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Abstract. One generalization of Shubert’s varieties is presented based on use of
two towers of "general"(very natural) form with no subspace from one of the towers
belonging totally to some subspace from another tower. These varieties are proved
to be reducible, their general positions are described. The number of general posi-
tions and dimensions of corresponding orbits are calculated also.

1. Introduction of Generalization

Here we will introduce some generalization of Schubert’s varieties. As it is known, Schu-
bert’s varieties are built by means of any tower of vector subspaces in some affine vector
space. Namely, given a tower , Schubert’s variety is defined
as all of the d-dimension vector subspaces such that

(1)

As it is known, this variety is irreducible and for dimensions of a tower
has a dimension, calculated by a formula:

(2)

We introduce the next generalization.
We consider some partially ordered set of subspaces, for example:

Then, in grassmanian, we consider subvariety of all of the d-dimension vector sub-
spaces which satisfy the following conditions:

every subspace of 1st layer
every subspace of 2nd layer (3)
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Figure 1. Example of subspaces’ set.

This is a variety, closed in the grassman variety of all d-dimension subspaces. And,
of course, we are interested in knowing whether it is irreducible, and if not, how many
general positions it has and what are their dimensions. The most interesting case for us
of mutual arrangement of defining towers, which will be considered in this article, is the
case of two towers of general form with no subspace from one of the towers belonging
totally to some subspace from another tower. The meaning of "general form" will be
given later.

Suppose we have two towers, the first one consisting of subspaces and the second
consisting of ( ), where , for the purposes of convenience:

V1,m
∪

V1,m-1
∪

∪
V1,n V2,n
∪ ∪

∪ ∪
V1,2 V2,2
∪ ∪

V1,1 V2,1

Figure 2. The towers.

The dimension of denote as .

These subspaces break at subsets in general
case. They can be conveniently presented in the form of a table:

Here

(4)
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S1,n+1 S2,n+1 … Sm,n+1 Sm+1,n+1
S1,n S2,n … Sm,n Sm+1,n
… … … … …

S1,2 S2,2 … Sm,2 Sm+1,2
S1,1 S2,1 … Sm,1 Sm+1,1

Figure 3. The table.

and

(5)

Every square

(6)

of subsets is a vector subspace, because

(7)

evidently.
Now, we want to set such the basis of that all the subspaces , will be

generated by some vectors from this basis.
We’ll accomplish this in the following way. Passing the columns in the preceding

table from the left to the right and each column from the bottom to the top (starting from
the subset ) execute the next routine for each subset :
If the basis of together with the basis of (which we have selected
already) generate then proceed to the next subset.
Otherwise create a direct complement of subspace generated by them to . This
complement we can choose to be orthogonal. Denote the vectors of this complement as

and its dimension as :

orthogonal basis of direct complement of
to (8)

number of vectors in (9)

where

and denote (10)

and
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(11)

Here, it’s time to define the meaning of condition "general form".
Condition "of general form" means that:

(1)
(2) the whole space is big enough, (12)

This is very natural condition, it’s only a little stronger then that all the intersections
of any two subspaces from towers are different.

So, the matrix of each subspace , in the so selected basis can be chosen to
have only one "1" in each column and maximum one "1" in each row. For subspace
from variety, consider the matrix of vectors that generate it. It’s rows which correspond
to the nonzero rows of basis vectors of denote as for every

.
For each write down it’s matrix on the left from the matrix of and denote

this new matrix as . Let’s consider then one of the conditions (3):

(13)

It is equivalent to

(14)

this one being equivalent to:

"all the minors having dimensions ( ) in matrix "

"equal to 0". (15)

This condition is equivalent correspondingly to:

"all the minors of the matrix having dimensions ( )"

"equal to 0", (16)

or

"the rank of the matrix ". (17)

For subspace the corresponding condition is:

"the rank of the matrix ". (18)

So, instead of subspaces the matrices of rows and columns which satisfy
the preceding conditions can be considered.

We’ll use also tables of columns and rows corresponding to matrices
very extensively.
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The table corresponding to the matrix is defined as here:
It’s columns are enumerated from left to right starting from 1, it’s rows are enumerated
from bottom to top starting from 1. It’s cells are denoted as .
If rows of have the row with non zeroes standing in positions , then in
cell the sum stands. If there are several non zero rows in , the
corresponding sums in are separated by comma. The order of numbers in any sum
and order of sums in any cell are insignificant.

This form of writing down elements of our variety is very similar to matrices but
more convenient.

Here are some useful denotements for matrices:

(19)

and correspondingly for tables:

(20)

2. Investigation of Properties

Now we consider an algebraical group of all the transformations of these matrices which
do not violate conditions laid on them. Then we consider orbits created by this group.
We can easily see that such transformations are the next ones:

(1) Adding a row from multiplied
by some number to any row from

(2) Adding a column multiplied by some number to any other column.
(21)

On tables and matrices we’ll do the following three operations:
(1) If in there is a row in with only nonzero element at ’s position, then we

make zeroes at this position in all rows of all , except this row.
In , therefore, there is sum in cell , and after this operation all numbers in

all sums standing in cells , except this sum will be eliminated.
This operation doesn’t change the orbit of our algebraical group. Denote it as

with .
(2) If in there is a row in with some number of non zeroes, two of them

standing at positions , , then, we can eliminate non zero at position in this row. In
every other row with non zero at position some non zero could appear at position .

In , respectively, has sum and after the operation will be
eliminated in it. And in all other sums with number , in the same sum could appear.

This operation doesn’t change the orbit of our algebraical group also.
(3) If there is some zero row in matrix then we can change it into as little non

zero row as we wish if this operation doesn’t make ranks of corresponding sub matri-
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ces exceeding their maximal allowed values. Then, multiplying this row by some value,
which is the operation of our algebraical group, we can make it as large as we wish.

Making this operation, we can change the orbit of this matrix, but we don’t change
the closure of the orbit.

So, we’ve done all the preparations and are ready for the first theorem.

2.1. Reducibility

Theorem 1 Every orbit is a degeneration of some orbit from the set of orbits which
is defined as follows:
Orbit if it has element (denote it ) with corresponding table satisfying
the following conditions:
(1) all sums in all cells consist from only one number, id.est., there are
numbers in the table each number appearing once and only once.
(2) each cell can have at most 1 number except of the top-rightmost one which can have
from 0 to numbers.

(22)

(3) each column has 1 number except of the rightmost one which has numbers.

(23)

(4) each row has 1 number except of the topmost one which has numbers.

(24)

Let’s suppose we have element of our variety with corresponding table . If it
doesn’t satisfy the conditions above then we will transform it to one which satisfies them
using three operations on tables described previously.

We will use the term "free" cell which means for that it has less then
sums. For all other cells this term means empty, id.est. the cells have no sums.

(1) Consider path in which starts in top-rightmost cell and passes rows from right
to left and columns from top to bottom, passing the rows firstly.

(25)

Suppose that going this path we arrived in cell which has some sum and suppose that
this sum has number which we didn’t meet before on the path. Then eliminate all other
numbers in this sum by . In some cells can change but all the cells on the already
passed path will not change as they haven’t number in their sums by our supposition.
So, instead of the sum we have number . Perform with this number. Now, if not in
current cell then it can appear only in rows below. Denote it as an "original" number and
it’s position(cell) as corresponding "original" position.
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If the sum consists only from numbers met before then leave it as it is. Only note
that these numbers are from rows above, not from .

Now proceed with all other sums from this cell and then all other cells. After doing
this we will have "original" numbers and sums of "original" numbers from rows
above. Notice that the upper row has only "original" numbers.

(2) Now let’s make all sums to consist only from one number and these numbers to
be unique in the table.

Mathematical Induction:
Consider path in

(26)

Let’s suppose that we consider cell on the path, and suppose that all previous
cells on the path have only "original" numbers in them and these numbers appear once
in . Then we’ll do the same for this cell.

For the first cell on the path this is evidently true.
Suppose in some "original" number stays, then it can appear also only in cells

to the left and to the bottom. Perform with this "original" number and we’ll have it
unique in which is the purpose of the point.

Suppose in the sum of "original" numbers from (they are not the numbers
from previous cells on the path) stays. Let these numbers be a set of "original" num-
bers from , , of "original" numbers from (some sets can be empty).
For every nonempty set choose the "original" number which stays in the leftmost
cell. Then, in our sum, eliminate all other "original" numbers of the set by . Our
"original" number in its "original" position will become a sum of "original" numbers
of set . We can eliminate all of them except by corresponding "original" numbers
from "original" positions. Do it. All other "original" numbers in "original" positions will
not change, and all sums of "original" numbers from corresponding will remain to be
sums from them.

Thus, each consists only from one "original" number now. Take the lowest
with "original" number in its "original" cell ( with our suppositions).

Consider now the path

(27)

There is at least one "free" cell on it. If there is no one, then according to our sup-
positions all of them have at least one "original" number appearing only once in ex-
cept of which has at least "original" numbers. Then, ,

, , , and
. But this last value is greater by one than the maximal

allowable rank for which is equal to (see Cond.17), so we come to
contradiction.

Thus, there is at least one "free" cell on the path. Insert our sum into the first "free"
cell.

We will not raise the rank of because the sum consists of "original" numbers from
"original" positions equal or higher than row .
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We’ll not violate any restrictions laid on ranks of all , .
Really, suppose this is , ranks of all don’t change, and

;
.

(28)

inserting our sum we can raise some ranks at most at 1 and, so

don’t change;
change within the allowable limits;
don’t change.

(29)

Suppose the first "free" is ,

; (30)

so, inserting our sum we can raise some ranks at most at 1, id.est. within the allow-
able limits.

; (31)

inserting our sum we can raise some ranks at most at 1 and, so

don’t change;
change within the allowable limits;
don’t change.

(32)

So, we can insert our sum.

Now, if the sum consists not only of but of other "original" numbers then eliminate
all of them in it by . After this, instead of in we’ll have a sum of the same numbers.
In all other cells on the path of math.induction some sums can also change, but they are
out of interest at this moment.

Perform with , then it will appear only in the inserted cell.

So, following our path, we either keep "original" number in its "original" position
(the highest cell with this number), then it don’t appear elsewhere, or transfer some
"original" number from its "original" cell (not on the already followed path) to some cell
on the already followed path, making it unique in the table.

After this, there is one and only one nonzero in each column of and at most one
nonzero in each row of . In , correspondingly, there are unique numbers from
1 to .

(3) Now, let’s make the ranks of all be the maximal allowed, id.est.
.
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(a) If then proceed to the next point. Otherwise, suppose ,
is the rightmost nonempty column and is the topmost nonempty cell in .

So, the number stays in .
Let’s consider the path

(33)

There is a "free" cell on it, otherwise

(34)

- contradiction.
Insert in the first "free". As in the previous point doing this we either will not

change ranks of , or change them within the allowable limits.
And becomes greater at 1.
After finite number of steps .
(b) Now, look for the rightmost nonempty , . If there is only

one number in and we may proceed further. If then transfer this number from
to .

In the same way transfer all numbers from , to the right as much as
possible The goal of this point is accomplished. In addition, we haven’t changed the
ranks of all .

Now, have 1 number, and has numbers.

(4) Now, let’s make the ranks of all be the maximal allowed, id.est.
.

Suppose look for the topmost nonempty , and
transfer from to . We can do this always, because, if then is the
only one number in , and if then can contain all the numbers
from .

So, lift all the numbers from , as much as possible analogically to point
3b. Ranks of all haven’t changed and have 1 number, and has
numbers.

So, our proof is finished.

Theorem 2 None of the orbits from is a degeneration of another orbit from .

Let’s define for each orbit an ordered set of numbers :

(35)

Orbits are identified uniquely by these sets of numbers. Really, all allowed alge-
braical transformation of:
(1) rows - don’t change them evidently, because to the rows of some matrix correspond-
ing to the rows of the same matrix can be added only.
(2) columns don’t change rank of any matrix altogether.
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It’s obvious that if we can go from some element of some orbit to another orbit by
algebraical transformation and then by infinitely small change then we can do this by
some other infinitely small change.

Thus, to prove the statement of the theorem we may prove that from ,
we can go to no other orbit by all infinitely small changes.

So, suppose we have table and matrix of and suppose we’ve done some
infinitely small change. Some infinitely small numbers appeared in zero and nonzero
rows of . For matrix of , writing number in nonzero row is equivalent to adding
one column to another. Wherefrom, the infinitely small change we’ve done is equivalent
to allowed column’s transformations first and then infinitely small change which add
small numbers in zero rows we can consider only such infinitely small changes.

So, suppose in we wrote somewhere, for example in . Suppose,
(where sign means component wise relation) for some some ranks

of , changed , this change is equivalent to allowed
algebraical transformation of rows, which don’t change the set of ranks as we proved
already. And so on for each infinitely small sum added.

Thus, we can’t come from one orbit in to another.

2.2. The Number and Dimensions of Orbits

So, we can easily calculate the number of orbits in as the number of tables defined
in Theorem1.

Proposition 1 The number of orbits from equals to

(36)

To define some table for of orbit we can define the position of
numbers in all columns except the rightmost one. The number of such possibilities equals
to the number of ordered selections of numbers from the set of vertical positions

So, suppose we select numbers less than for we have variants
summing over all possible we’ll have the needed number.

Now we’ll calculate the ranks of orbits from .

Theorem 3 Suppose table of some element of orbit looks like:
number stays in , , , .
Then, it’s dimension is calculated by the formula:

(37)
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where , , are defined as here

(38)

As number in cell can operate on each cell with , , then
the dimension which is introduced by number to dimension of orbit equals to

(39)

(40)

can be calculated in another way.
Cell can be operated on by all numbers which stay in cells with ,

. The number of the latter is

(41)

Then,

(42)

Further, let’s calculate ranks which are introduced by each column of matrix with
zero elements.

is a matrix obtained from matrix by inserting "1" in each place, where we can
do it by our allowed algebraical transformations of rows over .

Suppose we are considering column of which has zero elements. As column
can be expressed in other nonzero rows, then the rank introduced by column equals to

(43)

with defined before.
As we can freely permutate the rows of by our allowed algebraical transforma-

tions, then, we have to subtract from already obtained dimension.

References

[1] Y.A. Drozd, Introduction to algebraical geometry, Publishing-poligraphic center "Kyiv Uni-
versity",2001, 137p., (in Ukrainian).

[2] W.V.D.Hodge and D.Pedoe, Methods of algebraical geometry, Vol.II, Foreign Literature Pub-
lishing House, Moscow, 1954, 431p., (in Russian).

Y.A. Drozd and P.S. Kolomiets / On Some Generalization of Schubert’s Varieties 89


