Cohen-Macaulay Modules over
Cohen-Macaulay Algebras

Yuri A. Drozd

Introduction

This survey is devoted to three main subjects concerning tame and
wild Cohen-Macaulay algebras (all of Krull dimension 1 and without
nilpotent ideals):

1. Families of Cohen-Macaulay modules and the number of param-
eters in such families:
(a) construction of almost versal families with projective bases;
(b) definition of the number of parameters;

(c) semi-continuity of this number in families of algebras.
2. Tame and wild algebras:

(a) definition via the universality property;

(b) definition via the number of parameters in families of mod-
ules;

(c) tame/wild dichotomy and equivalence of definitions;
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(d) tame and wild algebras in families of algebras.
3. Criteria of tameness for concrete classes of algebras:

(a) commutative case;

(b) case of 2 X 2 matrix rings.

For technical reasons we consider only the “geometrical situation”,
where all algebras are those over some base filed (usually supposed
algebraically closed).

Most of these results have been obtained by G.-M. Greuel and the
author. Here the proofs are mainly sketched (and sometimes omitted).
For technical details we refer to [8]-[11].

1. Basic Definitions

1.1. Cohen-Macaulay algebras

Throughout this paper we use the following finitions and notations.

Definition 1.1.1. 1. Call a noetherian commutative ring R Cohen-
Macaulay ring if all its localizations at prime ideals are Cohen-
Macaulay local rings [22].

2. For a Cohen-Macaulay ring R denote CM (R) the category of
mazimal Cohen-Macaulay R-modules, i.e. such (finitely gener-
ated) Cohen-Macaulay R-modules M , that dim M, = dimRy,
for each maximal ideal m C R. Later on we usually omit the
word “maximal” in this description.

3. Call a ring A Cohen-Macaulay algebra if it is an algebra over
some Cohen-Macaulay ring R and belongs to CM (R) as R-
module. To precise, if necessary, we call it also Cohen-Macaulay
R-algebra.

4. For a Cohen-Macaulay R-algebra A denote CM (A) the cate-
gory of (mazimal) Cohen-Macaulay (left) A-modules, i.e. those,
which belong to CM (R) considered as R-modules.

5. Call a Cohen-Macaulay algebra (in particular, a Cohen-Macau-
lay ring) reduced if it contains no non-zero nilpotent ideals and
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analytically reduced if, for each maximal ideal m C R, its m-
adique completion is also reduced.

If a Cohen-Macaulay ring R is reduced, its total ring of fractions Q =
Q(R) is a direct product of fields and any Cohen-Macaulay R-algebra
A is an order in the artinian Q-algebra QA = Q ®r A. Moreover, if
A is also reduced, then the algebra QA is semi-simple.

Definition 1.1.2. Let R be a reduced Cohen-Macaulay ring and A
a Cohen-Macaulay R-algebra.

1. For a Cohen-Macaulay A-module M call its rational length, de-
noted by £ (M), the length of the QA-module QM = Q®r M .

2. Call a Cohen-Macaulay A-module M irreducible if it is of ratio-
nal length 1, i.e. the QA-module QM is simple.

3. Call over-ring of A any Cohen-Macaulay R-algebra I' such that
A CT CQA. If A has no proper over-rings, it is called mazimal
order (or, if necessary, mazimal R-order).

4. Call a Cohen-Macaulay algebra bound if it has at least one max-
imal over-ring (i.e. an over-ring, which is a maximal order).

5. Denote crit (A) the set of all such prime ideals p C R, that A,
is not a maximal order (the critical set of A).

Remind a criterion of boundness [7].

Proposition 1.1.3. The following conditions are equivalent for a Coh-
en-Macaulay ! R-algebra A:

1. A is bound.
2. The over-rings of A satisfy the maximality condition.

3. For each prime ideal p C R of height 1 the Ry-algebra A, is
analytically reduced and the critical set crit (A) contains only
finitely many prime ideals of height 1.

'Really this criterion holds for a wider class of algebras than Cohen-Macaulay
ones, but we do not need such generality.
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We need also the following well-known relations between “global” and
“local” Cohen-Macaulay modules and algebras as well as between “non-
complete” and “complete” situation. (cf. [3],[20]).

Proposition 1.1.4. Let R be a reduced Cohen-Macaulay ring of Krull
dimension 1 or 2. Suppose given a Cohen-Macaulay R-module M and
for each prime ideal p C R of height 1 given a Cohen-Macaulay Rj-
module N(p) such that QN(p) = QM, for all p and N(p) = M,
for almost all p (i.e. for all but a finite set). Then there exists a
Cohen-Macaulay R-module N such that N, = N(p) for all p (of
height 1).

Of course, if each of these given modules is r eally a Cohen-Macaulay
algebra (or a module over such algebra), then the resulting module N
is also Cohen-Macaulay algebra (or module over it).

Proposition 1.1.5. Let R be a local analytically reduced Cohen-
Macaulay ring, A be an analytically reduced Cohen-Macaulay R-alge-
bra. Denote by ~ the completions with respect to the unique maximal
ideal of R. Then:

1. If M and N are such A-modules that M ~ N, then M ~ N .

2. If N’ is a Cohen-Macaulay A-module such that QN’ ~ QM for
some Cohen-Macaulay A-module M , then there exists a Cohen-
Macaulay A-module N such that N/~ N.

3. If N is isomorphic to a direct summand of M, then also N is
isomorphic to a direct summand of M .

Remind also the notions related to ranks of Cohen-Macaulay modules.

Definition 1.1.6. Let A be a reduced Cohen-Macaulay algebra. Con-
sider all pairwise non-isomorphic simple QA-modules Wy, Wy, ..., W;.

1. For any Cohen-Macaulay A-module M let QM ~ @& rW;.
Denote r (M) = (r1,r2,...,7s) and call it vector-rank of M .

2. For any vector r € N* denote CM (r,A) the set of all Cohen-
Macaulay A-modules of vector-rank r.

For a vector r = (ry,7y,...,7,) denote |r| = 37_, r;. Then, of course,
v (M)] = £x(M).



COHEN-MACAULAY MODULES

1.2. Dense subrings

Definition 1.2.1. Let A be a subring of some ring B. Call A dense
in B if any simple B-module U is also simple as A-End 4U-bimodule.

The following technical lemma was the reason for this notion.

Lemma 1.2.2. Let D be a skew-field, B = Mat (n, D) (the ring
of n x n matrices with entries in D) and A C B a dense subring.
Consider the set W = Mat (m x n, D) of m xn matrices with entries
in D as B-module (in the natural way) and suppose that V C W is
such A-submodule in W that BV = W. Let m = gn 4+ r with
0 < r < n. Then there exists a B-automorphism ¢ of W such that
o(V) contains the matrices:

Ei=(E 0 ... 0 0),E,=(0 E ... 0 0), ...,
E,=(0 0 ... E 0)
and a matrix of the form (Y7 Y, ... Y, Y'), where

E denotes the n X n unit matrix,

0 denotes the n X n zero matrix,

0’ denotes the n X r zero matrix,

Y; are some n X n matrices (i =1,2,...,q),
Y’ is an n X r matrix of rank r.

(Of course, if r = 0, then 0' and Y' are empty, so the assertion
means that V' contains a B-basis of W ).

For the proof (consisting of some straightforward calculations) v. [10].
Later on, we use mainly the following corollary of this lemma.

Corollary 1.2.3. Let A C B be a dense subring. Suppose that B =
B/rad B is an artinian ring and A = A/(ANrad B) contains an infinite
central subfield F' of B (e.g., this is the case if B is an artinian F-
algebra and A its subalgebra). Let V' C nB be a B-submodule such
that BV =nB. Then V contains a B-basis of nB.
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Proof. Of course, we may suppose that B =B and A=A,s0o B =
s B; with B; simple artinian. Put A; = pr;(4) and V; = pr;(V),

where pr; is the projection of B onto B;. Then A; is dense in B; and

B;V; = nB;, hence, each V; contains a B;-basis {b;; | j=1,2,...,n}

of nB;. Choose e;; € V; such that pr;(e;;) = bj; and consider, for

each n-tuple (A1, Ag,...,A,) € nF', the elements e;(A, Ag,...,\y) =
i1 Aieij € V. The sets

T ={ (A1, A2, -, An) | priej(Ar, Ag, ..., Ay) form a basis of n;B; }
are Zariski open in nF and non-empty. As F' is infinite, their inter-
section is also non-empty q.e.d.

The main examples (for our purpose) of dense subrings are obtained

in the following way.

Definition 1.2.4. 1. Let D be a skew-field, B = Mat (n, D),
U =nD (considered as B-module) and F={U =U, DU; D
D...DU; =0} be aflag of D-subspaces in U. Put

E(F)={a€eB| alU; CU; foralli}
and call it a flag subalgebra in B.

2. If B =1 Bx with all By simple artinian, call flag subalgebra
in B any subalgebra of the form £ =[], &, where each & is a
flag subalgebra in By .

The following quite obvious “existence lemma” enables us to construct
dense subrings.

Lemma 1.2.5. Let B be a semi-simple artinian ring, £ a flag subal-
gebra in B and A C £ a subring. Then there exists a flag subalgebra
E" such that ACE C & and A is dense in &'.

Flag algebras are closely related to hereditary orders, i.e. hereditary
Cohen-Macaulay algebras of Krull dimension 1. Namely, one has the

following description of the hereditary orders in local case (cf. [20]).

Proposition 1.2.6. Let R be a reduced local Cohen-Macaulay ring
of Krull dimension 1, 2 a maximal R-order. Then:
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1. Q is hereditary.

2. If £ is any flag subalgebra in /rad 2, then its pre-image in 2
is also hereditary.

3. Any hereditary R-order can be obtained in this way.
Taking into account Proposition 1.1.4, we get the following corollary.

Corollary 1.2.7. Let A be a bound Cohen-Macaulay algebra of Krull
dimension 1 and 2 be its hereditary (e.g. maximal) over-ring. Then
there exists a hereditary over-ring €’ such that A C Q' C Q and A
is dense in .

We need also the following simple result concerning extensions of the
base field.

Proposition 1.2.8. Let B be an algebra over a separably closed field
F such that B/rad B is finite-dimensional, A be a dense subalgebra
of B and K a separably generated extension of F'. Then A®p K is
also dense in B ®p K .

2. Families of Modules

2.1. Sandwiched families

From now on let R be an analytically reduced Cohen-Macaulay ring
of Krull dimension 1, which is an algebra over a field k such that all
residue fields R/m, m being maximal ideals, are finite-dimensional
over k. Moreover, in this section we suppose the ring R to be local.
Fix an analytically reduced Cohen-Macaulay R-algebra A. For an
algebraic k-scheme X with structure sheaf O, = O, denote Ax =
A®c O and A(z) = A @ k(z), z being a point of X and k(z) its
residue field.

Definition 2.1.1. Let X be a k-scheme and M a coherent sheaf of
Ax-modules. Call M family of Cohen-Macaulay A-modules on X
(or with the base X ) if the following conditions hold:

1. M is torsion-free over R.

2. M is flat as the sheaf of O-modules.
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3. For each non-zero-divisor a¢ € R the sheaf M/aM is also flat
over O.

It is easy to see that, under conditions 1 and 2, the condition 3 is
equivalent to the following one:

3'. For each point z € X, the A(z)-module ) = M ®p k(z) is
Cohen-Macaulay one.

Call the dimension dim X dimension of this family.

Among the families of Cohen-Macaulay modules, the following class
will be of special interest for us.

Definition 2.1.2. Let I' be an over-ring of A. Call a coherent sheaf
M of Ax-modules modules sandwiched family (with respect to T' and
with the base X ), if:

1. nAx C M Cnl'x for some n (called the rank of M).

2. The Ox-sheaf nl'x/M is locally free of some constant rank d
(called the codimension of M).

One can easily see that each sandwiched family is really a family of
A-modules with the base X . The following rather simple fact shows
the role of sandwiched families.

Proposition 2.1.3. Suppose k to be separably closed and all fields
k(z) for x € X separably generated over k (e.g. k algebraically
closed). Let T' be an over-ring of A such that A is dense in I' and
M a family of Cohen-Macaulay A-modules on X such that I'’M is
flat over 'y . Then there exist an open dense subscheme Y C X
and a projective I'-module P such that M' = M @ (P ® Ox) is
isomorphic to a sandwiched family with respect to I'. Moreover, one
can choose P in such a way that the rank of M’ were not greater than
max { IAM(g) } , where ¢ runs through the minimal points of X (i.e.
the general points of its irreducible components).

Proof. Of course, we may suppose X irreducible with the generic
point g. The I'(g)-module I'’M(g) is finitely generated and flat,
hence, projective [3]. Then one can easily choose a projective I'-module
P such that TM(g) ® P(g) ~ nI'(g) for some n < ZyM(g). Replac-
ing M by M@ Px , we may now suppose that T’M(g) = nI'(g) . Due
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to Proposition 1.2.8 and Corollary 1.2.3, we may suppose that M (g)
contains a basis of 'M(g). Then the same is true for each point of
an open subscheme Y C X . Hence, the restriction of M on Y is
isomorphic to such family A that nAy C N C nl'y. Shrinking Y,
we may also suppose that nl'y /A is locally free over Oy  q.e.d.

Remark 2.1.4. If the over-ring ' is hereditary, the condition “I'’™
is flat over I'x” becomes superfluous: it is always satisfied on an open
dense subscheme of X (namely, that, on which the sheaf TM/M is
flat over O).

One can easily construct some universal sandwiched families in the fol-
lowing way. Let T' be an over-ring of A. Put ® =T'/A and consider
the Grassmanian Gr = Gr(n®, d), i.e. the variety of subspaces of codi-
mension d in n® [18]. The A-submodules form in this Grassmanian a
closed subvariety B = B(n,d; A,T"). Denote L the restriction on B of
the canonical locally free sheaf on Gr and F = F(n,d; A,T") the kernel
of the natural epimorphism nl's — L. The universal property of the
Grassmanian implies immediately the following universal property of
B and F.

Proposition 2.1.5. F is a sandwiched family of A-modules with re-
spect to I' and for each sandwiched family M with a base X of
A-modules with respect to I' of rank n and codimension d there ex-
ists a unique morphism ¢ : X — B such that M = ¢*(F).

Taking into account Proposition 2.1.3, we get also the following “ver-
sality property” of the families F(n,d; A, T').

Corollary 2.1.6. Under the conditions of Proposition 2.1.3 there ex-
ist:

e 3 descending ch ain of closed subschemes
X=X02X12X,2...2X,=0;

e a set of projective I'-modules { P, | i =1,2,...,m};

e a set of morphisms {¢;:Y; = B(n;,di; A, T) | i=1,2,...,m},
where Y; = X; 1\ X;,

such that My, @ (P, ®x Oy;) ~ ¢fF(n;,d;; A, T) forall i =1,2,...,m
and some values n;, d; .
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Remark 2.1.7. 1. One can easily give an upper bound for neces-
sary values of n;. For instance, we can always suppose, that
ni < 0x(M(z)), where z is any closed point and °, as before,
denotes the completion.

2. According to Corollary 1.2.7, one can always choose a hereditary
over-ring I' such that A isdensein I'. Then, as remarked above,
Corollary 2.1.6 can be applied to any family of Cohen-Macaulay
A-modules. This shows that the families F(n,d; A,T") are really,
in some sense, “versal”.

2.2. Number of parameters

Fix now an over-ring I' of the Cohen-Macaulay algebra A and put
B =B(n,d;A,T), F = F(n,d; A,T'). Find a two-sided TI'-ideal I C
rad A of finite codimension (over k) and put A = A/I, B =T/I.
We identify Gr(n®,d) with the closed subscheme of Gr(nB,d) con-
sisting of all subspaces containing nA. Then B also becomes a closed
subscheme in Gr(nB,d). We consider the elements of nB as rows of
length n with entries from B and identify Autg(nB) with the full
linear group G = GL (n, B) acting on nB by the rule: g-v =vg™'.

Each subspace V C nB defines a A-submodule M C nI" and the
following fact is quite obvious.

Proposition 2.2.1. If M and M’ are two A-submodules of nI' such
that 'M =T'M' =nl', then M ~ M’ if and only if M' = o(M) for
some o € Autp(nl').

Corollary 2.2.2. Two subspaces V and V' belonging to B defines
isomorphic A-modules if and only if V! = ¢ -V for some element
g€ GL(n, B).

Consider the elements of nV , where V is a subspace of nB,as nxn
matrices (over B). Then the following is quite evident.

Proposition 2.2.3. Let g € G, V € B. Then ¢g-V € B if and
only if ¢ € GNnV. Hence, (G-V)NB ~ (GNnV)/St(V), where
St(V)={geG|g-V=V}.

10



COHEN-MACAULAY MODULES

As G is open in Mat(n, B), GNnV is open in nV . Therefore,
dim (GNnV) =dimnV = n(bn — d), where b = dim B, and dim ((G -
V)N B) = n(bn — d) — dimSt (V). Now well-known properties of
stabilizers in algebraic groups imply the following corollary.

Corollary 2.2.4. The set B; = {Ve€B|dm((G-V)NB) <i} is
closed in B for each integer i .

Using Corollary 2.1.6 and Remark 2.1.7, we get analogous result for
any family of Cohen-Macaulay modules.

Definition 2.2.5. Let M be a family of Cohen-Macaulay A-modules
with some base X, M some Cohen-Macaulay A-module. Denote:

L X(M)={ze X | M(z)~ M(z) =M k(z)}.

2. Xi = Ugimx(an<i X(M), where M runs through all possible
Cohen-Macaulay A-modules.

3. par (M) =max{dimX; —i | i € N}, the number of parameters
in the family M.

4. par(n,d;A,T) = par (F(n,d; A,T)) and
par (n;A,T') = max{par(n,d;A\,T') | d € N}, where T' is an
over-ring of A.

5. p(n,A) =max{par(n;A,T) | I is an over-ring of A }.

As par (n,d; A,T) < par (n,d+ nc; A, T") for two over-rings I' C I” of
A, where ¢ =dim (I"/T"), one can consider in Definition 2.2.5 (8) only
mazimal over-rings.

Corollary 2.2.6. Under the notations of Definition 2.2.5:

1. X (M) is a constructible subset in X (i.e. a finite union of locally
closed subsets).

2. The subsets X; are closed in X .
(This claim gives sense to Definition 2.2.5(3) ).

3. par (M) < p(n,A), where
n= maX{ZA(M(:E) | x is a closed point of X }
(if X is connected, the last number does not depend on the choice

of ).
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2.3. Families of algebras

In this section it is convenient to consider Cohen-Macaulay algebras not
only over rings but also over schemes. The corresponding definitions
are quite evident. We fix a field k and consider only k-algebras and
k-schemes.

Definition 2.3.1. 1. Call a scheme X Cohen-Macaulay if all its
local rings Ox, are Cohen-Macaulay .

2. Call Cohen-Macaulay algebra over a Cohen-Macaulay scheme X
a coherent sheaf A of Ox-algebras such that, for each point
z € X, the stalk A, is a (maximal) Cohen-Macaulay Ox ,-
module.

All definitions of Section 1.1 (e.g. those of reduced, analytically reduced,
mazimal algebras, over-rings etc.) can be applied to this more general
situation. Omne can also construct Cohen-Macaulay modules and al-
gebras locally, as in Proposition 1.1.4 (if dimX < 2). The following
proposition follows easily from [3, Ch.V, §3.2] and [7].

Proposition 2.3.2. If X is an algebraic scheme, then any reduced
Cohen-Macaulay algebra is also analytically reduced.

Consider now the case of Cohen-Macaulay algebras over a reduced curve
C. If ' is an over-ring of such algebra A, then I'. = A, for almost
all points ¢ € C'. Hence, the foll owing numbers are well-defined:

par(n,d; A,T') = > par(n,d;A;,T);

ceC
par (n; A,T') = 3 par(n;A.,Te);
ceC
p(m;A) = > p(nA).
ceC

We are really interested now in families of Cohen-Macaulay algebras
in the following sense.

Definition 2.3.3. Let f:Y — X be a morphism of schemes and £
be a coherent sheaf of Oy-algebras. Call (L, f) family of (reduced)
Cohen-Macaulay algebras with the base X if the following conditions
hold:
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1. f is flat morphism and f,(£) is flat Ox-module.

2. Y(z) = f~'(z) is a reduced curve over k(z) for each point z €
X.

3. L(z) is a (reduced) Cohen-Macaulay algebra over Y (z) for each
zeX.

Definition 2.3.4. Let (£, f : Y — X ) be a family of Cohen-Mac-
aulay algebras. A family of over-rings of it is, by definition, a family
(L', f) (with the same f) such that £ D £ and f,(A’'/A) is flat
coherent O x-module.

The last condition also implies that, for each z € X, L'(z) is an
over-ring of £(z). Given such family of over-rings, we can define the
following functions on X :

par(z,n,d; L, L") = par(n,d; L(z), L (z));
par (z,n; L, L") = par(n;L(z), L (z)).

If the family of over-rings is fixed, we omit the letters £ and £’ in the
notations of these functions.

Theorem 2.3.5. For each family of over-rings £’ O £ with the base
X the functions par (z,n,d) and par (z,n) are upper semi-continuous,
i.e. for each integer i the sets

Xi(d) = {z€ X | par(z,n,d)>i};
X; = {z€ X |par(z,n)>i}

are closed in X .

Proof. As X; = U;X;(d), we only have to prove that X;(d) is
closed. Moreover, we suppose X to be a smooth curve, hence dmY =
2. Let N = L'/L. Consider the relative Grassmanian Gr(n/\/, d)
(over X ) and its closed subscheme B (again over X ) parameteriz-
ing the L-submodules. Choose the biggest two-sided L'-ideal Z C L.
Then L/Z is torsion-free over Ox , hence, flat. Therefore, J = L'/T
is also Ox-flat. As in Section 2.2, identify B with a closed subscheme
of Gr(nJ,d) and consider the group scheme GL(n, J) (over X)

13
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acting on the last Grassmanian. The same observations as in Sec-
tion 2.2 show that B; = {v € B | dimSt(v) > j} is closed in B. As
B is proper over X, its projection Z; is also closed (in X ). Hence,
the sets Z;; = {z € Z; | dimBj(z) > i+ j} are also closed. But, by
definition, X;(d) =U; Z;; q.e.d.

As for families of Cohen-Macaulay algebras, whose bases are smooth
curves, one can construct over-rings locally, we get also the following
corollary.

Corollary 2.3.6. The function p (n,L(z)) is upper semi-continuous
for any family £ of Cohen-Macaulay algebras.

For commutative case this result was obtained by Knérrer [17].

3. Tame and Wild Algebras

3.1. Definitions

From now on we suppose that k is an algebraically closed field, and
all Cohen-Macaulay rings R are local complete k-algebras of Krull
dimension 1 and such that R/m = k for the maximal ideal m C R. All
Cohen-Macaulay algebras are supposed reduced. For each k-algebra A
denote A—mod the category of finite-dimensional (over k) A-modules.

Definition 3.1.1. Let A be a Cohen-Macaulay R-algebra and A be
a k-algebra. Denote by CM (A, A) the category of finitely generated
A-A-bimodules M satisfying the following conditions:

1. M is torsion-free as R-module.
2. M is flat over A.

3. M(L) = M ®4 L is Cohen-Macaulay A-module for each L €
A —mod.

Put then (M|={M(L)| L€ A—mod}.

If A/I is finite-dimensional for each maximal ideal I C A, the last
condition is equivalent to the following one:

3'. For any non-zero-divisor a € R the A-module M/aM is also
flat.
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Call the bimodules from CM (A, A) families of Cohen-Macaulay A-
modules over A. Of course, if A is commutative, this notion coincides
with that of families of Cohen-Macaulay A-modules on Spec A (cf.
Section 2.1).

Definition 3.1.2. 1. Call a family M € CM (A, A) strict if the
following conditions hold:

(a) If L € A — mod is indecomposable, then also M(L) is
indecomposable.

(b) If L # L' for some modules L,L' € A — mod, then also
M(L) £ M(L).

2. Call a Cohen-Macaulay algebra A CM-wild (or simply wild) if,
for any finitely generated k-algebra A, there exists a strict family

M €CM (A, A).

It is well-known that really, to prove the wildness, one needs only to
construct a strict family over one of “standard” algebras. The most
known and used of them are:

e the free algebra k (z,y) in two generators;
e the polynomial algebra k[z,y] in two generators;

e the formal power series algebra k[[z,y]] in two generators.

Definition 3.1.3. Call rational family of Cohen-Macaulay A-modules
any one, whose base is a smooth rational curve over k.

Definition 3.1.4. Let S={ M, | i€ I, M; € CM (A, A;)} beaset
of families of Cohen-Macaulay A-modules (possibly, over different bases
A; ) indexed by some set I .

1. Denote |8| = UiEI |M| .

2. Call § ezhaustive if, for any possible r, almost all (up to isomor-
phism) indecomposable Cohen-Macaulay A-modules of vector-
rank r belong to |S|.
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3. Call 8§ locally finite if, for any possible r, the set
Sry={iel]| [M|NCM(r,A)#0}
is finite.

4. Call S strictif each M, is strict and M;(L) % M,(L') for any
i#jandany L€ A;—mod, L' € A; —mod.

Definition 3.1.5. Call a Cohen-Macaulay algebra A CM-tame (or
simply tame), if one of the following equivalent conditions (and hence
any of them) holds:

1. A is not CM-wild.

2. For any possible r = (ry,re,...,7s) there exists a d-parameter
family M of Cohen-Macaulay A-modules, with d < [r|, such
that any Cohen-Macaulay A-module of vector-rank r belongs to

M.

3. For any possible r there exists a 1-parameter family M of Coh-
en-Macaulay A-modules such that any indecomposable Cohen-
Macaulay A-module of rank r belongs to |M].

4. There exists a strict locally finite exhaustive set S of rational
families of Cohen-Macaulay A-modules.

It is quite clear that 4= 8= 2= 1. In the next section we will prove
that also 1= 4.

Remark 3.1.6. One can easily see that, if A is CM-wild, then there
is infinitely many ranks r such that there exists a strict family M of
Cohen-Macaulay A-modules with [M|NCM (r, A) # 0 and par (M) >
c|r|? for some constant c¢. Moreover, one can even suppose that
IM|NCM (r,A) consists only of indecomposable modules.

3.2. Tame/wild dichotomy

To prove Theorem 3.1.5, we need some results from the “matrix
problems” theory (cf. [6],[9]).
Let A and B be k-algebras and U be an A-B-bimodule. For a
(finitely generated) projective A-module P and a (finitely generated)
projective B-module @ put U(P,Q) = Hom(P,U ®5 Q).

16
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Definition 3.2.1. Define the category El = EI(U) of elements of the
bimodule U in the following way:

The set of objects ObEIl (U) (called elements of U') is the union
UP,Q U(P7 Q) '

The set of morphisms El (u,v) between the objects u € U(P, Q)
and v € U(P',Q') is the set of all pairs (o, ), where « €
Hom (P, P'), 8 € Homp(Q,Q'), such that va = fu.

(@, 8)(e/, ') = (ad, Bp'), where (a,B) € El(u,0), (¢/,5) €
El (w,u).

For any k-algebra ¥ we can define the (A ®¢ X)-(B &k X)-bimodule
Us =YX ® U ®kX. Therefore, we can define, just as above, families of
elements of the bimodule U, then wild and tame bimodules. In [6] the
analogue of Theorem 3.1.5 is proved for finite-dimensional bimodules.
In order to apply this result to Cohen-Macaulay algebras, we need
a slight generalization of it, namely, to the open subcategories in the
following sense.

Definition 3.2.2. Let U be a finite-dimensional bimodule.

1. A full subcategory X C EI(U) is said to be open if it satisfies
the following conditions:

(a) If ue X and v ~u, then v € X.

(b) udveX ifand only if u€ X and v e X .

(c) For each P and @) the intersection U(P,Q)NX is open in
U(P,Q) (in Zariski topology).

2. Given an open subcategory X C ElI(U), put, for any k-algebra
b))

?

X(E)={uecEl(Us) | u(L) e X forany L€ ¥ —mod } .

Now we are able to define wild and fame open subcategories just as
it has been done for Cohen-Macaulay algebras. In [9] the analogue of
Theorem 3.1.5 is proved for open subcategories.? To apply this result

2Really, in [9] the “tame/wild dichotomy” is proved for open subcategories in
the representation categories of bocses in the sense of [6]. But we are not going to
precise the corresponding definitions here, as the case of bimodules is quite enough
for our purpose.
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to Cohen-Macaulay algebras, use the following rather simple and more
or less standard observations (cf. e.g. [14] or [19]). Fix an over-ring T’
of a Cohen-Macaulay algebra A and a set M of indecomposable Coh-
en-Macaulay ['-modules. For the sake of simplicity we suppose M to
be finite. Denote add M the additive hull of M , i.e. the category of
all (finite) direct sums of modules from M, and CM (A, M) the full
subcategory of CM (A) consisting of all such modules M that T'M €
add M. Of course, if M consists of all indecomposable Cohen-Macau-
lay I'-modules, then CM (A, M) =CM (A) . Find a two-sided I'-ideal
I C rad A such that dimI'/I < co. Then IM C M CTM for any
Cohen-Macaulay A-module M and any homomorphism ¢ : M — M’
can be uniquely prolonged to the homomorphism I'y : TM — I'M’.
Put

A=A/I, N= Y L, B=Endr(N)/Homp(N,IN)
LeM

and U = N/IN .

Consider U as A-B-bimodule. Then the category EI(U) is well
defined. Consider also a new category Sub , whose objects are pairs
(N/IN,V), where N € M and V is an A-submodule in N/IN.
Then the following two functors are defined:

T:CM(AM)—Sub: TM)=TM/IM,M/IM);
Im : EI(U) — Sub : Im(v) = (Q@®p U, Imv) (veU(PQ)).

Proposition 3.2.3. 1. Denote Subg the full subcategory of Sub
consisting of such pairs (W,V) that 'V =W . Then T (M) €
Suby for any M and the functor T : CM (A, M) — Sub is full,
dense, reflects isomorphisms and indecomposability.

2. Denote X the full subcategory of El(U) consisting of all such
v € U(P,Q) that Kerv C rad P and I'Imv = U ®p . Then
Imv € Suby for any v € X and the functor Im : X — Suby is
full, dense, reflects isomorphisms and indecomposability.

One can easily see that X' is an open subcategory in EI(U).

Corollary 3.2.4. 1. If the open subcategory X is wild, then A is
also CM-wild.
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2. If M contains all indecomposable Cohen-Macaulay I'-modules
and the condition 4 of Theorem 3.1.5 holds for the open subcat-
egory X', then it also holds for A.

As we can always choose for I' some hereditary (e.g. maximal) over-
ring and hence for M the set of all indecomposable I'-modules, we
get the implication 7=-4 of Theorem 3.1.5 for any Cohen-Macaulay
algebra A.

Using Corollary 2.3.6 and Remark 3.1.6, we get also the following
useful result.

Corollary 3.2.5. Let £ be a family of Cohen-Macaulay algebras over
abase X . Then theset {x € X | £(z) is wild } is a countable union
of closed subsets.

It looks very likely that this set is really closed itself, but we are not
able to prove it till now.

3.3. Commutative case

Till now, criteria of tameness are known only for a few classes of Coh-
en-Macaulay algebras. The widest is, perhaps, that of commutative
algebras (i.e. of Cohen-Macaulay rings themselves). The following
result was inspired by the work of Greuel and Knérrer [15], who had
remarked that in the “geometrical situation” the known criterion of
finiteness of the number of indecomposable Cohen-Macaulay modules
[16],[12] can be reformulated in the following way:

A Cohen-Macaulay ring R has only finitely many indecomposable
Cohen-Macaulay modules (up to isomorphism) if and only if it domi-
nates (i.e. is over-ring of) one of simple plane curve singularities in
the sense of [1].

It so happened that the criterion of tameness is of the same form.
Remind that here all Cohen-Macaulay rings are local complete reduced
algebras over an algebraically closed field k, which coincides with the
residue field. Denote T,, the Cohen-Macaulay ring

k([z,y]]/(z” + A\e®y* +y?), where p<gq, 1/p+1/¢<1 and A€k,

with the conditions that A? # 4 if (p,q) = (4,4), 4\3> +27 # 0 for
(p,q) = (3,6) and A # 0 otherwise. Remark that actually, except for
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the cases (p,q) = (4,4) and (p,q) = (3,6), all values of A lead to
isomorphic rings, so A can be omitted. On the contrary, for (4,4) and
(3,6) cases different values of A give non-isomorphic rings.

Theorem 3.3.1. Let R be a Cohen-Macaulay ring of infinite Cohen-
Macaulay type (i.e. with infinitely many non-isomorphic indecompos-
able Cohen-Macaulay modules). Then R is CM-tame if and only if it
dominates one of the rings T,,.

The proof of this theorem consists of several steps of rather different
nature.

Step 1. Consider first some other “standard” Cohen-Macaulay rings,
namely, the rings

Poy = K[[z,y, 2]]/ (zy, * +y?+2") where p,¢ > 2 and (p,q) # (2,2).

Proof that all these rings are tame. We use the method of the preceding
section, where this question has been reduced to that for bimodules.
Namely, each of the rings P,, is Gorenstein. Hence, it has the only
minimal over-ring P, and all indecomposable Cohen-Macaulay P,
modules, except P,, itself, are also P, -module. Hence, we have to
consider A = P;,q. Put I = radA and I' = Endym. It is known
(cf. [23]) that A is isomorphic to the subring of k[[f]]° generated by
the elements aq,as, by, bs, where s,ay,as,b1,bs depend on the parity
of p and ¢, namely:

p q 5 a (15 b1 b2

odd odd 2 (£0) (0,  (#,0) (0,19)
odd even 3 (t,t,0) (0,0,2)  (0,0,%") (t9/2,0,0)
even even 4 (t,t,0,0) (0,0,¢,¢) (¢#/2,0,0,0) (0,0,t%/2 0)

Then I' =Ty X I's, where both of I'; are Bass rings in the sense of
[12], hence, all indecomposable I';-modules are either over-rings of T';
or, if QI'; is not a field, the direct summands of its maximal over-ring.
Then the concise computation (cf. [9]) shows that the classification of
elements of the bimodule U introduced in the last section is really a
sort of the so called “Gelfand Problem” (in the variant described in
[2]). Therefore U and, according to Theorem 3.1.5, also A are tame.
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Step 2. Now we are able to prove that all rings T,, and, hence, all
their over-rings are tame. To do it, consider the algebra L over the
polynomial ring A = k[}]:

L= Alz,yl/(zy — Az, 2P +y? + 2%) .

Of course, it is a family of Cohen-Macaulay rings on the affine line.
Evidently, the only singular point of each ring L£(A), for A € k, is
x =y = 0. Moreover, the completion of this only singular local ring
of £(\) is isomorphic to Tpq if A # 0 and to Py if A =0. As we
have remarked above, for (p,q) # (4,4) or (3,6), all rings T,, are
isomorphic. Were they wild, then P,, = £(0) were also wild by Corol-
lary 3.2.5. But we have just proved that P,, are tame, a contradiction.

For the remaining cases (p,q) = (4,4) and (3,6) the tameness
has been proved in [4],[5] (cf. also [24]). Thus, we have proved the
sufficiency in Theorem 3.3.1.

Step 3. To prove the necessity, we introduce some other conditions
for R to be tame, in terms of over-rings. They are rather alike the
conditions for finiteness of Cohen-Macaulay type from [12].

Definition 3.3.2. Let I' be an over-ring of a Cohen-Macaulay ring
R, m=radR and I'/Tm = [[*, D; with local algebras D;. Denote:

1. d(I') = (di,da,...,dy), where d; = dimD;, the multiplicity
vector of R with respect to T'.

2. d(T') = |d(I')| = X, d;, the (total) multiplicity of R with re-
spect to T'.

We always arrange the numbers d; in the increasing order: d; < dy <
oo < dpy, .

Definition 3.3.3. For a Cohen-Macaulay algebra R denote:

1. Rg its normalization, i.e. its maximal over-ring.
As k is algebraically closed, Ry =[I;_; A; with A; ~ k[[t;]] .

2. e; the idempotent of Ry such that A; = ¢;R,.

3. t = (t1,%2,...,t5) € Ry and § € m such element that mRy, =
ORy .
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4. R' = tRy+R, the weak normalization of R, i.e. its maximal local
over-ring, and R} = ke; + R’.

5. R" =6tRy +R.

Theorem 3.3.4. Let R be a Cohen-Macaulay ring of infinite Cohen-
Macaulay type. The following conditions are necessary and sufficient
for R to be CM-tame:

1. d(Rp) <4 and d(R) ¢ {(4), (1,3), (3) }.
2. d(R') <3 and d(R}) # (1, 3) for each 3.
3. If d(Ry) = 3, then d(R") < 2.

Remark 3.3.5. Really one has to check the condition for d (R}) only
for such idempotents e; that e;m C m + 0iR,.

The necessity of these conditions can be proved by rather straightfor-
ward calculations using the methods of Section 3.2. Namely, first we
prove the following lemma.

Lemma 3.3.6. Suppose that R has an over-ring I' with either d(T") >
4 or d(I') = (4) or (1,3). Then R is wild.

Proof. Note that d (I') does not change if we replace R by mI" +
R. Hence, we may suppose that 'm = m and use Corollary 3.2.4
with I = m. If d(R) > 4, one can easily count that the number of
parametres par (n;R,T') grows quadratically with n (cf. [6]), so R is
wild. If d (') = (4), we construct explicitely a strict family of elements
of the bimodule U over k(z,y). Here we take always M = {TI'},
hence, B = I'/m. Remark also, that in our case A = R/m = k.
Therefore, a map v : P — U ®p ), where P = nk and @) = mB,
can be identified with a set of n elements of mU . It is convinient to
consider it as an m X n matrix with entries from U . For instance, if
I'/m = k[a] with a* = 0 (the most complicated case), then we take
m=>5,n=9 and

1 00 00 a 0 a 0
01 0 0 0 0 a 0 a?
v=|(0 01 0 0 a2 0 0 o
000 10 0 a® a®z ay
00001 a® 0 0 0
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Then one can check, by a straightforward, though rather cumbersome,
calculation, that v is really a strict element. Quite analogously the
strict elements are constructed in other possible cases (cf. [9]) q.e.d.

Certainly, this lemma implies the necessity of the over-rings conditions
1 and 2, except d(R) # (3). The necessity of other conditions is
proved in analogous way (cf. [9]).

Remark 3.3.7. By the way, it follows from the condition 7 that if R
is a domain (i.e. s = 1), then it is either of finite Cohen-Macaulay
type or CM-wild.

Step 4. To accomplish the proof of Theorems 3.3.1 and 3.3.4, one
only has now to check that any ring R, which is of infinite Cohen-
Macaulay type and satisfies the over-rings conditions 7-3 is really an
over-ring of some T,,. It can also be done by some straightforward
observations (using the precise parametrization of T,,) and we omit
these calculations, referring to [9]. Now both theorems are completely
proved.

3.4. Further results
3.4.1. Rings of finite growth

We keep all suppositions of preceding sections.

Definition 3.4.1. Let § = {M; | M; e CM (A, A;)} be a locally
finite set of families of Cohen-Macaulay modules over a Cohen-Macau-
lay algebra A (cf. Definition 3.1.4).

1. Denote v(S,r) the number of elements in S(r).

2. Say that the set S 1is of finite growth if there exists a constant
¢ such that v(S,r) <c forall r.

3. Say that A is of finite growth if it has an exhaustive set of rational
families of Cohen-Macaulay modules, which is of finite growth.

4. Call A (CM-) domestic if it has a finite exhaustive set of rational
families of Cohen-Macaulay modules.
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Of course, any CM-domestic algebra is of finite growth and any Coh-
en-Macaulay algebra of finite growth is tame. Moreover, it follows
from Theorem 3.1.5 and simple geometrical observations that, for such
algebra, any locally finite strict set of rational families is really of finite
growth.

Following accurately the calculations in the proof of Theorem 3.3.1,
one can also get criteri a for a commutative algebra to be of finite
growth or domestic (cf. [9]).

Theorem 3.4.2. Let R be a Cohen-Macaulay ring. Then:

1. R is of finite growth if and only if it dominates one of the singu-
larities T4y or Tsg.

2. R is domestic if and only if it properly dominates the minimal
over-ring of one of the singularities Ty or Tss (as Ty, is Goren-
stein, it has the only minimal over-ring).

3.4.2. 2 x 2 matrix algebras

Another class of algebras, for which a criterion of tameness is known,
is that of 2 X 2 matriz algebras, i.e. such Cohen-Macaulay algebras A
that QA = Mat (2, D), where D is a skewfield. As we consider the
comlete case, there is the only maximal order A in D and we always
suppose that

A contains AE , where E is the identity matriz.

Moreover, A is a (non-commutative) local principal ideal ring. De-
note 7 the generator of its only maximal ideal. For such algebras the
following criterion of tameness was obtained in [13].

Definition 3.4.3. 1. Write A C¢ A’ if there exists an invertible
matrix S such that S™'AS C A’.

2. Denote A, the order in Mat (2, D) having the A-bases:
{ E, mey, mes, mey } J
where e;; are usual matrix units.

Theorem 3.4.4. 1. A 2 X2 matrix algebra A (containing AFE) is
wild if and only if A Cc A, .
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2. If A is local and non-Gorenstein, then it is tame if and only if
I'/radT" # k, where I' = End(rad A) .

The proof is alike that for commutative algebras (though simpler).
First, by a straightforward construction, using the methods of Sec-
tion 3.2, we show t hat A, is wild. Then the same procedure, applied
to an algebra satisfying the condition 2, leads to a sort of “Gelfand
problem” (hence, all these algebras are tame). At last, we check that
whenever this condition does not hold, then A C¢c Ay, hence, is also
wild.

Moreover, in [13] a complete list of tame 2 X 2 matrix algebras is
given.

3.4.3. Families of ideals

The “standard” tame rings T,, of Theorem 3.3.1 are the “serial” part
of the so called unimodal plane curve singularities in the sense of [1].
There are also 14 “exceptional” ones, which happen to be wild. Of
course, the bimodal plane curve singularities in the sense of [1] are also
wild. Nevertheless, this class of “good” singularities can also be char-
acterized in terms of Cohen-Macaulay modules. Namely, the following
result has been proved in [21],[11].

Theorem 3.4.5. Let R be a Cohen-Macaulay ring (local, complete,
reduced and of Krull dimension 1). Then p (1,R) <1 ((i.e. there exist
not more than 1-parametre families of ideals of R) if and only if R
dominates one of the unimodal or bimodal plane curve singularities in
the sense of [1].?

Really, the proof of this theorem (cf. [11]) is also based on some “over-
rings conditions”, alike those of Theorem 3.3.4.

Theorem 3.4.6. Under conditions of Theorem 3.4.5, put R; = m*Ry+
R, where m is the maximal ideal and Ry the normalization of R.
Then p(1,R) <1 if and only if the following conditions hold:

1. d(Ry) < 4.
2. d(R) < 3.

3In [21],[11] these singulariries are called strictly unimodal, using the terminology
of [23].

25



Yu. A. DrROZD

3. d(R;+eR) < 3 for each idenpotent e € Ry such that d(eRq) =1
(provided it exists).

4. If d(Ry) = 3, then d(Ry) < 2.

(here d(M), as in Theorem 3.3.4, denotes the number of generatores
of the R-module M ).

The proof of Theorems 3.4.5 and 3.4.6 follows the same scheme as
that of Theorems 3.3.1 and 3.3.4. Namely, in [21] it was proved that
p(1,R) <1 for each uni- or bimodal plane curve singularity. Now, a
rather straightforward calculation shows that p(1,R) > 2, whenever
the conditions 7—4 do not hold. At last, we show that these condi-
tions imply that R dominates one of the uni- or bimodal plane curve
singularities.
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