) for every m. Therefore
¢(a) =b, since Nyo_; n™ = 0.

(3) Note that this condition actually means that the composition A —
B — B/n is injective and f (by,ba,...,b,) ¢ n®*! for every homogeneous
polynomial f € A[x1,x9,...,2,] of degee d. If f consists of nonzero terms
of minimal degree from a series g € A[[x1,22,...,2,]], then p(g) = @(f) #0
(mod n®*1), hence ¢(g) # 0. O

Theorem 16.8. Let A be Noetherian, a c A be an ideal, a = (a1,a2,...,a,).
Then Aq ~ A[[z1,x2,...,2,]]/I, where I = (1 —a1,...,Tn —ay). In partic-
ular, Ay is Noetherian.

Proof. Consider the ring A’ = A[x1,29,...,2,] and its ideals J = (1 —
a1,...,Tn —ay) and m = (z1,29,...,2,). Then A[[x1,2o,...,2,]] = A and
I=JA!. Obviously, A’/.J ~ A and under this isomorphism m is mapped to
a. Taking m-adic completions, we obtain

Ag=Am= (AN m= AL [Jn = AL JJAL = A |1 O

Definition 16.9. Let A be a local ring with the maximal ideal m. A field of
representatives for the ring A is a subfield k € A such that the composition
k > A - A/m is an isomorphism.

For instance, if k is an algebraically closed field, A is a k-algebra of finite
type and m is a maximal ideal of A, then k is a field of representatives for
the localization Ay by Cor.[I.11] A theorem of Cohen asserts that if A is a
complete local ring and char A = char A/m, then A has a field of representa-
tives. If a field of representatives exists, the structure of the complete ring
becomes more simple.

Corollary 16.10. Let A be a complete local Ting, m be its mazximal ideal,
n = genygm < oo and k be a field of representatives for A. Then A ~
k[[x1,22,...,2,]]/] for some ideal I. In particular, A is Noetherian. If,
moreover, A is reqular, A ~k[[x1,22,...,2,]].

Proof. Just apply Thm.[16.7] to a set of generators of m. If A is regular, also
use Thm.[I4.5 0

One can prove that if char A = chark, where k = A/m (for instance,
chark = 0 or char A = p), A has a field of representatives. We shall prove
it in the simplest case, when A contains a subfiled such that k is separably
generated over its image. We recall that a field k is separably generated over
a subfiled k’ if there is a subfield such that k” is purely transcendent over k’
while k is algebraic and separable over k”. Note that if k is a finite field of
characteristic p, it contains the prime field [F, and is algebraic and separable
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(hence separably generated) over F,,. In what follows we identify a subfield
k' ¢ A with its image in k.

Theorem 16.11. Let A be a complete local ring, m be its mazximal ideal and
k = A/m. Suppose that A contains a subfield k' such that k is separably
generated over k. Then A has a field a representatives F 2 k'.

Proof. Let k' ¢ k” ¢ k be a subfield such that k” is purely transcendent
over k" while k is algebraic and separable over k", and let k" = k'(x; | i €
), where the elements z; are algebraically independent over k’. If q; is a
preimage of z; in A, then f (a;1,a;9,...,a;.) #0 (mod m) for every nonzero
polynomial f (x;1,Z0,..., %) € K'(x; | i € &). Therefore, A contains the
subfield k'(a; | i € #) that maps isomorphically onto k”. Hence, we can
suppose that k is algebraic and separable over k’.

Zorn lemma implies that there is a maximal subfield F' of A containing k'.
If a ek~ F, f(x) is its minimal polynomial over k" and a is a preimage of
a in A, we have that f(a) =0 (mod m) and f'(a) # 0 (mod m). By Hensel
lemma, there is b € A such that f(b) = 0. Then F(b) ~ F(«) is a bigger
subfield of A. Therefore, F' = k. O

Corollary 16.12. Let A be a complete local ring, m be its maximal ideal,
k = A/m and n = emb.dim A < co. If chark = 0 or char A = p and k is a
finite field, then A ~k[[x1,22,...,2,]]/I for some ideal I. In particular, A
is Noetherian. If, moreover, A is reqular, A ~k[[z1,x2,...,2y,]].

17. VALUATION RINGS AND VALUATIONS

Definition 17.1. Let V be a domain, K be its field of fractions. We call

V' a wvalution ring in the field K if for every elelment a € K either a € A or
-1

a " €A.

Example 17.2. (1) Obviously, if V' is a subring of K containing V| it
is also a valuation ring.
(2) Every discrete valuation ring is a valuation ring (explain it).
(3) Let Vi, ¢ k(z1,2,...,2y,), where k is a field, V = {f/g | deg f <
deg g}. Obviously, it is a valuation ring.

Exercise 17.3. Prove that V,, from the last example is a discrete valuation
ring with the residue field isomorphic to k (1,9, ..., Tn-1)-

Proposition 17.4. Let V be a valuation ring with the field of fractions K.

Then V is normal and local with the mazimal ideal m =my = {a eV |a™' ¢
V1.

Proof. Suppose that ¢ € K is integral over V, that is ¢" +a1¢" ' +---+a, = 0
for some a; e V. If ¢¢ V, then ¢ ' eV and g=—a1 —agqg ' = —apg " eV,
a contradiction. So V' is normal.

Obviously, if a e m, be V, then ab e m. Let a,b be nonzero elements from
m. Either a/b eV or bfae V. If a/b eV, then a+b =b(a/b+1) e m. If
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bla € V, then a+b = a(l +b/a) € m. Therefore, m is an ideal. As neither
proper ideal contains invertible elements, m contains all proper ideals. [J

Remark 17.5. If V' is a valuation ring in the field K, then my = {a € K |
a™! ¢ V. In particular, if V ¢ V', then my 2 my~.

Exercise 17.6. Prove that:

(1) Every valuation ring V' is a Bezout ring, that is every finitely gener-
ated ideal of V' is principal.

(2) A Noetherian ring is a valuation ring if and only if it is a discrete
valuation ring.

(3) If V' is a valuation ring, p is its prime ideal, then A/p and A, are
also valuation rings.

We shall show that there are valuation rings between each domain and
its field of fractions, and even “many” of them.

Theorem 17.7. Let A be a domain, K be its field of fractions.

(1) For every prime ideal p € A there is a valuation ring V with the
mazximal ideal m such that mn A = p.

(2) Let U ={V |V is a valuation ring and AcV c K}. ThenInt(A, K) =
Nveg V.

Proof. (1) Replacing A by A,, we can suppose that A is local and p is its
maximal ideal. Then mn A = p means the same as pV # V. Let 2 be the
set of subrings B ¢ K such that A ¢ B and pB # B. By Zorn’s lemma,
2 contains a maximal element V. If m c V' is a maximal ideal containing
pV, then pVy # Vin. As V is maximal, V = V,,, that is V is local with the
maximal ideal m.

Let ge K. If g € K is integral over V, then mV[q] # V[q], hence pV[q]
V[g]. As V is maximal, ¢ € V, so V is normal. If mV[¢7'] # V[¢7!],
then ¢! € V, since V is maximal. If mV[¢'] = V[¢7!], there are elements
ai,as,...,a, € m such that ag + alq_1 + agq_2 + -+ anqg ™ =1, whence
¢"(1-ag) =a1a™ +azq™? +...an. As 1 —ag is invertible, it means that
q is integral over V', hence g € V and V is a valuation ring.

(2) As all valuation rings are normal, Int(A, K') € Nyey V. Suppose that
a ¢ Int(A,K). Then a ¢ Ala™]. Choose a maximal ideal p ¢ A[a"!] con-
taining a~!. There is a valuation ring V 2 A[a™!] with the maximal ideal m
such that mn A[a™ ] =p. Asalem,ag¢V. O

Valuation rings are closely connected with valuations on a field.

Definition 17.8. Let K be a field, I' be an ordered abelian group. It means
that there is a total order < on I' such that < 8 implies o+~ < 8+ for
every 7. A wvaluation on K with values in I' is a homomorphism v: K* - T’
such that v(a +b) > min{v(a),v(b)}.

We shall show that actually there is an “almost” one-to-one correspon-
dence between valuation rings and valuations.
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Theorem 17.9. (1) Let v : K* - T be a valuation on a field K, V, =
{a € K | v(a) 2 0} u{0}. Then V, is a valuation ring with the
maximal ideal m = {a € K |v(a) >0} u{0}.

(2) LetV be a valuation ring with the field of fractions K, T'y = K*[V'*.
For two cosets a, B € 'y with representatives a € a, b € B set a < 3
if blae V. Set also vy(a) =aV>* eTy. Then Ty is a totally ordered
group and vy : K* = Ty is a valuation.

(3) (a) Vi, =V for every valuation ring V.

(b) For every valuation v there is an isomorophism v : Ty, = Imwv
such that v =yovy,.

Proof. (1) One easily sees that V, is a ring and m is an ideal in V,. If
0+a¢V,ie wv(a) <0, then v(a™) = —v(a) >0, thus a € V,, and V, is a
valuation ring. If a e m, i.e v(a) >0, then v(a™) <0,s0a™! ¢ A. Ifa € V,\m,
i.e. v(a) =0, then also v(a™!) = 0, hence a € V. Therefore, m = V,, \ V.* is
the maximal ideal of V.

(2) By definition, vy is a homomorphism. If a = aV*, 8 = bA*, then either
a/b eV or bla € V, hence either f < o or a < . So I is totally ordered.
Let o« < 5. Then b = ca, hence a +b € aA and v(a +b) > v(a). Therefore,
v(a+b) > min{v(a),v(b)} and v is a valuation.

(3) immediately follows from definitions (explain the details). O

Example 17.10. (1) Let D be a discrete valuation ring, K be its field
of fractions, m = (p) be the maximal ideal of D. Then every element
a € K* can be uniquely presented as up’(®), where u € D* and
v(a) € Z. Therefore, K*/D* ~Z and a — v(a) is just the valuation
vp. We claim that there are no rings A such that D ¢ A c K.
Indeed, if A5 a and v(a) = -n with n >0, A2p ™D for all m > 0,
therefore, A = K.

(2) Let now D be a Dedekind ring, K be its field of fractions and p c D
be a maximal ideal of D. Then D, is a discrete valuation ring.
We denote by v, the corresponding valuation and call it the p-adic
valuation on the field K. Let v be any valuation on K such that
v(a) 20 for every a€ D, p={aeD|v(a)>0}. It is a prime ideal in
D and obviously V,, 2 D,. Therefore V = Dy, and v = vp. Therefore,
p-adic valuations are the only valuations on K positive on D.

Exercise 17.11. (1) Prove that if v is a valution with values in Z, then
V, is a discrete valuation ring.

18. KRULL RINGS

Definition 18.1. A Krull ring is a domain A with the field of fractions
K such that there is a set & of discrete valuation rings D c K such that
A =Npey D and for every element g € K the set {D € 2| a ¢ D} is finite.

If we denote by vp the valuation of K corresponding to D, the last con-
dition means that for every a € A the set {D |vp(a) # 0} is finite.
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As all discrete valuation rings are normal, so is every Krull domain. On
the other hand, Theorem [11.2] implies that every Noetherian normal ring is
a Krull ring. Considering a Krull domain, we will always mean that the set
2 is given. For a discrete valuation ring D we denote by mp its maximal

ideal.

Proposition 18.2. Let A be a Krull ring, S c A be a multiplicative subset
of A. Then A[S™'] is also a Krull ring. Namely, A[S™'] = Npegy D, where
PDs={DeP|D2A[S']}, or, the same D5={DeP|Snmp =a}.

Proof. Obviously, Npess D 2 A[S7']. Let a € Npegs D. There are only
finitely many D € & such that vp(a) <0, let they be Dy, Ds,...,D,, m; =
mp, and v; = vp,. As D; ¢ PDg, there is s; € Snm;. Then v;(s;) > 0
and, changing s; to sf with k rather big, we can suppose that v;(s;a) > 0.
Let s = s182...8,. Then vp(sa) > 0 for all D € 2, hence sa € A and
ae A[S™1]. O

Lemma 18.3. Let V' be a valuation ring in a field K. For every element
a € K there is an integer d such that for every integer s > 2 such that d + s

the elements a(s) = (1 +a+a®+---+a* 1) and aa(s) are in V.

Proof. Let m be the maximal ideal of V' and p = charV/m. Note that

1- 11
a(s) = 4 _ gl . Therefore, if a ¢ V, a(s) and aa(s) are in V,
1-a® a -1

sod=1. IfaeV and a =1 (mod m), then d = p. If a* £ 1 (mod m), for
every k, also d = 1. If a # 1 (mod m) but a* = 1 (mod m) for some k > 1, d
is the smallest of such k. g

Proposition 18.4. Let A = N;_, V, where V; are valuation rings in a field
K with mazimal ideals m; and V; ¢V if i # j.

(1) pi = Anmy are all mazimal ideals of A and V; = A, .

(2) If all V; are discrete valuation ring, A is a principal ideal domain.

Proof. (1) Obviously, Ay, € V;. Let a € Vj. For every V; choose d; such that
a(s) and aa(s) are in Vj if d; + s and choose s such that d; + s for all j.
Then a(s) and aa(s) are in A and a(s) € V;*, hence a(s) ¢ p;. Therefore,

_aa(s)

B € Ap,, so Ay, =V;. It implies, in particular, that p; 2 p; if 7 # j.
a(s

Let I be an ideal in A such that I ¢ p; for all . Then there is a € I such
that a ¢ p; for all 4, that is a ¢ m;. Therefore, a is invertible in all V;, hence
inN;_,Vi=Aand I =A.

52) # p;. Choose
p; € p; such that p; ¢ pEZ) u (Ujiipj). Then p; = p;A. If I ¢ Ais an
ideal, I Ay, = p" for some m;. Therefore I = p{"'py"?...p[*" (see Claims in

Exam.[5.6]). [l

(2) If V; is a discrete valuation ring, then m? # m;, hence p

For a ring A we denote by Z?(A) the set of prime ideals in A of height 1.
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Theorem 18.5. Let A =Npey D be a Krull ring, 2 = Z(A).

(1) Ay € Z for everype Z.

Proof. (1) If A, ¢ D for some valuation ring D, then A\ p ¢ D*, hence
mpn A cp. If all nonzero elements from A are invertible in D, then D = K,
which is impossible. Thus mpnA # {0}, hence mpnA = p (since htp = 1) and
vp(a) > 0 for every nonzero a € p. Therefore the set 2’ ={D e 2| D2 A,}
is finite. By Prop.[18.2, Ap = Npeyr D. Then A, € 2’ by Prop.[18.4

(2) Let a € A, {D1,Ds,...,D,} ={D € 9 | a € mp} (this set is finite).
Denote m; = mp,, p; = m; n A and I; = aD;n A. Then aA = N_; I;. As
aD; = mf for some k, p; 2 I; 2 pf, S0 p is a unique minimal element from
AssI;. If b e A~yp;, then b e D, hence cb € I; implies ¢ € I;. Therefore,
no prime ideal q o> p is in Ass; and I; is p;-primary. We shall prove that
htp; = 1 for all ¢, that is D; = Ay,.

Denote p = p; and suppose that htp > 1. Then A, = Npeyr D, where
2'={DeP|Dc A} As A, isnot a discrete valuation ring, 7’ is infinite
by Prop. Therefore, there is Dy 2 Ay, such that a € Dj. Let g =mp,nA,
then a ¢ q and q € p. Note that aA 2 J = N4 ;. Let m >0 be the smallest
such that aA 2 p™nJ and ce p™ ' nJ N aA. Then cq S aA. Asa ¢ q, it
implies that cq € aq, hence (c¢/a)q € q and (c/a)?q € A for all n. If ¢ € q,
it gives that q(c/a)” € A c D or D[c/a] € ¢'D for every D € 9. As D
is Noetherian, it implies that D[c/a] is a finite D-module, that is ¢/a € D,
since D is normal. Therefore, c/a € A, which contradicts the choice of c.

Now let b € A be such that b/a € A, for all p e &2. Then b € aAy,, hence
be I; for all i, that is be aA and b/a € A. O

Lemma 18.6 (Approximation lemma). Let A be a Krull ring with the field
of fractions K, P ={p1,pa2,...,px} S P(A) and myi,ma,...,my be integers.
There is an element a € K such that vy,(a) =m; (1 <i<k) and vy(a) >0
forpeP.

Proof. For every i there is an element a; such that a; € p; \ (ﬂjﬂ p]-) N pZ@).

Then vy, (a;) =1, vy, (a;) =0 for j #iand vy(a;) > 0ifp ¢ P. Set b = [r, a™,
then vy, (b) = m;. Let q1,q2,...,q, be all primes from Z(A) such that
qj(b) =l < 0. Choose, as above, ¢; € A such that vg; =1, vg, =0 if j 7

and vy, (¢;) =0 for all i. Then a =b]]}_; c;lj is what we need. O

Corollary 18.7. (1) A Krull ring A is Noetherian if and only if Alp is
Noetherian for every p e Z(A).
(2) A ring A is a Dedekind ring if and only if it is a Krull ring of
dimension 1.

Proof. (1) Let p € 2(A). By Lem.[18.6] there is an element g € K such that
vp(g) = 1 and vq(q) < 0 for every q € Z(A) \ {p}. Then gA, = pA,. Let
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B =A[q] c Ay. Then
p( =p"AynA=q"BnA={acAlvy(a)>n}.

As ¢"B/q"™' B ~ B/qB =~ A/p are Noetherian A-modules, so are also B/q"B
and its submodule A/p(™).

Let now a € A. Then aA=N]_, pgm) for some {p1,p2,...,pr} € Z(A). It

implies that A/aA embeds into []}_; A/pgni), which is Noetherian. Therefore,
AJaA, hence also A are Noetherian.

(2) As Dedekind ring is normal, it is Krull ring, and it is of dimension 1.
On the contrary, if A is a Krull ring of dimension 1, every ideal p € #(A) is
maximal, so A/p is a field. By (1), A is Noetherian. As it is normal, it is a
Dedekind ring. ([

19. NORMALIZATION

19.1. Algebras of finite type. Let A be a normal domain, K its field of
fractions, a field L 2 K be a finite extension of the field K and B = Int(A, L).
The normalization problem asks whether B is a finite extension of A. A
partial case of this problem, arising from geometry, is the following. Let
A be an algebra of finite type over a field k, K be its field of fractions.
Is its integral closure in K also an algebra of finite type? It is indeed a
partial case, since A is finite over a subalgebra N ~ k[x1,z2,...,24], K is a
finite extension of k (z1,x9,...,24) and Int(A, K) = Int(N, K). Therefore,
Int(A, K) is of finite type if and only if it is a finite N-module. There are
examples that show that, even if A is a discrete valuation ring, B can be
not finite over A (see [8, (E3.2),p.206]). Nevertheless, in the “geometric
situation” the answer is positive.

Theorem 19.1 (Noether). Let A be a domain which is an algebra of finite
type over a field k, L be a finite extension of its field of fractions K (maybe
L=K). Then Int(A, L) is a finite A-algebra, hence an algebra of finite type
over k.

First we recall some facts about separable extensions and traces. Let
L be a finite extension of K, o € L. We denote by ¥, the linear map
v~ av in the K-vector space L and by try, x a, or by tra if there can be no
ambiguity, the trace tr ®,. Let po(z) = 2™ +a12™ '+ -+a,, be the minimal
polynomial of @ over K. Chose a basis wi,ws, ...,w; of L over K(«). Then
{a’w; | 0<i<m,1<j<k}isa basis of L over K and an easy calculation
shows that try o = —ka;. If A is normal and « is integral over A, then
U"L/K ac€A.

Lemma 19.2. If L is a finite separable extension of K, there is A € L such
that trL/K)‘ 0.

Proof. 1If char K = 0, just set A = 1; then trA = (L : K) # 0. If char K > 0,
we must use another consideration. Namely, it is known that L = K(0) for
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some element 0. Let f(t) be the minimal polynomial of  over K. In some
extension L' 2 L it decomposes as [Tj-;(z — 6;), where 6, = 6 and 6, # 0; if
i # j, since 6 is separable. Then over the field L’ the matrix ®y is similar to
diag (01,09, ...,0,). Therefore, tr 0% = tr ok = r Gf. As all 6; are different,

1 1 1
01 6, ... 0,
0?2 02 ... 02 |=%0,
?—1 3—1 92—1
hence tr 6% + 0 for some k. O

Remark. One can prove that, on the contrary, if try r # 0, the extension L
is separable (try to do it).

Now we can prove that in separable case (in particular, in characteristic
0) the normalization problem has positive answer for Noetherian domains.

Theorem 19.3. Let A be a normal Noetherian domain with the field of
fractions K, L be a finite separable extension of K and B =Int(A,L). Then
B is a finite A-algebra.

Proof. For every element « € K there is a € A such that aa is integral over
A. Hence there is a basis vy, vs,...,v, of L over K consisting of elements
integral over A. Consider the symmetric bilinear function tr(uv) on the
K-vector space L. If tr A # 0, then tr(u- (u™*\) # 0, hence this form is
non-degenerate. Therefore, there is a dual basis v{,v;,...,v, such that
tr(viv;) =0;;. Let be B, b= YL, c;v] for some ¢; € K. Then tr(bv;) = ¢; € A,
hence B ¢ (v],v3,...,v;) 4. As Ais Noetherian, B is a finite A-module. [0

In particular, this result implies Thm.[I9.1]if chark = 0. In positive char-
acteristic the field k (x1,z9,...,2,) has non-separable extensions. So we
need more information on such extensions. First of all, recall that any finite
extension L 2 K embeds into a finite normal extension L, i.e. such that ev-
ery polynomial f(z) € K[z] which has a root in L splits in L{z] into linear
factorsm Therefore, in normalization problem for Noetherian rings we can
always suppose that the extension L o> K is normal.

Lemma 19.4. Let char K = p, L o> K be a finite normal extension, F = {« €
L|3k>0 o e K} Then L is a separable extension of F.

Proof. Let f(x) € K[x] be a minimal polynomial of an element o € L. If
f'(x) £ 0, « is separable over K, hence over F. If f/'(x) =0, f(x) = f(aP)
for some f(z). Let ¢ = p*, where k the biggest such that f(z) = fo(29) for
some fo(x) € K[x] and B1,Be, ..., [, be the roots of fo(x), where 31 = af.
Obviously fi(z) #0, so f; are all different and separable over K. The roots

1076 follows, for instance, from [1l Thm.16.3.2]
1 Check that F is a subfield of L.
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of f(z) are a = a1, 0, ..., 0, where of = ;. They are also all different.
Denote by o;(a;) the elementary symmetric functions of ;. Then o;(a;)? =
0j(Bi) € K, so 0j(a;) € F. Note that «; are the roots of the polynomial
2" =0y (o)x" 4+ -+(=1)"0,(;), hence are separable over F. It accomplishes
the proof. ([l

Corollary 19.5. Let A be a normal Noetherian domain with the field of
fractions K of characterisric p. The following conditions are equivalent:

(1) Int(A, L) is a finite A-algebra for every finite extension L > K.
(2) Int(A, L) is a finite A-algebra for every finite extension L > K such
that L1 ¢ K for some q = p~.

Proof of Theorem in the case of characteristic p. By Noether normal-

ization, we can suppose that A = k[x1,x2,...,2,] and K =k (z1,22,...,2y).
Let L = K (aq,2,...,q,). By Cor.|19.5| we can suppose that L = K(«),
where a = f (21,22, ...,2,) € K for some q = p¥. We suppose that ¢ is min-

imal, so 27 — f is irreducible over K. Let C be the set of coefficients of the
polynomial f(x) and k' = k[c¢'/9 | ce C]. Let L' = K’ (:Ui/q,x;/q,...,xi/q).

Then L embeds into L’: just map « to f(a:}/q,x;/q,...,x},,/q), where f is

obtained from f by replacing each coefficient ¢ by ¢'/9. The ring A’ =

]k'[:):}/q,xé/q, e ,x}/q] ~ k'[x1,22,...,%,] is normal finite A-algebra, hence
A" =Tnt(A,L"). As Int(A,L) c A’, it is also a finite A-algebra. O

19.2. Theorem of Krull-Akizuki. Normalizations of Krull rings.

Theorem 19.6 (Krull-Akizuki). Let A be a Noetherian domain of Krull
dimension 1, K be its field of fractions, L be a finite extension of K, n=(L:
K) and B 2 A be a subring of L, which is not a field. Then B is Noetherian
of Krull dimension 1 and for every nonzero prime ideal p c A, there is
finitely many prime ideals B ¢ B containing p. In particular, Int(A, L) is a
Dedikind ring.

First we establish the next lemma.

Lemma 19.7. Let A be a Noetherian domain of Krull dimension 1, K be
its field of fractions and M be an A-submodule of a K-vector space V' of
dimension n. Then Lo(M[aM) <nla(AjaA) for every nonzero a € A.

Proof. We can suppose that KM =V, that is M contains a basis vy, vs, ..., v,
of V. Then (vy,v2,...,v,) 4 @ A" is a submodule of M and we have an exact
sequence 0 - A" - M — N — 0, where N is periodic. Suppose first that
M is finite. As dim A =1, N is of finite length. Applying ® 4A/aA to this
exact sequence and taking into account that Tor{'(M, A/aA) ~ Annya (see
Exam., we obtain the exact sequence

0 - Annyra - Annya - (A/aA)" - M/aM - N[aN — 0.
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As M is torsion free, Anny;a = 0. Taking the alternative sum of length
and knowing from Exam.[D.21] that £4(N/aN) = £a(Annya), we see that
ba(M[aM) =nls(AlaA).

Suppose now that £4(M/aM) > nls(AlaA) for some M. Then M/aM
contains a finitely generated submodule L = (@y,us,..., %), such that
la(L) >nla(AlaA). Let u; be a preimage of @; in M and M’ = (u1,ug, ..., Unm)4-
Then

fA(M//CLM/) 2 EA(M//(LM) = EA(L) > an(A/aA),

which is impossible, since M’ is finite. U

Proof of Krull-Akizuki theorem. Let I c B be an ideal. If b # 0 is an element
from I, it satisfies an equation aob® +a bF 1+ -+ayp_1b+ag, where a; € A and
ag #0. Then ag € AnI. By Lem. B/agB is of finite length, hence finite.
Therefore, I is also finite and B/I is of finite length, hence Artinian, that is
of Krull dimension 0. Hence B is Noetherian and dim B = 1. Moreover, as
B/pB is Artinian for every nonzero prime ideal p c A, there is finitely many
maximal ideals in B/pB, that is finitely many prime ideals 8 c B such that

B op. (]

Corollary 19.8. Let A be a discrete valuation ring with the mazximal ideal
m and the residue field k, K be its field of fractions, L be a finite extension
of K, n=(L:K) and B =Int(A,L). Then B is a principle ideal domain
with finitely many maximal ideals my, mo,..., m,, and B = N Bn,, where
all By, are discrete valuation rings. Moreover, m < n.

Proof. Let pA be the maximal ideal of A. We know that B is a Dedekind
ring with finitely many maximal ideals mj, mo, ..., m,,. Choose p; € m; \m? n
(ﬂjm- mi). Then m; = (p;), which implies that B is a principle ideal domain.

As B is a Krull ring, B =N, Bm,. As {4(B/pB) <n, also m < n. O

Theorem 19.9. Let A be a Krull ring with the field of fractions K, L be
a finite extension of K, n=(L:K) and B =Int(A,L). Then B is a Krull
ring and for every p € P (A) there is at most n prime ideals P € P (B) such
that PN A=p.

Proof. Let {p; | i € #} be the set of prime ideals of A of height 1, A; =
APi' Then A = Ny A;. Let B; = Int(A;, L), {mij | 1<« ni}, where
n; < n, be maximal ideals of B;. Cor. shows that B; = ﬂ?ii B;j, where
Bij = (Bi)m,, are discrete valuation rings and m;; n A = p;. Note that
B = Njes Bi = Nij Bij. Indeed, an element b is integral over A if and only
if the coefficients of its minimal polynomial over K belong to A, i.e. belong
to all A;, which means that b belongs to all B; or, the same to all B;;. Let
be B and b* +ap_1b+---+a1b+ag =0, where all a; are in A and ag # 0. If
bem;;, a € p;, which gives finitely many possibilities for ¢, Therefore, B is a
Krull ring and 3;; = m;; n B are all prime ideals of B of height 1. Obviously,
g'Bij NnNA= Pi- O
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20. HOMOLOGICAL DIMENSIONS

Definition 20.1. (1) Let M be an A-module.

(a) The projective dimension pr.dim, M of M is defined as
sup{n | 3X Ext’y(M,X) #0}.

(b) The injective dimension inj.dim4 M of M is defined as
sup{n | 3X Ext}(X,M) #0}

(¢) The flat dimension fl.dimy M of M is defined as
sup{n | 3X Tord(M,X) #0}.

(2) (a) The global dimension gl.dim A of the ring A is defined as

sup{pr.dim4 M | M € A-Mod} = sup{inj.dimy M | M « A-Mod}E|

(b) The weak dimension w.dim A of the ring A is defined as
sup{fl.dim4 M | M € A-Mod}.

There are equivalent definitions of these notions.

Proposition 20.2. The following conditions are equivalent:
(1) pr.dimy M =p.
(2) p=inf{n| VX Ext%"'(M,X)=0}.
(3) p =inf{n | I projective resolution P, of M
such that P, =0 for n > p}.
(4) p=inf{n | as soon as all P; in an exact sequence
O-K->P,1—>-—>P—>F->M-0,
are projective, K is also projective}.
We propose the reader to prove this proposition and to formulate analogous
results for injective and flat dimensions.

The Baer criterion of injectivity as well as analogous criterion for flatness
imply the following results (prove them).

Proposition 20.3.
(1) inj.dim 4 M = sup{n | there is an ideal I c A
such that Ext’y(A/I, M) +0}.
(2) fl.dimy M = sup{n | there is a finitely generated ideal I c A
such that Tor2(A/I, M) +0}.
(3) gl.dim A = sup{pr.dim A/I | where I c A is an ideal}.
(4) w.dim A = sup{fl.dim A/I | where I c A is a finitely generated ideal}.

For Noetherian rings we can say even more. Namely, we shall prove that,
first, their global dimensions coincide with weak dimensions and, second,
these dimensions can be localized.

Definition 20.4. A module M is called finitely presented if there is an
epimorphism 7 : F' - M, where F is a free module of finte rank and kermw is
finite.

127f the ring is not commutative, one has to distinguish left global dimension and right
global dimension.
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Proposition 20.5. If M is finitely presented, N is finite and N R M is
an epimorphism, then Ker 3 is finite.
Proof. We have exact sequences

0-KSFS M0
and

0-LANEZ Mmoo

Using pull-back, we construct the diagram

0 0
K=—7K
& ¢
0 L L. p 0
| o -
0 LN 0
0 0

Here
M = {(u,p) | B(u) =7(p)} c N @ P,
#(u,p) =u, B(u,p) =p,
i(v) = (1(v),0) E(k) = (0,£(k)).
It is commutative with exact rows and columns (check it). M is finite,

since K and N are finte. As P is projective, M ~ L & P. Therefore, L is
finite. (]

Exercise 20.6 (Schanuel lemma). Using the same considerations, prove the
following assertions.

(1) Let 0 > N; = P, LN (i = 1,2) be exact sequences with
proective modules P;. Then P, & No ~ P, & Nj.

(2) Let 0 > M = E; LN N; - 0 (i = 1,2) be exact sequences with
injective modules F;. Then E; & Ny ~ Es & Nj.

Lemma 20.7. Let M be a finitely presented A-module, N be an A-B-
bimodule and E be an injective B-module. The map ¢y : Homp(N,E) ® 4
M — Homp(Homa(M,N),E) sending f ® u to the homomorphism g
f(g(w)) is an isomorphism. (Check that ¢ is well defined.)
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Proof. Fix N and E and denote the right part by F(A) and the left part by
G(A). As FE is injective, the functors F and G are right exact. If M = A,
both F(A) and G(A) are just Homp (N, E) and under this identification ¢ 4
is identity. Therefore, ¢p is isomorphism for any finite free A-module P. As
M is finitely presented, there is an exact sequence P’ - P - M — 0, where
P and P are finite free modules. Then we have a commutative diagram with
exact rows

FP’ FP FM 0

épr l ép l dm j
GP’ GP GM 0
As ¢pr and ¢p are isomorphisms, so is ¢ by 5 lemma. O

Theorem 20.8. (1) A finitely presented module M is projective if and
only if it is flat.
(2) If M is a finite module over a Noetherian ring, pr.dim 4 M = fl.dim4 M.
(3) If A is a Noetherian ring, gl.dim A = w.dim A.

Proof. (1) Every projective module is flat. On the other hand, let M be a flat
module. In Lem.[20.7] set B =Z and E = U = Q/Z. Then Homz(N,U)®4 M

is an exact functor of N. Thefore, Homy(Hom (M, N),U) is also exact.
Exer.[C.10|1) implies that the functor Homa(M, N) is exact, that is P is
projective.

(2) If fl.dimy M = oo, also pr.dimy M = oo (why?). Suppose that fl.dimg M =

n and use induction by n. Over a Noetherian ring finite modules are
finitely presented. fl.dimy4 M = 0 means that M is flat, hence projective,

so pr.dim,4 M = 0. Suppose that the claim is valid for modules of flat di-
mension n — 1 and let fl.dim4 M =n. There is an exact sequence

0O-K—->P,1>P,9—->->P,>P - PF—->M,

where all modules P; are projective, hence flat, and all terms are finite. Then
K is also flat, hence projective, and pr.dimy4 M = n.
(3) now follows from Prop.[20.3|(3,4). O

Proposition 20.9. (1) Let M be a finitely presented A-module. For
each A-module N and each multiplicative subset S c A the map

s s Homy (M, N)[S7'] - HOHIA[S—l](M[S_l], N[S™'))

which send f[s to homomorphism u/s — f(u)/s is an isomorphism.
(2) Let M be a finite module over a Noetherian ring A. Then

Ext’y (M, N)[S™'] = Ext’y g1y (M[S7'],N[S7'])

for each A-module N, each multiplicative subset S c A and each n.
In particular, pr.dim ;g1 M[S™'] < pr.dim, M.

Proof. (1) Evidently, 4 is an isomorphism. Therefore, vp is an isomorphism
for every finite free A-modiule P. Now just follow the proof of Lem.[20.6]
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(2) Let P, be a projective resolution of M consisting of finite modules.
Then P,[S™!] is a projective resolution of M[S™!] as of A[S™!]-module. As
taking quotients is an exact functor,

Ext™ (M, N)[S™'] = H"(Hom (P, N))[S™'] ~ H"(Hom(P,, N)[S™']) ~
~ H"™(Hom 4;g-1)(P[S7'], N[S7'])) = Extlyrg1y (M[S™'], N[S7]).
0

Theorem 20.10. Let A be a local Noetherian ring with the maximal ideal
m and the residue field k = A/m, M be a finite A-module.
(1) The following conditions are equivalent:
(a) M is flat.
(b) M is projective.
(¢c) M is free.
(d) Torft(k, M) = 0.
(2) pr.dimy M = fl.dimy M = inf{n | Tors,,(k, M) = 0}.
(3) gl.dim A = fl.dimy k = inf{n | Tor?,, (k, k) = 0}.
Proof. (1) Obviously, we only have to prove that (d)=(c). Let M /mM ~ k™,
01,02, ..., 0y be a basis of M /m, v; be preimages of v; in M, F = A™ with
the basis ej,eo,...,e,, and 7 : FF - M maps e; — v;. We have the exact
sequence 0 - K - F LM 0, where K = Kern. Tensoring with k, we
obtain the exact sequence 0 —» K/mK — F/mF 5 M/mM — 0. As also
F/mM ~ k™, 7 is an isomorphism. Therefore, K/mK = 0 and K = 0 by
Nakayama lemma. Thus M ~ F'.
(2) Let p = inf{n | Tors,,(k, M) = 0}. There is an exact sequence
O-K->P, 1P, 9P —->F—->M-0,

where the modules P; are finite and free. It implies that Tor: (K,k) =
Tor;;‘H(M7 k) = 0. Therefore, K is free and p = pr.dim M. O

This theorem easily globalizes.

Theorem 20.11. Let A be a Noetherian ring, M be a finite A-module.
(1) pr.dimy M = sup{pr.dim,_ My | m e max.spec A} =
= inf{n |V m e max.spec A TorA,,(A/m, M) = 0}.
(2) gl.dim A = sup{gl.dim,_ My |m e max.spec A} =
=sup{fl.dimg A/m | m € max.spec A} =
= inf{n |V m e max.spec A Tor?, (A/m, A/m) = 0}.

Proof. (1) Torj!(Afm, M) = Tori™(A/m, My), since mTorj (A/m, M) = 0.
By Thm.[20.10} if Tor?j‘l(A/m,Mm) =0, then pr.dimy My < k. Therefore,
Ext} (M, N)w = Ext%! (Mn, Ni) = 0 for every N. If it holds for all m e

max.spec A, then Ext%™'(M,N) = 0 by Claim (2) from Exam. hence
pr.dim M < k. It proves the assertion.
(2) is an immediate consequence of (1). O
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21. KoszuL COMPLEX

21.1. Regular sequences and depth. In this section @ denotes a sequence
(a1,ag,...,ay) of elements of A, a = (a1,az,...,an) 4, a; = (a1,a2,...,a5-1).
ap = (a1,az,...,a5-1) 4; in particular, a; =0 and a1 = a.

Definition 21.1. (1) We define the Koszul complex K. (a) as follows:
e Kj(a) is the free A-module with a basis {e; e, ...€;, | 1< <
ig < +-+ < i < m}, where e; are some symbols. In particular,
Ko(a) = A (a basis is an empty symbol) and Ki(a) =0if £k >n
or k<0.
e The differential dy : Kx(a) - Ki_1(a) is defined by A-linearity
and the rule

k .
dk(eileZ-Q ce eik) = Z(—l)]_laijeileig e éz‘j <€y
7=1

where, as usually, ~ shows that the corresponding symbol is
omitted. In particular, di(e;) = a;.
(Check that d? = 0, so it is indeed a complex.)
(2) For an A-module M we set K, (a,M)=K.(a)®4 M.
(3) We denote Hi(a, M) = H,(K.(a, M)).
In particular, Ho(a, M) = M/mM and H,(a,M) ~ Annp;a (ex-
plain it).

Definition 21.2. We say that a sequence a is M -regular if each ai is a
non-zero-divisor on the module M /a; M.

Theorem 21.3. (1) If a is M-regular, Hp(a,M) = 0 for k > 0. In
particular, if a is A-regular, K(a) is a free resolution of Ala.
(2) Conversely, if all a; e rad A and M s finitely generated, the following
conditions are equivalent:
(a) a is M-regular.
(b) Hi(a,M) =0 for k>0.
(c) H(a, M) =0.

We need an auxilary result on homologies of complexes. For a complex
C. and an element a € A we denote by C'? the complex such that

Ci=CroCra and di= (% ).
Exercise 21.4. Prove that K.(a, M) ~K.(a,,, M)*.
Lemma 21.5. For each k there is an exact sequence
0— Hp(Cy)/aHp(Ck) - Hp(CY) » Anng, | (c,ya 0.
Proof. There is an obvious exact sequence of complexes

0-C,—>C¢ > C.[-1] -0,
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where C[-1]x = Ckx_1 with the differential —d. It gives the LES

-5 H(CL) > Hi(C2) » Hi(Cu[-1]) > Hy1(C1) > Hyr(C2) — ...
and one can see that ¢ : Hi(C.[-1]) = Hx-1(C%) = Hg_1(C%) is just multi-
plication by a (check it). It proves the claim. O

Proof of Thm|21.3. We use induction by the length n of the sequence a. For
n =1 both assertions are evident.

(1) By induction, Hy(ay, M) =0 for k > 0. Lem.R1.5|with C, = K(a,,, M),
hence C¢ = K(a, M), implies that Hx(a, M) =0 for 0 < k <n (note that a is
non-zero-divisor on Hy(a,,, M) = M/a,M).

(2) We only have to prove that (¢) = (a). For k = 1 Lem.[21.5| gives the

exact sequence
00— Hl(gn,M)/aHl(gn,M) g Hl(g,M) - AnnHo(gn,M) a— 0.

If Hi(a,M) =0, then
e Hi(a,,M) =0 by Nakayama lemma,
e q is non-zero-divisor on M /a, M.

By induction, the first claim implies that the sequence a, is M-regular.

Together with the second claim it implies that a is M-regular. O
Corollary 21.6. Let a = (a1,as,...,a,) be an M-reqular sequence and o be
a permutation of {1,2,...,n}. Then the sequence a, = (Gy1,002, - - ., Gsin) S

also M -regular. (why? ).

From now on A denotes a local Noetherian ring with the maximal ideal m and
the residue field k = A/m.

Definition 21.7. The depth dep M of an A-module M is defined as the
maximal length of M-regular sequences from m.

Proposition 21.8. dep M <dim M for every A-module M.

If dep M = dim M, the module M is called a Cohen-Macaulay module. If A
itself is Cohen-Macaulay as A-module, we call it a Cohen-Macaulay ring.

Proof. We use induction by dim M =d. If d = 0, then A/ Ann4 M is Artinian,
hence all elements from m are zero divisors on M, so dep M =0. If d > 0, let

(ay,as9,...,aq) be an M-regular sequence. Then (ag,...,aq) is an M /a3 M-
regular sequnce. As aj is non-zero-divisor on M, dim M /aM < dim M -1
(see Lem.[14.3)). Hence n—-1<d -1 and n <d. O

Proposition 21.9. dep M =0 if and only if M contains a submodule iso-
morphic to k, or, equivalently, m € Ass M.

Proof. If M contains a submodule isomorphic to k, all elements of m annli-
hilate it, so are zero divisors on M. On the contrary, let m ¢ AssM =
{p1,p2,...,pr}. Then m ¢ U]_;p and any element a € m \ U]_; p is a non-
zero-divisor on M, so dep M > 0. ([
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21.2. Regular local rings. Now we are going to prove the fundamental
results about regular local Noetherian rings. Namely, we shall prove that
they are just the local Noetherian rings of finite global dimension. First we
prove the relation between depth and projective dimension. In this section
A always denote a local Noetherian ring. We follow the book of Serre [9].

Lemma 21.10. Suppose that gl.dim A = n < co. For every finite A-module
M
dep M + pr.dim M = n.

Proof. If dep M = 0 there is an embedding k — M (Prop., hence an
embedding Tor?(k,k) < Tor,(k, M) (since Tory*! = 0). As Tor’ (k,k) # 0
by Thm. Tor (k, M) # 0 and pr.dim M = n.

Now suppose that depM = d > 0 and the claim is true for modules of
depth d — 1. There is an element a € m such that a is non-zero-divisor on
M and dep M /aM =d - 1. The exact sequence 0 » M ~> M — M /aM — 0
gives the exact sequence

Tory (k, M) <> Tory (k, M) - Tori (k, M [aM) —
- Torp , (k, M) > Torp , (k, M).

As a € m, multiplications by a in this exact sequence are zero. There-
fore, Tori (k, M /aM) = 0 if and only if Tori ,(k, M) = 0 (since then also
Tory(k, M) = 0) and pr.dim M/aM = pr.dim M +1. Using induction, we can
suppose that dep M /aM + pr.dim M /aM = n, whence dep M + pr.dim M =
n. ([

We also need the notion of minimal free resolution.

Definition 21.11. A free resolution (F, ) of a module M is called minimal
if Imdy, € mFy_; for all k& > 0.

For instance, if a = (a1, a2, ...,a,) is an A-regular sequence from m, K(a)
is a minimal free resolution of A/ (a1, as,...,an) 4.

Proposition 21.12. (1) Every finite A-module has a minimal free res-
olution.

(2) If Fs is a minimal and P, is an arbitrary free resolution of M,
then F, is isomorphic to a direct summand of P.. In particular, a
minimal resolution is unique up to isomorphism and, if pr.dim M =
n < oo, the minimal resolution is of length n.

Proof. (1) The preimages v1,v9,...,v, of a basis of M/mM generate M.
Take Fy = A" and 7 : Fy — M mapping basic elements e; — v;. It is
an epimorphism and it induces isomorphism Fy/mFy - MmM. Therefore,
Kerm ¢ mFy. Now apply the same procedure to Ker , then to the kernel of
the obtained map Fy — Fj etc. It gives a minimal free resolution of M.

(2) Let a : P. - Fy and (8 : F. - P, lift the idemtity homomorphism
of M. Then v = af also lifts idy;. By definition of minimal resolution,
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induces an epimorphism Fj — Fji/mF}, hence v is an epimorphism. As
F}, is Noetherian, v, is an isomorphism. Therefore a(Bvy™1) = idp, which
means that P, = Kera ® Im(877!) and the second summand is isomorphic
to Fy. O

We will also use the next result.

Lemma 21.13. Let M be a finite A-module and
P, —>M

1]

F.—X>M

be a commutative diagram of complexes such that (F.,m) is a minimal free
resolution of M and (P.,p) satisfies the conditions:

(1) All Py are free of finite rank and Py =0 for k <0.
(2) Imd} cmPy_q for all k> 0.
(3) The map Py/mPy - M [mM induced by ¢ is injective.
(4) The maps Py/mP;, - mPy,_1/m?Py_; induces by dkP are injective for
all k> 0.
Then all oy, split, i.e there are By : Fy, — P such that Bray =id, so Py is a
direct summand of Fkﬁ

Proof. Let M denote M /m and & : M — N be the map induced by the homo-
morphism £ : M — N. We shall prove that all maps @ are monomorphisms.
Then there are homomorphisms @ : F,, - P, such that a,a’ = id. Lifting
@’ to a homomorphism o' : Fj, - Py, we see that aia’ =id (mod m), hence
is surjective, hence is an isomorphism (since P} is Noetherian), hence oy,
splits.

If ap(v) = 0, also @(v) = 0, hence v = 0. Suppose that we have proved
the claim for aj_1. Then there is 8 : Fj_; — P,_1 such that Bay_1 = id. If
a(v) = 0, then ag_1di(v) = drpag(v) € m?Fj_1, hence di,(v) = Boy_1dy(v) €
m2P,_;. By (4), vemP,, so ¥ = 0. It accomplishes the proof. O

Exercise 21.14. Let emb.dim A = n and m = (a1,a2,...,a,) 4. Prove that
the Koszul complex K. (a) together with the surjection ¢ : Kg(a) = A - k
satisfies the conditions (1)-(4) of Lem.|[21.13

Theorem 21.15 (Serre). A local Noetherian ring A is reqular if and only
if gl.dim A < co. Then gl.dim A = dim A.

Proof. Let emb.dimA = n and m = (a1,a2,...,a,),. Suppose that A is
regular, i.e. dim A =n. Then gr,, A ~ k[z1,z9,...,2,] is a domain, hence A
is a domain, hence a; is a non-zero-divisor. Therefore, dim A/a1 A = d - 1.
As the images of ag,...,a, generated the maximal ideal in A/a;A, this
ring is also regular, thus ay is non-zero-divisor on A/a;A. Tterating this

13 We do not claim that the complex P, is a direct summand of F.
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consideration, we see that a = (aq,as9,...,a,) is an A-regular sequence.
Then K(a) is a minimal free resolution of k, hence gl.dim A = pr.dimk = n.

Let now gl.dimA = d < oo and F, be the minimal free resolution of k.
Then Fy, = 0 for k > d. By Exer.21.14] and Lem.21.13] Ky(a) are direct
summands of Fj, hence F,, # 0. Therefore, n < d. On the other hand,
dep A =d-pr.dimy A =d, hence d <n. O

Corollary 21.16. If A is regular, so is A[S™'] for every multiplicative set
S. In particular, so are all localizations Ay.

Note that it means that every prime ideal p c A of height h contains h
elements whose images in p/p(®) are linear independent over A/p.

We also note one corollary for rings which are not necessarily local.

Corollary 21.17. Let A be a Noetherian ring. gl.dim A < oo if and only if
dim A < oo and all rings A, where m € max.spec A, are regular. In this case

gl.dim A = dim A.

21.3. Factoriality of regular local rings. Now we are going to prove the
following theorem of Auslander and Buchsbaum.

Theorem 21.18 (Auslander—Buchbaum). Every regular local Noetherian
ring is factorial.

Recall that it is equivalent to the claim that in such ring A every prime
ideal of height 1 is principal (Cor.. We shall prove this theorem using
induction, since if dim A = 1, then A is a discrete valuation ring, hence
factorial. We will use the following fact.

Lemma 21.19. Let A be a Noetherian domain, &2 be a set of prime ele-
ments of A. If A" = A[2271] is factorial, so is A.

Proof. Let p c A be a prime ideal of height 1. If pn & + &, there is a prime
element p e Z. As (p) is also prime, p = (p). Suppose that pn & = @. Then
pA’ is principal, pA’ = (¢). We can suppose that ¢ € A and p 4 ¢ for any
pe P. Let a ep. There is an element s = pi1ps...pg, where p; € &, such
that sa = gb for some b € A. Then p; | b, since p; + ¢, hence s | b and q | a.
Therefore p = (q). O

We also need a generalization of Schanuel lemma (Exer.[20.6]).

Lemma 21.20. Let0 - K - P, »--—-> P, >Py- M —-0and 0 - K' -
Pl —»..-— P - Py — M — 0 be exact sequences with projective modules P;

and P. Then
(21.1) PRhoPePePie.. . oK ~PloePoPoPe.. oKy,
where K1 = K', Ko = K if n is even and K1 = K, Ko = K' if n is odd.

Proof. We use induction. For n = 0 it is Schanuel lemma. If n > 0, let L =
Ker(Py - M) and L = Ker(Pj — M). By Schanuel lemma, L& Py ~ L' ® P.
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Consider exact sequences
0—>K—>Pn—>--~—>P2—>P1€BP(;—>L€BP6—>O

and
0-K' -P —»--->P>PeP->Le&P->0
and apply the inductive supposition. We obtain just (21.1). O

A finite A-module P is called stably free if there are finite free modules
F and F' such that P& F' ~ F. Certainly, then P is projective and has a
finite free resolution 0 > F' - F - P — 0. On the contrary, if a projective
module P has a finite free resolution, then, applying Lem.21.20] to this
resolution and to the resolution 0 - P - P — 0, we see that P is stably
free. Therefore, stably free modules are just projective modules that have a
finite free resolution.

Lemma 21.21. If an ideal I of a domain A is stably free, it is principal.

Proof. Let oo : A"t 5 T @ A", As I € A, we can consider o as a homo-
morphism A & A" - A", We choose a basis eg, €1, ..., e, of A® A" such
that I ¢ Afy. Let fo, fi,..., fn be a basis of A"*!. Then we can identify
o with the matrix (oy;) such that a(f;) = Yitgaije;. Let d = deta and
& = (&;) be the adjoint matrix, i.e. such that a@ = d-id. Consider the vec-

tor vy = (@10, @20, - - -, Gno) " € A"*L. Then awgy = deg. There are also vectors
v; € A" (1 <i<n) such that aw; = e;. Let v; = Bf;, where § = (Bij). Then

d 00 ... 0

010 ... 0

af=10 0 1 0],

0 00 1
whence det 8 =1, s0 vg,v1, ..., U, is a basis of A1 such that awvg = deg and
av; = f; (1 <i<n). Therefore, I ~ (deg), is a principal ideal. O

Proof of Theorem[21.18. Using induction, we can suppose that dimA =
d > 1 and the assertion is true for rings of smaller dimensions. Let m =
(a1,a9,...,aq). Then Aja; A is regular, hence a domain, so a; is prime. By
Lem. we have to prove that A’ = A[aj!] is factorial. Prime ideals of
A’ are pA’, where a; ¢ p, in particular, p # m. Therefore, dim A’ < d and
if n is a maximal ideal of A’, the ring A] is factorial. Any ideal of A’ is of
the form ITA’, where I is an ideal of A. As gl.dim A < oo, I has a finite free
resolution, hence I A" also has a finite free resolution. If p ¢ A" is prime of
height 1, then, for every maximal ideal n ¢ A" the ideal pA] is principal,
hence projective. By Thm.[20.11] p is projective. As it has a finite free res-
olution, it is stably free. By Lem.[21.2]] it is principal, which accomplishes
the proof. O
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APPENDIX A. FUNCTORS, Hom AND EXACTNESS

We denote by A-Mod the category of A-modules. Recall the definition of
functors.

Definition A.1. A functor (covariant functor) F : A-Mod — B-Mod is a
map sending every A-module X to a B-module F(X) and every homomor-
phism a: X - Y to a homomorphism F(«a) : F(X) - F(Y) such that
F(idy) = idp(x),
F(ap) = F(a)F(B).

It is called additive if also

F(a+pB)=F(a) +F(B).
We usually consider additive functors omitting “additive”.

Example A.2. Recall that an A-B-bimodule is an abelian group M which
is both an A-module and B-module such that the multiplication by elements
from A and B commute:

a(ub) = (au)b for all ue M,aec A, beB.
(For convenience, we write multiplication by elements b € B on the right
side: ub.)

Given such bimodule, we can consider the functor Homg (M, -) : A-Mod —
B-Mod. It maps an A-module X to Homa (M, X) considered as B-module
by the rule bf(x) = f(xb) and a homomorphism a : X — Y to the ho-
momorphism Homg(M,a) = a-: Homy (M, X) — Homa(M,Y), f— «af.
Obviousely, it is indeed an additive functor.

Certainly, we can consider the case when A = B and au = ua for all a.
The Hompg(M, -) is a functor from A-Mod to itself (an endofunctor).

We will also consider a variant of these definitions.

Definition A.3. A contravariant functor F : A-Mod — B-Mod is a map
sending every A-module X to a B-module F(X) and every homomorphism
a:X - Y to a homomorphism F(«) : F(Y) - F(X) such that

F(idx) = idp(x),
F(aB) = F(B)F ().
It is called additive if also
F(a+ 8) = F(a) + F(B).
We usually consider additive contravariant functors omitting “additive”.

Example A.4. Given an A-B-bimodule M, we can consider the functor
Homp(M,-) : B-Mod - A-Mod. It maps a B-module X to Homp(X, M)
considered as A-module by the rule af(z) = f(ax) and a homomorphism
a: X - Y to the homomorphism Homp(a, M) = -« : Homp(Y,M) —
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Homp(X, M), f +~ fa. Obviousely, it is indeed an additive contravariat
functor.

Remark. Certainly, a contravariant functor A-Mod — B-Mod is the same
as a (covariant) functor from the dual category (A-Mod)°P, but we do not
suppose that the reader is familiar with the theory of categories.

These functors are closely related to the exactness of exact sequences.
Recall the corresponding definitions.
A sequence (finite or infinite) of homomorphisms

o 1 o
o> My —= M, — M,_1 — ...
is exact if Im a1 = Ker o, for all n.

Exercise A.5. Prove that
(1) 0> N 5 M is exact if and only if a is injective.
(2) N5 M — 0 is exact if and only if a is surjective.

3)0->N3M % L is exact if and only if « is injective and Im« =
Ker 8 (then we also say that o = Ker j3).

(4) N 45 M R L — is exact if and only if § is surjective and Ima =
Kerf, i.e. L ~ Cokeraw = M/Ima (then we also say that § =
Coker ).

(5)0—>Ng>MiL—>OisexactifandonlyifazKerﬁandﬁ:
Coker a.

An exact sequence of the form 0 - N 5 M 5, L - 0 is called a short
exact sequence. It is called split if there are homomorphisms o' : M — N
and 3’ : L - M such that

oo =idy,
(A1) BB =idy,
ad’ + ' =idyy.
Then the maps M<—_Z>N®L, o(u) = (' (u),B(w)), Y(v,w) = a(v) +

B'(w) are mutually inverse isomorphisms (check it!). Note that the equal-

ities |A.1] imply that the sequence 0 — N 5 M R L — 0 is exact (verify
it).

Proposition A.6. Let 0 - N 5 M i L — 0 be a short exact sequence.
The following conditions are equivalent:

(1) 0 NS M 5 L0 is split,
(2) There is &' : M - N such that o/« = idy.
(3) There is ' : L — M such that 85’ =idy,.
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Proof. We prove that (1) < (2), leaving (1) < (3) to the reader.

(1) = (2) by definition.

(2) = (1). Let N' =Ima, L' = Kera/. The equality u = aa/(u) + (u -
aa’(u)) shows that N'+ L' = M. If ue N'nL’, then u = a(v) = ad’a(v) =
aa’(u) =0, hence M = N" @ L’'. Moreover, as Ima = Ker 8, 8 induces an
isomorphism §: L' 5 L. The inverse isomorphism L — L' gives ' : L - M
such that 83" =idy. Finally, Sa =0, &/8" =0, so if u = a(v) + 8’(w), then
v=a'(u), w=p(u), whence (aa’ + '8)(u) = u. O

As every (additive) functor preserves products and sums, it maps split
short exact sequences to split short exact sequences.

Exactness is closely connected with the functor Hom.

Theorem A.7. (1) A sequence

(A.2) 0N 5NN
1s exact if and only if for every module M the sequence
(A.3) 0 > Hom (M, N') 2> Homa (M, N) > Homa (M, N")
18 exact.

(2) A sequence

(A.4) NESNE NS0
1s exact if and only if for every module M the sequence
(A.5) 0 > Homa(N", M) -2 Homa(N, M) -% Homa(M, N')
18 exact.

Proof. We prove (2) leaving the analogous proof of (1) as exercise.
Suppose that the sequence is exact. If (+8)(f)=f5=0,then f=0
since (3 is surjective. As fa =0, also (+a)(-f5) = +(Ba) =0, hence Im(-f3) <
Ker(-a). Let f: N - M lie in Ker(-«), that is fa =0. Then Ker f 2 Im «,
hence f induces a homomorphism ¢ : N/Ima — M such that g(z + Ima) =
f(z). But B is actually an isomorphism Cokera = N/Ima > N”. So we
can consider g as a homomorphism N” — M such that gf8(z) = f(z), that
is f = (-5)(g). Therefore Ker(-«) = Im(- 5) and the sequence is exact.
On the contrary, let the sequence be exact. Consider the natural sur-
jection f: N” - N”/Im 3. Obviously, f8=0. As-j is injective, f = 0, hence
N"/Im 8 = 0, which means that j is surjective. As fa = (-a)(-8)(1n7) =0,
Ima ¢ Ker 5. Now consider the natural surjection f: N - N/Ima. Then
(-a)(f) = fa=0, hence f € Ker(-a) =Im(-3), that is f = g/ for some g. It
implies that Ker 5 € Ker f = Im «, hence the sequence is exact. O

The exactness of the sequences (A.3]) and (A.5)) means that both functors
Hom (M, -) and Hom(—, M) are left ezact in the sense of the following
definition.
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Definition A.8. (1) (a) A (covariant) functor F is called left exact if
as well as 0 - X - Y - Z is an exact sequence, so is the
sequence 0 - F(X) - F(Y) - F(Z).

(b) A contravariant functor F is called left exact if as well as X —
Y — Z — 0 is an exact sequence, so is the sequence 0 - F(Z) —
F(Y) - F(X).

(2) (a) A (covariant) functor F is called right exact if as well as X —
Y - Z - 0 is an exact sequence, so is the sequence F(X) —
F(Y)->F(Z)-0.

(b) A contravariant functor F is called left exact if as well as 0 —

X - Y - Z is an exact sequence, so is the sequence F(Z) —
F(Y)—-F(X)-0.

(3) A functor is called ezact if and only if it is both left and right exact.

Proof. We prove (1), remaining (2) as an exercise. (3) and (4) in fact coincide
with (1) and (2).

Let o"(z) = 0, Choose y such that z = £(y). Then na(y) = a”¢(y) =0,
hence a(y) = n'(2). As ('B'(2) = pn'(2) = Ba(y) = 0 and ¢’ is injective,
B'(z) = 0. Therefore, z = o/(t) and a&'(t) = n'a’(t) = a(y). As « is injective,
y=¢(t) and x = ££'(t) = 0. Thus o’ is a monomorphism (exactness at N'').

As 8"n = (B is an epimorphism, so is 5" (exactness at L").

Let x € N and x = £(y). Then o”(z) = na(y) and 8"a"(z) = 8"na(y) =
¢Ba(y) =0, that is Ima” ¢ Ker 5”.

Let now 8”(z) = 0 and = = n(y). Then (B(y) = B"n(y) = 0, hence
B(y) = ('(2). Let z = p'(t). Then Bn'(t) = ¢'B'(t) = B(y), that is B(y -
1'(t)) = 0. Therefore, y —1/(t) = a(v) and x = n(y -7'(t)) = na(v) = "'¢(v),
so Ker 8” ¢ Im o', which completes the proof. O

Remark A.9. (1) One can prove that the definitions of right and left
exact functors do not change if we only test them on the exact seqe-
unces 0 - X - Y - Z - 0.
(2) One can also prove that if a functor F is exact and a sequence

Qnt1 a
> n+1n—>Mn—n>Mn_1—>...

is exact, so is the sequence
> F(Mps1) > F(M,) > F(My-1) — ...

We will not prove these facts here (the reader can try to do ), though will
use them when we need. We recommend the reader to prove them, since it
is a useful exercise on the notion of exactness

APPENDIX B. TENSOR PRODUCT

Another inportant example of a funcor is tensor product.

Definition B.1. Let M, N are A-modules. Its tensor product M ® 4 N is
defined as A-module with the set of generators z ® y, where x € M, y € N,
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and the relations
(z+2)ey=z0y+2'®y,
r®(y+y)=rz0y+xey,
(a2) @y - ® (ay) = a(z ® )
for all z,2" € M, y,y' € N, a € A.

The map @ : M x N > M ®4 N, (z,y) » z®y is bilinear. Moreover, it is
a universal bilinear map.

Proposition B.2. If a map ¢ : M x N - L 1is bilinear, there is a unique
homomorphism ¢ : M @4 N — L such that ¢ = po®, that is p(z,y) =
¢(z®y).

Proof. 1t is an easy exercise; just check that the map ¢ : x ® y — p(z,y)
preserves the relations, so is well defined. ([l

As usually, this universality defines the tensor product up to a canonical
isomorphism.

Proposition B.3. Let 7: M x N - T be a bilinear map such that for any
bilinear map ¢ : M x N — L there is a unique homomorphism @ : T — L
such that o = ¢ o 1. There is a unique isomorphism 7: T > M ® 4 N such
that T =T o ®.

Proof. The universality of ® defines a homomorphism 7 such that 7 = 7o ®.
The universality of 7 defines a homomorphiosm 6 : M ® g N — T such that
®=0o7. Then ® = o7 o® and the uniqueness implies that o7 =id e, N-
In the same way 7 o6 =idp. ([

Using universality, one can easily establish the following properties of
tensor products.

Proposition B.4. There are unique isomorphisms
(1) M®r N > N®p M mapping t®y+ y ® .
(2) M®r(N®rL) > (M®rN)®pL mapping t® (y®2) —» (r®y)®2.
(3) Mer(N®L) > M®grN®M®grL mapping x®(y,z) = (r0y,102).
(4) (M+N)®RrL > M®rLa&N®gL mapping (z,y)®z — (2®2,y®2).
(5) A®aM ~M (a®@uw au, u~1®u).
So in what follows we omit brackets, i.e. write M @ g N ®g L instead M ®g
(N®rL) or (M®r N)®g L and do the same for longer tensor products.

Proof. (2) Define the map ¢ : M x N x L - M ®4 (N ®4 L) such that
o(z,y,2) =r®(y®z) and check that it is a universal trilinear map. The same
for the map ¢ : M x NxL - (M ®4N)®4 L such that ¢(z,y,2) = (zQy)®2
(restore the details).

The other properties are proved analogously. ([l
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Tensor product is a bifunctor: if « : M - M’ and 8 : N - N’ are
homomorphisms, they induce a homomorphism a® 3: M® 4 N - M' @4 N':
u®v > a(u) ® f(v) and the map («,3) » a ® § is bilinear, so induces a
homomorphism

HOII]A(M,M’) ®A HOInA(N,N,) —>H0mA(M®A N,M’@A N’).

An important fact concerning tensor product is the adjunction formula.

If M is an A-B-bimodule and N is a B-module, the tensor product M ®p
N can be considered as an A-module setting a(u®v) = (au) ® v. So we can
consider the functor M ® g — : B-Mod — A-Mod. In particular, if B is an
A-algebra and M is an A-module, we can “lift” it to a B-module B ® 4 M
(“change of rings”). If L is an A-module, the module of homomorphisms
Hom (M, L) can be considered as B-module if we define (bf)(v) = f(vb).

Theorem B.5 (Adjunction formula). If M is an A-B-bimodule, for each
B-module N and each A-module L there is an isomorphism

Homu(M ®p N, L) ~ Homp(N,Hom4 (M, L)).

Proof. We define homomorphisms

Homy (M ®5 N, L) Homp (N, Hom (M, L)

as follows:

()W) (u) = f(u®wv),

P(9)(u®v) =g(v)(u)
forallue M, ve N, f e Homy(M ®p N, L) and g € Homp(NN,Hom4 (M, L).
Certainly, we must verify that

(1) ¢(f)(v) is a homomorphism of A-modules;

(2) ¢(f) is a homomorphism of B-modules;

(3) ¥(g) is well defined, i.e. agrees with the defining relations for u ® v;
(4) 1¥(g) is a homomorphism of A-modules.

We check (1) and (4) and leave (2) and (3) as an easy exercise.
(1): ¢(f)(v)(au) = f(u® av) = f(a(u®v)) = af(u®v) = ad(f)(v)(u);
(4): ¥(g)(a(u®v)) =9(g)(au®v) = g(v)(au) = ag(v)(u) = ap(g)(u®v).
Obviously, ¢ and ¥ are mutually inverse. O

Example B.6. Let B be an A-algebra, M be an A-module, L be a B-
module. Then

Homp(B®4 M, L) ~Homa(M,L)
(since the map f +— f(1) defines an isomorphism Homp(B, L) ~ L).

This theorem, together with the results of App.[A] implies the exactness
property of tensor product.
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Corollary B.7. Tensor product is right exact, that is, if the sequence M Sy

N i L — 0 is exact, so is the sequence

(B.1) Mea X Neos X 22 Les X -0

for each A-module X .

Proof. Let Y be an arbitrary A-module. Apply Hom4(-,Y") to the sequence
[B.1l We obtain

. 1 (a®l
(B.2) 0 Homa(L®aX,Y) 22 Homu(N o4 X,v) 22

— HOInA(M ®A X,Y),

or, using the adjunction formula,

0 > Hom 4 (L, Homa(X, Y)) ~2 Hom 4 (N, Hom 4 (X,Y)) -%
— Hom 4 (M, Hom4(X,Y)),

which is exact by Thm.[A.7(2). Therefore, the sequence (B.2)) is also exact.
By the same theorem, the sequence (B.1)) is exact. O

Corollary B.8. If I is an ideal in A, then M ® 4 (AJI)~M/IM.
Proof. Just apply M ® 4 — to the exact sequence 0 > I - A—> A/ - 0. O

A module F is called flat is the functor F ® 4 — is exact, i.e. for every

exact sequence 0 - M 4N 5, L — 0 the sequence

0>Me s F22 Ne, F 22 Loy F >0
is also exact. As we already know that F'®— is right exact, it actually means
that this functor maps monomorphisms to monomorphisms. For instance,
any free A-module is flat, since A @4 M ~ M.
An A-algebra A’ is called flat if it is flat as an A-module. For instance,
the A-algebra A[S™!] from Sec. is flat, as well as the algebra Aq if A is
Noetherian (Cor.[15.8(3)).

The next properties easily follow from the assiciativity of tensor product.

Proposition B.9. (1) Let M be a flat A-module, N be an A-B-bimodule
flat as B-module. Then M ® 4 N s flat as B-module.
(2) If B is a flat A-algebra, M is a flat B-module, it is also flat as
A-module.

Remark B.10. In order that F' be flat it is enough that for every finite
submodule N ¢ M the map N ®4 F' - M ®4 F be injective. Indeed, if
N c M is any submodule, u is an element of N ® 4 F', then u = Yi" | v; ® w;,
where u; € N, w; € F. Therefore, it is an element of N’ ® 4 M, where
N’ = (v1,v2,...,v,) is a finitely generated submodule.

We establish a criterion of flatness.
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Theorem B.11. An A-module M is flat if and only if for every ideal I € A
the natural map I®4 M — M, a®m — am, is injective (here we identify M
with A®y M ).

(As in Rem. it is enough to consider finitely generated ideals.)

Proof. The necessity is by definition. Prove the sufficiency. First we show
that if X is a submodule of a free A-module F', the map X ® 4 M — F® 1 M
is injective.

Let ' = A% X1 ={a e A| (a,0) € X} and Xy = {a € A | (a,b) €
X for some be A}. Then X; and X, are ideals in A and there is a commu-
tative diagran with exact rows and split second row

0 X, x - x, 0
bk
0 A—ts A2 T 5 4 0

Tensoring with M we obtain a commutative diagran with exact rows

1
Xioa M-S X, M2 Xo0, M ——>0

jﬁ@l ln@l j(@l

0— Ao M2 20, M "2 A9, M ——0,

where £ ® 1 and ¢ ® 1 are monomorphisms. Let x € X ® 4 M be such that
(n®1)(x) =0. Then ((®1)(f®1)(z) = (m®1)(n®1)(x) = 0, hence
(Bel)(x) =0and z = (a®1)(y) for some y € X104 M. Now (1®1)(£®1)(y) =
mel)(a®l)(y)=(n®1l)(x) =0, whence y =0 and z = 0.

Now induction shows that the claim is true for submodules of A™. But
every finitely generated submodule of A” is actually a submodule of AV for
a finite subset J € J. Therefore, the claim holds in this case too.

Let now X be arbitrary, X’ ¢ X be a submodule. There is an exact
sequence 0 > Y 5 F 5> X - 0 for some free module X. Let F' = 7~ (X").
Then F'2Y and there is a commutative diagram with exact rows

!

0 y e g T xr 0
I
0 Yy ‘s> F-—"sX 0

Tensoring with M we obtain a commutative diagran with exact rows

Yo M- Fle, M=% X o M ——>0

l&@l ln@l

YoM -5 Fre, M-"2% Xo, M ——=0
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and we already know that £ ® 1 is a monomorphism. Let x € X' ® 4 M
be such that (n® 1)(z) =0, f € F’ be such that = (7' ® 1)(f). Then
(r®1)(E®1)(f) =0, hence (§®1)(f) =(¢t®1)(y) for some Y € Y ® 4 M.
Let = (/& 1)(y), then (€@ 1)(f) = (1® 1)(3) = (€ ® 1)(), hence /' = f
and x = (7' ® 1)(f') = 0. O

The next property of flat modules is also often used.

Proposition B.12. L is flat if and only if for every eract sequence 0 —

M3 N LR L — 0 and every module X the sequence 0 - M ®4 X o8l

1
N®AX&>L®AX—>O 1s also exact.

Proof. We prove “=" leaving “<” to the readerm So we have to prove that
a ® 1 is a monomorphism.

There is an exact sequence 0 - Y 5 F L X - 0 with a free module F.
Tensoring all terms of these two exact sequences, we obtain a commutative
diagram with exact rows and columns (we write ® instead of ®4)

Moy 2L Ney 22X Loy —0
1®¢ 1®¢ 1®¢
0—MeF 2L Ner 2L 1eFr— 0
187 1®n 1en

1
MeX- s Nex L rex ——=0

(See the picture in red below to follow the proof.)

Let x € M ® X be such that (a® 1)(x) = 0, f € M ® F be such that
z=(1en)(f). Then (1@n)(a®1)(f) =0, hence (a®1)(f) = (1®&)(y)
for some y e N®Y. Now (1®£)(f®1)(y) =(F®1)(1®¢&)(y) =0, hence
(Be1)(y)=0and y=(a®1)(z) forsome ze MQY. As (a®1)(1®&)(z) =
1) (a®l)(2)=(19&)(y)=(a®1)(f) and a®1: M®F > N® F is
injective, (1®¢&)(z)=fand z=(1®n)(1®¢£)(2) =0. O

14 Frint for “=”: Consider such exact sequence with free N.
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Exercise B.13. Let 0 > M = N LN L - 0 be an exact
sequence with a flat module L. Prove that M is flat if and
only if N is flat.

Note that if M and N are flat, L need not to be: consider

the sequence 0 » Z > 7 - Z]2Z — 0.

APPENDIX C. PROJECTIVE AND INJECTIVE MODULES

Definition C.1. (1) A module P is called projective if
for every epimorphism 3 : M — N and any homo-
morphism « : P - N there is a homomorphism & :
P — M such that o = fa. It it usually presented by
the commutative diagram with exact row

- P
@ e
M—~N—=0

where the dotted arrow must be constructed.

(2) A module F is called injective if for every monomor-
phism « : N - M and any homomorphism a: N —
P there is a homomorphism & : M — E such that
a = af. It it usually presented by the commutative
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diagram with exact row

0— N M
aj // 1%
E

In other words, P is projective if and only if the functor
Hom (P, -) is exact, and E is injective if and only if the
functor Homy(—, F) is exact.

Proposition C.2. (1) A module P is projective if and
only if every epimorphism 3 : M — P splits, i.e. there
is 8" P - M such that 55" =idp (then M ~ Ker 3 &
P).

(2) A module E is injective if and only if every monomor-
phism B : E — M splits, i.e. there is f': M — E such
that 5’3 =idg (then M ~Ker ' & E ).

Proof. (2) By definition, if E is injective, there is such J’.
On the contrary, let every monomorphism E — M splits.
For a monomorphism £ : N - M and a homomorphism « :
N — E, denote by M the quotient E & M/{(a(v),-5(v)) |
v € N}. Let [u,v] be the image in M of the pair (u,v).
For u e E,ve M set f(u) = [u,0] and &(v) = [0,v]. Then
ap = 604 and 6 is a monomorphism. Therefore, there is
B': M — E such that 3/ = idg. It implies that o = o/8,
where o = f'@. See the diagram

The analogous proof of (1) is left to the reader. O

The following assertions are evident.
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Proposition C.3. (1) A direct sum (maybe infinite) @®;c s P;
18 projective if and only if all modules P; are projec-
tive.

(2) A direct product (maybe infinite) [1;cr P; is injective
iof and only if all modules P; are injective.

The following results immediately follow from the pre-
ceding propositions.

Corollary C.4. (1) A module P is projective if and only
iof 1t 15 isomorphic to a direct summand of a free mod-
ule (of finite rank if P is finite).

(2) For every module M there is an epimorphism P — M,
where P 1s projective.
(3) For every module M there is an exact sequence

o> P,-P, 1> >P->P->F->M-0,
where all modules P,, are projective.

Unfortunately, there are not so evident injective modules
analogous to free modules that are evidently projective.
Thus, to prove the results dual to Cor.[C.4], we have to do
some job. It starts from the following criterion of injectiv-
ity, due to Baer.

Theorem C.5 (Baer criterion). An A-module E is injec-
tive if and only if for every ideal I € A and every homo-
morphism « : I — E there is an element q € E such that

a(a) = aq for every a € 1|

Proof. This condition is necessary by definition of injective
modules. To prove that it is sufficient, consider a module
M, its submodule N and a homomorphism o: N - E. We
have to extend it to a homomorphism §: M — E. Consider
the set & of extensions of o to bigger submodules, that is

15 Equivalently, there is o’ : A — E such that a = |;: just set a’(a) = aq for all a € A.
In this form Baer criterion is analogous to the criterion of flatness (Thm.,
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the pairs (N’,a') such that N2 N o' : N’ - E is a ho-
momorphism7 and o/|; = . We set (N',a) < (N", o)
if N/ ¢ N” and o' = o"|p. One easily sees that Zorn
lemma can be applied to €, so there is a maximal exten-
sion (N',;a'). We must prove that N’ = M. Suppose that
veM~ N and set [ ={ae A|ave N'}. The map o in-
duces a homomorphism (5 : I - E such that 5(a) = o'(av).
Therefore, there is an element ¢ € E such that o'(a) = aq
for every a € I. Set a(u+ av) = a(u) + aq for all a € A
(check that this definition is consistent). We obtain
an extension (N’ + Av,&) > (N',a’) in contradiction with
maximality of (N',a'). It accomplishes the proof. ]

Exercise C.6. (1) Let M be a finite module. Prove that
for any set of modules {N; | i € #} the natural ho-
momorphism

P Hom 4 (M, N;) - Hom (M, P N;)
ied ey

is bijective.

(2) Prove that if A is Noetherian, a direct sum @;. s F;
is injective if and only if each Fj; is injective even if
& is infinite. Note that for non-Noetherian rings it
1s not so.

Corollary C.7. An A-module M is called divisible if for
every element u € M and every non-zero-divisor a € A there
15 v € M such that av = u.

(1) Each injective module is divisible and the converse is
true if A is a principle ideals domain.
(2) Let A be a principle ideals domain, K be its field of
fractions and U = K[ A.
(a) Every quotient of an injective A-module is also
imjective.
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(b) For every nonzero element v of an A-module M
there is a homomorphism o, : M — U such that
a,(v) = 0.

(c) Every A-module embeds into a direct product U~ =
[Tic.r Ui, where U; = U for every i € & (note that
this direct product is injective).

Proof. (1) and (2a) are immediate consequences of Baer
criterion. In particular, K and U are injective.

(2b) Since U is injective, it is enough to construct a
nonzero homomorphism o : Av - U. Let Annygv = dA.
If a = 0, we can define «,(v) = u for arbitrary nonzero
ueU. If a+0, define a,,(v) as the coset 1/a+ AeU.

(2¢) Define a: M — UM mapping an element v € M to
the element («,(v)) e UM, O

Lemma C.8. Let F' be an A-B-bimodule flat as A-module
and E be an injective B-module. Then Homp(F, E) is an
injective A-module.

Proof. It folows immediately from the Adjunction formula

B.A O

Now we can prove a sort of dual for Cor.[C.4. We denote
by U the quotient Q/Z which is an injective Z-module and,
for any ring A, set DA = Homz(A,U) (it is an injective
A-module).

Corollary C.9. (1) Every A-module embeds into DA
for some set &. Thus every A-module embeds into
an injective A-module.

(2) An A-module is injective if and only if it is a direct
summand of DAY for some & .
(3) For every A-module M there is an exact sequence

O-M->Ey-FE,>FEy—»--->E,>FE,1—>...,

where all modules E,, are injective.
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Proof. (1) Note that M ~ Hom (A, M) ¢ Homy(A, M) and
an embedding M — U~ induces an embedding Homgz (A, M) -
Homgz(A,U”) ~ DAZ.

(2) and (3) follow from (1). O

Exercise C.10. For every A-module M denote
DM =Homa(M,DA) ~Homz(M,U).

Prove that:
(1) A sequence N 5 M % L is exact if and only if so is

the induced sequence DL -% DM -5 DN.

(2) M is flat if and only if DM is injective.

(3) P is projective if and only if for every epimorphism
B: DAY - N and every homomorphism a : P - N
there is o’ : P - DAY such that o = Sa’.

Theorem C.11. An injective A-module E is indecompos-
able if and only if its endomorphism ring R = EndaE s
local (that is non-invertible elements of R form an ideal).

Proof. If £ = E; @ E5, where both summands are nonzero,
and m; is the projection onto E;, then m; are not invertible
but m; + m9 = 1. Thus End4 F is not local.

Let now F is indecomposable and a: E - E be an endo-
morphism. If a is a monomorphism, then Im« is a direct
summand of E., hence Ima = F and « is an isomorphism.
If both a and 8 are not isomorphisms, i.e. Kera # 0 and
Ker 5 # 0, then Ker(a+ ) 2 KeranKer # 0, hence a+
is not isomorphism. Therefore, Endy F is local. [

Krull-Schmidt-Azumaya theorem (Thm.[E.1]) implies

Corollary C.12. Let @}, E; ~ @}, £}, where E; and L}
are indecomposable injective modules. Then n = m and
there is a permutation o of indices such that E; ~ E! . for
all 7.
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C.1. Injective envelopes.

Definition C.13. (1) Let M be a submodule of an A-
module M'. They say that M is an essential sub-
module of M' or M’ is an essential extension of M
if M n N # 0 for every nonzero submodule N c M.
Equivalently, for each nonzero v € M’ there is a € A
such that av # 0 and av € M.

(2) If there is a monomorphism « : M — E, where F is
injective and Im « is essential in F, they call F (or

the embedding M <"~ E ) the “”injective envelope

of M.
We shall prove that injective envelope always exists and is
unique up to isomorphism. So we will denote it by FE(M).

Exercise C.14. (1) Prove that if NV; (1 < i < m) are
essential submodules of M, then N, N; is essential
in M.
(2) Prove that if IV; ¢ M; (1 <i < m) are essential sub-
modules, then @;"; N; is an essential submodule in
ic1 M.
(3) Deduce that E(®", M;) = @ E(M;).

Lemma C.15. A module M 1is injective if and only if it
has no nontrivial injective extensions.

Proof. Suppose that M is injective. If M ¢ M’, then M’ =
M @& N for some submodule N, As M is essential, N = 0
and M = M'.

Suppose now that M has no essential extensions. M
embeds into an injective modul E. Consider the set I
of submodules N c E such that N n M = 0. One easily
sees that we can apply Zorn lemma to show that 91 has a
maximal element N. Then the composition M - F - E/N
is a monomorphism, so we can consider M as a submodule
of E/N. If N’ is a submodule of E/N such that M n N’ =
0, then M n N’ = 0, where N’ is the preimage of N’ in
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E. Therefore, E/N is an essential extension of M, hence
M = E/N which means that M+ N = E, thatis E=Me&N
and M is injective. [

Exercise C.16. (1) Let M be an A-module and N be
an A[S~!]-module. Prove that

Hom (M, N) =~ Homyps-11(M[S7'], N).

(2) Let S be the set of non-zero-divisors of a ring A,
K = A[S7!]. Prove that K = E(A).

Theorem C.17. (1) For every A-module M there is an
injective envelope av: M — .
(2) If o' : M — E' is another monomorphism of M into
an injective module E', there is an embedding B : E —
E" such that Imo’ = Im(Ba). In particular, E is
a direct summand of E'. If o is also an injective
envelope, 3 is an isomorphism.

Proof. (1) Let M < @, where @ is an injective module.
Consider the set 90t of submodules N ¢ () which are essen-
tial extensions of M. Again we can apply Zorn lemma and
choose a maximal element E € 9. Suppose that £/ o F
is an proper essential extension of E. As () is injective,
the embedding o : E - () extends to a homomorphism
o' E' - Q. As Kera/n E =0 and FE is essential in E’,
Kera’ =0. Hence E c Ima’ ~ E’. Obviously, Ima/ is also
an essential extension of M, which contradicts the maxi-
mality of E. Therefore, E has no essential extensions, so it
is injective and is an injective envelope of M.

(2) As E' is injective, o/ : M - E’ extends to §: E — E'
such that o/ = fa. As M is essential in E, Ker5 =0, so 3
is a monomorphism and Im 5 ~ F is a direct summand of
E'. If Ima’ = Im Ba is also essential, Im [ is essential, so

Im 3 = E’. essential ]

Exercise C.18. Prove the following assertions.
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(1) If N ¢ M, then E(N) is a direct summand of E(M).
(2) Let E be an injective module. The following condi-
tions are equivalent:
(a) F is indecomposable.
(b) E is an injective envelope of every nonzero sub-
module M c E.
(¢) There are no nonzero submodules N, N’ c E such
that N n N’ =0. (Note that if £ = E(M), it is
enough to consider submodules of M.)

Theorem C.19. Let N1, Ns, ..., N, be submodules of an A-
module M such that Ly =0 but N/ = @;.; N; # 0 for every
i. The embedding v : M - @I M;, where M; = M|N;,
extends to an isomorphism E(M) > E = @, E(M;).

Proof. We identify M with Im¢. Note that M n M; # 0 for
every 7. Indeed, if 0 # x € N/, then «(x) € M;. Therefore,
M n M; is essential in E(M;). Let v = (v,v9,...,0,) € E,
where v; € F(M;). There is a € A such that 0 # av; € M n
M. Proceeding recursively, we find b € A such that bv £ 0
and bv; € M n M; for all 7, hence bv € M and M is essential
in F, that is ¢ extends to an isomorphism E(M) > E. O

C.2. Injective modules over Noetherian rings.ﬂ

Theorem C.20 (Matlis). Let A be a Noetherian ring. For
each prime ideal p ¢ A denote by I, the injective envelope
E(A/p).
(1) E, is indecomposable, every indecomposable injective
A-module is isomorphic to Ey, for some prime ideal p
and Ey ¢ Eq if p #q.
(2) By~ Ay ®4 Ey and is an injective Ay-module.
(3) EndA Ep = El’ldAp Ep.
(4) E, is the injective envelope (over A and over Ay) of
the residue field k(p) = Ay/pA,.

16 gee the paper of Matlis [5].



88 YURIY DROZD

(5) Let Ny, Na, ..., Ny, be irreducible primary submodules
of an A-module M, namely, N; is p;-primary. Sup-
pose that N2, N; = 0 and N N; # 0 for every .
Then E(M) = @2, E, .

Proof. (1) If N, N are submodules of A/p, then Nn N’ 0,
hence E), is indecomposable by Exer.[C.1§(2c). On the con-
trary, let £/ be an indecomposable module and p € Ass E.
Then FE contains a submodule M isomorphic to A/p, hence
E =~ E, by Exer.[C.1§(2b). Finally, E, contains no submod-
ule N isomorphic to A/q, since otherwise M n N =0 which
is impossible. Therefore, E, ¢ E.

(2) If g ¢ p, the map ¢-: a ~ qa is injective in A/p, hence
also on E,. Therefore, it is bijective on E,. If we write a/q
for the element b such that bg = a, then the isomorphism
¢: Ay ®4 E, > E, is given by the rule ¢(a/q ® €) = ae/q
(check that it is indeed an isomorphism). As A, is
flat over A,

Homy, (Ay ®4 M, Ay ®4 N) ~Homu(M,N) ®4 Ay

for every finitely generated A-module M, in particular, for
every ideal M ¢ A. Therefore, the Baer criterion implies
that Ej, is an injective Ap-module.

(3) is evident, since ¢- is bijective on E, for every ¢ ¢ p.

(4) E, contains A,/pA, = A, ®4 A/p, hence is its injective
envelope.

(5) By Thm.[C.19, E(M) ~ @, E(M/N;). As N; is irre-
ducible, E(M/N;) is indecomposable by Ex.[C.1§(2c). As
M Nj is p;-primary, it contains a submodule isomorphic to
A/p;. By Ex.[C.I§(2b), E(M/N;) =~ E(A/p;) = E,,. O

Together with Cor.[C.12] it implies

Corollary C.21. Let M be a finite A-module, N be its
submodule and N = (L) N; = N}y N;, where all N; and N;
are primary and irreducible, namely, N; is p;-primary and



COMMUTATIVE ALGEBRA 89

N]f 18 p;—primary. Then m =n and there is a permutation
o of indices such that p! . =p; for all i. In particular, the
number of p-primary submodules in these decompositions is

the same for every .

Remark. Matlis has also proved [5] that every injective mod-
ule over a Noetherian ring is a direct sum (maybe infinite)
of indecomposables (that is of modules £, ) and this decom-
position is unique up to isomorphism and permutation of
summands.

Exercise C.22. Prove that:

(1) AssE, = {p}.
(2) Homu(Ey, Ey) # 0 if and only if p € g.

C.3. Matlis duality. In this subsection we suppose that
A is a local Noetherian ring with the maximal ideal m and
the residue fields k = A/m. We denote by E the injective
envelope F(k) and set M* = Homu(M,E). As we have
seen, AsslE = {m}, hence E = U, E,,, where E, = {e ¢ E |
m"e =0} = (A/p")".

Proposition C.23. The homomorphism ey : M — M**
mapping v € M to the homomorphism v* : M* — E such
that v*(f) = f(v) is a monomorphism.

Proof. Let v # 0. There is a maximal submodule N c Av
and Av/N =~ k. Therefore, there is a nonzero homomor-
phism Av — E. As E is injective, it extends to a homomor-
phism f: M — E such that v*(f) = f(v) #0. O
Exercise C.24. Prove that:

(1) A sequence N 5 M % L is exact if and only if so is

the induced sequence L* Z, M~* %5 N* is exact.
(2) M is flat if and only if M* is injective.

Proposition C.25. Let M be an A-module of finite length.
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(1) M* is of finite length and {o(M*) =La(M).

(2) err: M - M** is an isomorphism.

(3) For every m the module E, is of finite length and
Er ~ Afm".

Proof. (1) Obviously, k* ~ k. If M = My c M; c ... c
M; =0 is a composition series in M, that is M;/M;,; ~ k,
it gives a filtration 0 = Mjc M{ c ... ¢ M| = M*, where
M!={feM*| f(M;) =0}, and M/ /M ~ k. Therefore,
Ca(M~) = La(M).

(2) As ey is a monomorphism and €4 (M) = £ 4(M**) by
(1), ey is an isomorphism.

(3) is the partial case of (2) for M = A/m™. O]

We denote by A the m-adic completion of A and set M =
Ay M. If M is finitely generated, it coincides with the
m-adic completion of M. Note that E ~ E: an element a®e,
where e € E,, is identified with ae, where a is the image of

ain A/mrA = A/mn.

Corollary C.26. (1) EndjE=E*=~ A,
(2) Let M be a finite A-module.
(a) Homy (M, E) ~ Homy (M, E).
(b) Homomorphism ey : M — M** induces an iso-
morphism M ~ M**. In particular, if A is com-
plete, ey 1s an isomorphism for every finite A-
module M .

Proof. (1) As E = U, E,,, E* = Homyu(E,E) is identified
with lim Homy(E,,E) (expalin it). As E* ~ A/m", it
implies that E* ~ A.

(2a) follows from the fact that M /mrM = M /m"M.

(2b) By (1), M* is always an A-module and ¢4 induces
an isomorphism A5 A**. Hence the same is true for every
free A-module of finite rank. If M is a finite A-module,
there is an exact sequence F’ - ' - M — 0, where F' and



COMMUTATIVE ALGEBRA 91

F" are free A-modules of finite rank. Applying * twice, we
obtain a commutative diagram with exact rows

F’ F M 0

W a] o

(Fl)x-x- F** M** ——=0

As the first two vertical homomorphisms are isomorphisms,
so is the third. [

Proposition C.27. If an A-module M is Artinian, there
1s a monomorphism M — E" for some n.

Proof. As M is Artinian, there is a homomorphism « : M —
E" with minimal kernel. Let Kera # 0. It is Artinian,
hence contains a simple submodule N ~ A/m. There is
an embedding § : N — [E, which can be extended to a
homomorphism 5’: M — E. Then the kernel of the homo-
morphism () : M — E"*! is strictly less than Ker o. This
contradiction shows that Kera = 0. 0

Proposition C.28. (1) If the module M* is Artinian (Noe-
therian), M is Noetherian (Artinian).
(2) E is an Artinian module.

Proof. (1) For every submodule N ¢ M set Nt ={fe M~ |
f(N)=0}. If Nc L, N* > L', since there are nonzero
homomorphisms L/N — E which can be extended to ho-
momorphisms M — E. Therefore, each strictly descending
(ascending) chain of submodules of M gives a strictly as-
cending (descending) chain of submodules in M*.

(2) As E* ~ A is a Noetherian A-module and the struc-

tures of A-module and of A-module on E are the same, (2)
follows from (1). O

Corollary C.29. If M is an Artinian A-module, the map
ey M — M** 1s an isomorphism.
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Proof. Cor.[C.26) implies that eg is an isomorphism. On
the other hand, Prop.[C.27 and imply that there is an

exact sequence 0 > M — E" — [E™ for some m and n. Now

just repeat the proof of Cor.|C.26|2b). O

Altogether, these results can be summarize as follows.

Theorem C.30 (Matlis). The functor * induces an exact
duality between the categories of Artinian and Noetherian
A-modules.

Recall that it means that the following assertions hold:

(1) The functor * is exact.
(2) For every Artinian or Noetherian module M the nat-

ural map M My M** is an isomorphism.
(3) If M is Artinian (Noetherian), M* is Noetherian (Ar-
tinian).

APPENDIX D. HOMOLOGICAL ALGEBRA

We present here (mainly without proofs) elelments of ho-
mological algebra which are widely used in commutative
algebra. We refer to [10] for details and much more.

D.1. Complexes and homologies.

Definition D.1. (1) A complex C, = {C,,,dS | n € Z} is
a sequence of modules and homomorphisms

dg+1 dg
(D.1) o> Chyp — C,—Chy — ...
such that d$d¢,, = 0 for every n (that is Imd®,, ¢

Kerd¢). If there can be no ambiguity, they write d,
instead of d¢.
(2) The quotients Kerd$/ImdC, ;| are called the n-th ho-

mology of the complex C, and denoted by H,(C.,).

(3) If H,(C.,) =0 for all n, i.e. the sequence is exact,
the complex C, is called acyclic.
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(4) A morphism of complexes ¢, : Cy - D, is a set of
morhpisms {@,, : C;, > D, } such that ¢, 1dS = dP¢,
for all n, i.e. all diagrams

dC
Cn - Cn—l

@nl L@nl
dD
Dn - Dn—l

are commutative. Symbollicaly, they often write od =
de.

(5) A morphism ¢, : C, - D, induces a homomorphisms
of homologies H,(¢.): H,(C,) - H,(D.).

(6) If all H,(¢.) are zero, the morphism ¢, is called ho-
mologically trivial.

(7) If all H,(p.) are isomorphism, they say that ¢, is
a homologism (or quasi-isomorphism) and write ¢, :
C,~ D,.

(Note that in this case it can happen that there are
no homologisms D, ~ C,. It can even happen that
there are no non-zero morphisms D, — C..)

Complexes of A-modules and their morphisms form the
category of compleres Com A. We consider every A-module
M as complex whose 0-th component is M and all other
components are 0. (What is a morphism M - C, and
a morphism C, - M?7).

Definition D.2. (1) Let ¢. and v, are morphisms of
complexes C, - D,. We say that they are homo-
topic and write ¢, ~ 1, if there is a set of homo-
morphisms o, = {0, : C;, > Dy,1} such that ¢, -, =
dps10,+0,-1d, for all n. Symbolically p—1 = do+aod.
We say that o, is a homotopy between ¢, and ¢,. If
. ~ 0, they say that ¢, is homotopically trivial.
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(2) If ide, ~ 0, they say that the complex C, is con-
tractible (or homotopically trivial) and a homotopy
between id¢, and 0 is called a contraction for C,.

(3) A morphism ¢, : C, — D, is called a homotopism
(or homotopical equivalence) if there is a morphism
V. : D, - C, such that ¥.p. ~ide, and @1, ~idp,.
Then they say that these compexes are homotopic
and write C, ~ D,.

One easily verifies that if ¢, ~ ., then H,(p.) = H,(1.)
for every n (check it). In particular, a homotopically triv-
ial morphism is homologically trivial, a contractible com-
plex is acyclic and a homotopism is a homologism.

The following remark is very useful. We highly recom-
mend the reader to prove them.

Remark D.3. (1) Every (additive) functor maps homo-
topic morphisms to homotopic, hence homotopisms
to homotopisms, homotopically equivalent complexes
to homotopically equivalent and contractible com-
plexes to contractible)

(2) If a functor F is exact, then H,(FC,) ~FH,(C,) for
every complex C,. In particular, such functor maps
homologisms to homologisms and acyclic complexes
to acyclic.

In what follows we usually omit * and say “complex
(C,d)” or even “complex C” as well as “morphism «” and
“homotopy ¢.”

The following “Snake lemma” is, perhaps, the corner-
stone of homological algebra.
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Lemma D.4 (Snake lemma). Let

M; —~ M, M;y 0

R

0 Ny ——= Ny 7 N3

be a commutative diagram with exact rows. There is a ho-
momorphism ¢ : Ker ( = Coker & such that the sequence

Keré 5 Kern LN Ker ¢ o, Coker & 2, Cokern 2 Coker ¢
15 exact.

Sketch of proof. Construction of 9:
Let ¢((z) = 0. There is y € My such that = G(y). Then
B'n(y) = 0, hence n(y) = a(z) for a unique z € Ny. Set
d0(z) = z+Im¢ € Cokeré. One can verify that another
choice of y gives z’ € N such that z/ -z e Im¢, that is 0(x)
does not depend on this choice (check it).

It remains to verify that the resulting sequence is exact.
It is a useful exercise and we leave it to the reader. L]

Using Snake lemma, it is easy to prove the “5-lemma.”

Lemma D.5 (5-lemma). Let

a1 (6%} Q3 (6%}

M, M, M; My M;

&1 &2 3 3 3
I

be a commutative diagram with exact rows.

(1) If & and & are epimorphisms and & is a monomor-
phism, then &3 is an eptmorphism.

(2) If & and &4 are monomorphisms and & is an epimor-
phism, then &3 is a monomorphism.
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In particular, if & and &4 are isomorphisms, & is an epi-
morphism and & 1S @ monomorphism, then & is an iso-
morphism.

Sketch of proof. (Details are left to the reader.)
(1) Apply Snake lemma to the diagram

a3 Oy

M; M, Imas——0
5_31 541 §5j
0 — N3/Im 3, ; Ny—— N

and take into account that Im¢&; 2 Im By (why?).
(2) Apply Snake lemma to the diagram

o

M1 M2 - Kera3—>0

6| | 3

O—>N1/Kerﬁ1 — N2 N3
B B2

and take into account that Ker¢; ¢ Keras (why?). O

()
Definition D.6. A sequnce of complexes --- » C(+1) 2

a(™ n n
Cn) —— C-1) - us called exact if Ker ozg ) = Im ozg +1)
for all n and <.

Usually we consider short exact sequences. The main
result for them is the so called “long exact sequence” (LES)
of homologies.

Theorem D.7 (LES theorem). For every short exact se-

quence of complexes 0 — C’ 5 C LN C" — 0 there are
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homomorphisms 6, : H,(C") - H,_1(C") such that the se-
quence

s H ()2 7oy 2O g oy
/ n—l(a) n—l(ﬁ) 17
1 (C1) H,1(C) Hy (C") > ...
18 exact.

Proof. Apply Snake lemma to the diagram

C)/Imd ., — C,/Imd,; — C}//Imd',;, — 0

| | |

0 —— Kerd/ Kerd, Kerd,_,

where the vertical maps are generated by differentials and
the horizontal by o and f.
(Verify that the rows of this diagram are exact.)
Note that ¢ is constructed as follows. Take z € C}/ such
that dxr = 0 and choose y € C! such that = = S(y). Then
B(dy) =0, hence dy = a(z) for some z € C’ | and dz =0. If
7 is the class of x in H,(C"), then §,,(z) = Z (the class of z
in H,-1(C")) (check it). O

Corollary D.8. Let 0 - C" - C - C" - 0 be an exact
sequence of complexes. If two of them are acyclic, so is the
third.

Exercise D.9. Let

0 C’ C c” 0

.

0 D’ D D" 0
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be a commutative diagram of complexes with exact rows.
Then the induced diagrams

H,(C") 2 H,, 1 (C)

| |

H,(D") ~" H,,(D")

are commutative for all n.

An immediate consuence of Cor.[D.8is the so called “3x3
lemma.”

Lemma D.10. (3 x 3-Lemma). Let

0 0 0
0—N a2

'3 U ¢
0—-N-—-m- 2 0

3 n ¢
0Ny P g

be a commutative diagram.

(1) If all columns and the first two rows are exact, so is
the third row.

(2) If all columns and the last two rows are ezxact, so is
the first row.

(3) If all rows and the first two columns are exact, so is
the third column.

(4) If all rows and the last two columns are exact, so is
the first column.
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D.2. Derived functors.

Definition D.11. Let M be an A-module.

(1) A resolution of M is a pair (Cs,p), where C, is a
complex such that C;, = 0 if n < 0 and ¢ is a ho-
mologism C' ~ M. Actually, such resolution can be
written as an exact sequence

--—>C’n——>C'n_1—>---—>C’2—3>C'1—1>C'0—>]\4—>O7

(2) A projective resolution of M is a resolution (P.,y)
such that all P, are projective.

(3) A coresolution of M is a pair (C,,p), where C, is
a complex such that C, =0 if n > 0 and ¢ is a ho-
mologism L ~ M. Actually, such resolution can be
written as an exact sequence

o-MEHE Lo Lo Do

where we use the “upper notations.”
(4) An injective coresolutz'onﬂ of M is a coresolution
(E*,p) such that all E™ are injective.

Proposition D.12. Every module M has a projective res-
olution and an injective coresolution.

Proof. It follows from Cor.[C.4|(3) and [C.9(3) (just cross out
M from the given exact sequences). L]

Certainly, projective and injective resolutions are not unique.
Nevertheless, they are unique up to homotopy as the next
lemma shows.

Theorem D.13. (1) Let ¢ : P, — M, be a homomor-
phism of complexes, where all P, are projective, (C., )
be a resolution of N and o: M — N be an arbitrary
homomorphism.

17More usual is the name injectice resolution, but seems more consistent.
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(a) There is a morphism & : P, - C, such that p& =
o) and every two such morphisms are homotopic.
(b) All projective resolutions of M are homotopic.
(2) Let vb : M — E* be a homomorphism of complexes,
where all E™ are injective, (C*,p) be a coresolution
of N and ao: N — M be an arbitrary homomorphism.
(a) There is a morphism & : C* - E* such that ap =
Ya and every two such morphisms are homotopic.
(b) All injective coresolutions of M are homotopic.
We call & the extension of « to resolutions (coresolutions).

Proof. We prove (2) remaining (1) to the reader.

(2a) We have a diagram (without dotted arrows and red
letters), where the first row is exact and the second row is
a complex:

0—N--co Lo Loz

aj af V atl v a?
v v \

G d' E

2

0— M- o1 &

As ¢ is a monomorphism and E° is injective, there is o
such that o = a®p. Then d°alp = d'pa = 0, hence d’a?
can be considered as a homomorphism from C%/Im¢p =
C%/ Kerd® ~ ITmd;. Therefore there is a! such that a;d’ =
d°a?. Tterating these considerations, we obtain a morphism
a={a"}.

If there is another &’ such that &’¢ = ¥, then (&'-&)p =
0, so we have a commutative diagram (without dotted ar-
rows and red letters), where the first row is exact and the
second row is a complex:

0—-N—2oc0 L oot & &

| m| ] ]
¢ 0
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where 7 =o' —a”. As % =0, 89 is actually a map from
C%Ime ~ C?/Kerd® ~ Imd!. As Ej is injective, there is
ol : C! - E%such that 50 = ¢'d’. Now (5'-d’c1)d® = 51d°-
d’5Y = 0, hence, by the same reason, there is 02 : C? - E!
such that B! — d%! = o%d! or 8! = d°0; + 0ad;. Iterating
these condiderations, we obtain a homotopy {c"} between
a’ and a.

(2b) follows immediately from (2a) (explain it). O

Let F be a functor A-Mod — B-Mod. If C, = {C,,,d,} is
a complex from Com A, then FC, = {FC,,Fd,} is a com-
plex from Com B. Note that if C, ~ D,, then FC, ~ FD,
(why?). For every A-module M choose a projective reso-
lution PM and an injective coresolution E7,.

Definition D.14. (1) For every A-module M set L,F(M) =
H,(FPM) and R"F(M) = H*(FE},)).
(2) For every homomorphism « : M - N choose its ex-
tensions to resolutions and coresolutions af : PM —
PN and a3, : B}, - E3%. Define L,F(a) = H,(Fal)
and R"F(«a) = H"(Fa},).

Thm.[D.13] implies that these definitions do not depend
on the choice of resolutions and extensions of homomor-
phisms to resolutions. Therefore, we obtain sets of func-
tors LF = {L,F} and R"F = {R"F}. They are called, re-
spectively, the left derived and right derived functors of the
functor F'. If F is a contravariant functor, we define its
right derived as H"(FPM) and left derived as H,(FE},).
Note that, as F' reverse the directions of arrows, it is con-

venient to use upper notations for RF and lower notations
for LF.

An immediate cosequence of these definitions are the fol-
lowing properties. We leave their proofs as easy exercises.
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Proposition D.15. (1) If a module P is projective and
F is a covariant (contravariant) functor, L,F(P) =0
(respectively, R"F(P) =0) if n > 0.

(2) If a module E is injective and F is a covariant
(contravariant) functor, R"F(FE) = 0 (respectively,
L.F(E)=0) ifn>0.

(3) If the functor F' is left exact (right exact), then ROF ~
F (respectively, LoF ~ F).

(4) If the functor F is exact, R"F =0 and L,F =0 for all
n > 0.

Example D.16. (1) If we fix a module M, we can con-
sider the functor Hom4 (M, —). Its right derived func-
tors are denoted by Ext'y (M, —). By definition, Ext"y (M, N)
is the n-th cohomology of the complex Hom 4 (M, E;).

(2) On the other hand, fixing a module N, we can de-
fine right derived functors of Homy(—, V) which are
denoted by Ext’y(-,N). This time Ext’y(M,N) is
the n-th cohomology of the complex Hom4(PM, N).
Certainly, it causes ambiguity, but actually both def-
initions give the same result as we shall see later.

(3) If we fix a module M, we can also consider the func-
tor M ®4 —. Its left derived functors are denoted
by Tor2(M,-). By definition, Tory(M,N) is the
n-th homology of the complex M ®4 PN. Again,
the same result is obtained if we fix N and calculate
Tory (M, N) as the n-th homology of PM @4 N.

The main property of derived functors is the long exact
sequence arising from the following lemma.

Lemma D.17. For every exact sequence of modules 0 —

My 5 M, LA Ms — 0 there are commutative diagrams of
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complexes with exact rows

0 My~ My —"o My —— 0

(D-Q) <P1l ~ 802L ) %l

0— Ef —2E E: —=0
and
0 pr-tr p2 o ps 0
D.3 ' )
DY o el e

0— M; == M, M 0

where (EF, ;) is an injective coresolution and (P!, ¢') is a
projective resolution of M,;.

Proof. We start from the commutative diagram

0 0 0
a B
0— M, M, M 0
¥1 P2 ¥3
a? B°
0— B g P g g
1 o 3
| R N
0 0 0

where
e o1 and 3 are some embeddings M; and M3 into in-
jective modules.
e E)=EYa EY and ¢, = ((p‘ilﬁ), where ¢’ : My — EY is
such that ¢'a = ;.
e o' and 9 are the natural embedding and projection.
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e L; = Coker ¢, 1; are the natural surjections and o/
and 3’ are induced by o! and 1.

All columns and the first two rows are exact by construc-
tion. By 3 x 3 lemma, the third row is also exact. Now
we can apply the same construction to the exact sequence

0 — L — Ly = L3 — 0, which gives the terms E} together
with differentials d? and morphisms o' and f'. Iteratlng,
we obtain diagram (D.2)). Diagram is constructed
analogously (restore the details). [

Theorem D.18 (LES theorem). Let 0 — M; 5 M, LA
M5 — 0 be an ezact sequence of A-modules. For every (co-
variant) functor F : A-Mod - B-Mod there are homomor-
phisms 6" : R"F(M;3) —» R™'F(M;) and 6, : L,F(M;3) —
L, 1F(My) such that the sequences

RYF(« RF 0
0 ——— ROF(M,) o ROF (M) P ROP(0ty) 2

R'F(a) R'F(B)
—_— —_—

RIF(M,) RIF(M;) RIF(M;3) -~ ...
R™F(B) R"F(Ms) 5"

+1F n+1
D Ry S

R"F
RPF (M) — )
R™F(a)

R"F(Ms)

Rn+lF(M1) Rn+1F(M )

and

Lons Lons
e Lo FOM) D ) D R

L. P —2 1 p(y) =P 1, F(ag) —2 s
T F(My) 2 LR O 1 Ry s

LoF(a) LoF(B)
_— _—

— LoFM,) LoF(M2) LoF(M3) ——0
are exact.
We propose the reader to formulate the analogous theorem

for contravariant functors.

Proof. We use the diargam (D.2). As all modules E are
injective, all sequences 0 — E}' - EJ — kY — 0 split, hence
remain exact after applying the functor F'. Therefore, we
obtain the exact sequence of complexes 0 - FEf - FES —
FE; - 0. The long exact sequence for the right derived
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functors is just the long exact sequence for this exact se-
quence of complexes. For the left derived functor use the
diagram ([D.3]). ]

Corollary D.19. (1) Let 0 > M 5 E M >0 be an
exact sequence with injective module E. Then for ev-
ery covariant (contravariant) functor F, R"F(M) ~
R™IF(M') if n > 1 and R'F(M) ~ Coker RVF(5)
(respectively, L,F(M) ~ L,,F(M") if n > 1 and
LiF(M) =~ Ker LyF(8)).

(2) Let 0 - M’ 5P S M 50 be an exact sequence

with projective module P. Then, for every covariant
(contravariant) functor F', R"F(M) ~ R*1F(M') if
n > 1 and R'F(M) ~ Coker RF(3) (respectively,
L,F(M) ~ L, F(M") ifn>1 and L1F(M) ~ Ker LoF(p3) ).

D.3. Ext and Tor. We are going to prove that both def-
initions of Ext and Tor (whether we fix the first or the
second argument) give the same results. For the moment
we denote Exty (M, -) = R"Homy (M, -) and Ext’y(-, N) =
R"Homy(—, N), as well as Tor (M, -) = L"(M ®4 ) and
Tor (-, N) =Ln(-®4 N).

Theorem D.20. Ext’y(M, N) =~ Ext" (M, N) and Tor (M, N) =
Tord (M, N) for every modules M, N.

Proof. We sketch a proof of the first assertion; the sec-
ond one can be proved quite analogously. As every ho-
momorphism £ : N - N’ induces a homomorphism - :
Hom (-, N) - Hom (-, N'), it induces a morphism of the
derived functors Ext’y(—, N) — Ext’ (-, N') which we de-
note by -£". One easily sees that these morphisms com-
mute with the homomorphisms of the LES for derived func-
tors Ext’y (=, N) and Ext’; (-, N'). The following properties
hold:
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(1) Ext’i(—, F) =0 if E is injective (since Homy (-, E) is
exact).

(2) If 0 > Ny > Ny > N3 — 0 is an exact sequence, then,
for every complex P, with projective components the
induced sequence of complexes

0 - Hom4(P*, N7) > Hom4(P*, No) - Homy(P*, N3) - 0

is also exact. If P* = Py, it gives a LES for Ext’y (M, N,)
which is of the same shape as the LES for the func-
tors Ext’y(M, N;). Moreover, they both starts from
Hom (M, N;).

(3) Therefore, if 0 > N’ 5 E - N - 0 is an exact se-
quence with injective E, Ext’y (M, N) ~ Ext’y (M, N')
for n> 1 and Ext (M, N) = Coker(-al).

(4) As the last assertion also holds for Ext’s(M, N), we
can prove isomorphisms Exty (M, N) ~ Ext’y(M, N)
by induction. [

Here are some calculations of Ext and Tor. They will be
used in the proof of the theorem of Krull-Akizuki (Thm.|19.6]).

Example D.21. Let I c¢ A be an ideal. The exact sequence
0—>1-A- A/l -0 induces exact sequences

0 — Anny [ — M > Homy (I, M) - Exty(A/I, M) -0
and

0 — Tori'(A/I,M)—>IT®s M — M — M/IM -0,

where 1 maps an element v € M to the homomorphism
x> xv (x el). Hence Extl(A/I, M) ~ Cokern and

Tory (A/I, M) ~Ker(I @4 M - IM).

In particular, if a € A is a non-zero-divisor, then Ext!, (4/aA, M) ~
M JaM, Tor{(AjaA, M) ~ Annysa, so we obtain the evi-
dent exact sequence

0 Annya—- M S M — M/aM - 0.
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If M is of finite length, all modules in the last sequence are
of finite length. Taking the alternative sum of length, we
see that {4(M/aM) = 4(Annys a)

Ext! is closely related to extensions of modules.

Definition D.22. (1) A eztension of a module M with
the kernel V (or an extension of N with the quotient
M) is an exact sequence E: 0 > N 5 X LMo

(2) The extensions E and E' : 0 - N 5 X7 N M -0
are called equivalent if there is a homomorphism 7 :
X — X' such that o/ = ya and § = 'y, that is the
diagram

(D.4) 0—N-x 2 n
|,
0 N X' M 0

is commutative. Then we write E ~ E/. One easily
sees that ~ is an equivalence relation.

(3) We denote by Ex(M, N') the set of equivalence classes
of extensions of M with kernel N.

(4) The extension E induces the connecting map og :

Hom (M, M) - Ext!(M,N). We denote by e(E)
the element g (idys) € Extl (M, N).

Theorem D.23. The map € establishes a bijection betweem
Ex(M,N) and Ext! (M, N).

Proof. The diagram ([D.4]) induces a commutative diagram

(0%

Hom(M, M) 2~ Extly(M, N)

Hom (M, M) 2~ Ext! (M, N)

Hence e(E) = e(E’) and & can be considered as a map
Ex(M,N) - Exty (M, N).
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On the other hand, choose an exact sequence R : 0 —

K5 P2 M0 with projective P. Then 0z induces an
isomorphism Coker(-¢) ~ Ext'(M, N). Given a homomor-
phism ¢ : K - N, let X = N @& P/{(¢(v),-&(v)}, where
v € K. We denote by [u,p] the coset of (u,p) in X and
define homomorphisms o : N - X and §: X — M setting
a(u) = [u,0] and Blu,p] = n(p). One easily verifies that

the sequence E(¢):0 - N 5 X LM > 0is exact, hence
is an extension from Ex(M, N). One can also check that if
@' = ¢+ 1€ for some ¢ : P - N, then E(¢') » E(¢) (check
it). Hence, we can write E(¢), where € = dp(¢), instead of

0.

Exercise D.24. Verify that e(E(¢)) =€ and E(e(E)) ~ E.
It means that € ist indeed a bijection.

]

APPENDIX E. KRULL-SCHMIDT-AZYMAYA

Recall that a ring R (maybe noncommutative) is called
local if the set of non-invertible elements of R is an ideal
t =rad A. Obviously, it is a unique left and a unique right
ideal of R and 1 - a is invertible for every a € .

Theorem E.1 (Krull-Schmidt-Azumaya). Let M; (1< <
n) be A-modules such that B; = Endg M; are local rings,
M =@, M;.
(1) If M ~ N& N', there is a subset 1€ {1,2,...,n} such
that N ~ EBieI Mz and N’ ~ @iﬂ Mz
(2) If M =~ @j% N;, where Enda N; are also local, then
t = 7 and there is a permutation o of indices such that
Mi ~ Nm'.

Proof. We do the following steps.

Claim 1. Let M, N be A-modules such that Endg M s local
with the maximal ideal ¢, o : M - N and 8 : N - M are
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homomorphisms. If Ba ¢ ¢, there is o' : N - M such that
o'a=1idys, so N=Ima®Kera' and a: M > Ima.

Proof. If fa ¢ ¢, it is invertible: vfa = idy; and we can set
o' =vp. ]

Claim 2. Let M,M',N,N' are A-modules, Endqa M and
Endy g M' are local and M & N ~ M' & N'. Fither M ~ M’
and N ~ N' or there is a module L such that N ~ M' & L
and N'~M & L.

Proof. We denote by t the maximal ideal of End4 M. Let
an isomorphism o : M@®N > M'@ N’ is given by the matrix
(ol a2) and ! is given by the matrix (g; gi ) Then proq +
Boag = idys. Let first f1aq ¢ v. As M’ is indecomposable,

a: M S5 M'. If v is the automorphism of M & N given
by the matrix (idM B ), then a~y = (al y ) As a7y is an

0 idpy as ay
isomorphism, so is also oy : N - N'.

Let now i € v. Then fByag ¢ ¢, hence there is v : N/ —»
M such that vasg = idys. It implies that N/ = Imag @ L,
where L = Ker~y. Moreover, if ¢ : L - N’ is the embedding
and 7 : N' - L is the projection, agy+um = idys (check it).
Then the isomorphism o : M®&N — M'@MeL - MeM'&L
is given by the matrix

idy yoy
Q= a1 9
0 Oy

and the isomorphism o' : M e M'® L - M & N is given
by the matrix

. Baas Pr Pat
Baaz B3 Bar)”
(Verify that fa =id.) As fyas ¢ ¢, the first part of the
proof shows that N ~ M'& L. O

The theorem is obtained from Claim 2 by an easy induc-
tion (explain the details). O
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APPENDIX F. NAGATA’S EXAMPLE

Theorem F.1. Let A = k[xy,x9,...,2,,...], where k is
a field, 0 = dy < dy < d3 < ---<d, < ... be a sequence
of integers, p; = (Ta 1, 2a,,), S =ANUZ p; and A =
A[S™1]. The ring A is Noetherian and dim A = sup; (d,; -
d;), so it is infinite if these differences are unbounded (for
instance, if d; = i?).

We prove this result in several steps.

Claim 1. If I c A is an ideal such that I nS = @&, that is
I c U pi, then I € p; for some i. Therefore, prime ideals
of A are pfl, where p is a prime ideal of A contained in
some p;, and maximal ideals of A are p;A.

Proof. Let I = I nk[x1,29,...,24,,,]. Find the smallest k
such that I, # 0. I € U, pink[z1, 29, ..., 24, ]. Therefore,
Iy € p;nk[xy,x9,...,24,,,] for some ¢ < k. Choose the
minimal possible i. If [ >k, also I; € p; nk[z1, 29, ..., 24, ]
for some j < I. Obviously I ¢ p; nk[z1,29,...,24,,] if
j > k. Therefore, j < k and, as ¢ was chosen minimal, j =1
and I € p;. [

Claim 2. A is Noetherian.

Proof. Every localization flpi 4, is Noetherian. Evidenly,

any element from A is contained only in finitely many of
the ideals p; A. Therefore, we can apply the following fact.

Lemma F.2. Let R be a ring such that Ry is Noetherian
for every mazrimal ideal m € R and every element a € R s
contained only in finitely many maximal ideals. Then R s
Noetherian.

Proof. Let I be an ideal of R, my, mo, ..., m,, be all maximal
ideals containing I. There are elements a;; € I (1< j < k;)
such that I, is generated by a;;/1. Let J ¢ I be generated
by all elements a;; (1<i<m,1<j<k;). Then I = Jy for
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all m € max.spec R. Therefore I = J is finitely generated.
O]

Claim 3. htp; = d;y1—d;. Therefore, dim A = sup; (d;;1—d;).
Proof. htp; < diy1 — d; since p; = (zg.41,...,2q,,,). On the

other hand, ht p; 2 div1 — dl’, since p; > (Idi+2, . ,xdm) D
(4,43, --,2d,,,) 2 ... 20is achain of prime ideals of length
d;s1 — d;. U

It accomplishes the proof of the Nagata’s theorem.
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