МАТЕМАТИЧЕСКИЕ ЗАМЕТКИ

т. 2, № 2 [1967], 133—138

О ЧИСЛЕ МОДУЛЕЙ ПРЕДСТАВЛЕНИЙ В РОДЕ ДЛЯ ЦЕЛОЧИСЛЕННЫХ МАТРИЧНЫХ КОЛЕЦ ВТОРОГО ПОРЯПКА

Ю. А. Дрозд, В. М. Турчин

Пусть Λ есть Z-кольно, т. е. кольно с единицей, аддитивная группа которого — свободная абелева конечного ранга (решетка). Напомним, что Л-модуль называется модулем представления, если его аддитивная группа есть решетка. Два модуля, А и В, принадлежат одному роду $(A \lor B)$, если для любого простого $p = A_p \approx B_p$, где $A_{p} = A \otimes Z_{p}$ (Z_{p} — кольцо целых p-адических чисел). Из теоремы Жордана — Цассенхауза [1] следует, что для полупростого в смысле Джекобсона Z-кольца число модулей представлений в каждом роде конечно. А. В. Ройтер показал [2], что это число можно ограничить сразу для всех родов константой, зависящей только от кольца. Однако даже для простейших с точки зрения теории представлений колец нахождение этого числа связано со значительными арифметическими трудностями.

Так, если Λ — кольцо всех целых чисел некоторого конечномерного расширения поля рациональных чисел O_{\bullet} то этот вопрос эквивалентен определению числа классов идеалов. Если же Λ — немаксимальное коммутативное кольцо, то информация о числе модулей в роде довольно бедна и относится в основном к главному (т. е. содержащему само Λ) роду (см., например, [3]). Еще менее изучен некоммутативный случай, где можно отметить только результаты Эйхлера [4], [5], [6] относительно максималь-

ных колец.

 1° . Мы будем рассматривать такие кольца Λ , что $\Lambda \otimes O$ есть алгебра матриц второго порядка над Q. Аналогично [7] можно показать что любое такое кольцо изоморфно кольцу с базисом $[E, ae_{11}, be_{21}, ce_{11} + de_{21} + e_{12}]$, где a, b, c, d — натуральные числа, причем $a \mid b, b \mid ad$. Дадим оценку числа N модулей в главном роде для такого кольца. Λ содержит подмодуль A с базисом [ae_{11} , be_{21}]. Пусть $B = \Lambda/A$. Если $X \bigvee \Lambda$, то $X \supset A_1$ такой, что $A_1 \bigvee A_2$ $X / A_1 = B_1 \setminus B$. Кольцо множителей модуля A_1 совпадает с кольцом множителей Λ (A) модуля A [8]. Так как A — неприводимый модуль представления, то Λ (A) максимально и потому изоморфно кольцу $M_2(Z)$ всех матриц второго порядка с целыми коэффициентами. Но $M_{2}(Z)$, а следовательно, и Λ (A) имеет всего один неприводимый модуль представления, поэтому $A_1 \approx A$. Аналогично, $B_1 \approx B$. Таким образом, модулю X соответствует элемент группы $\operatorname{Ext}^1_\Lambda(B,A)$. Вычисления показывают, $\operatorname{Ext}^1_{\Lambda}(B,A) = \mathbb{Z}/a\mathbb{Z}$ и представление, соответствующее модулю X, имеет вид

$$ae_{11} \rightarrow \begin{vmatrix} a & 0 & 0 & -x \\ 0 & 0 & \frac{ad}{b} & x & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}, be_{21} \rightarrow \begin{vmatrix} 0 & 0 & \frac{b}{a} & x & 0 \\ a & 0 & -cx & -x \\ 0 & 0 & 0 & 0 \\ 0 & 0 & b & 0 \end{vmatrix},$$

$$ce_{11} + de_{21} + e_{12} \rightarrow \begin{vmatrix} c & \frac{b}{a} & 0 & 0 \\ \frac{ad}{b} & 0 & 0 & 0 \\ 0 & 0 & c & 1 \\ 0 & 0 & d & 0 \end{vmatrix},$$

где x—целочисленный параметр, определенный по mod a, причем (x, a) = 1.

Если модули X и Y соответствуют параметрам x и y, то произвольный гомоморфизм $X \to Y$ задается матрицей

$$U = \begin{vmatrix} u_1 - u_3 \cdot x & -\frac{b}{a} u_3 x & -\frac{b}{a} u_2 - c \cdot \frac{u}{a} & -\frac{u}{a} \\ -\frac{a \cdot l}{b} u_3 x & u_1 & -d \cdot \frac{u}{a} & u_2 \\ a u_3 & 0 & u_4 + u_3 \cdot y & u_3 y \\ 0 & b u_3 & u_3 dy & u_4 \end{vmatrix},$$

где $u = u_4 x - u_1 y + u_3 cxy$, причем $u \equiv 0 \pmod{a}$. Поэтому $X \approx Y$ тогда и только тогда, когда найдутся u_1, u_2, u_3 u_4 , удовлетворяющие этому сравнению и такие, что cet $U = \pm 1$, τ . e. $u_1u_4 - u_3(bu_2 + du_3xy) = \pm 1$. Otcoда нетрудно заключить, что N не превосходит индекса $(\Phi: \pm \Phi^2)$, где Φ — мультипликатив**на**я группа классов вычетов по mod a, взаимно простых с a, $\pm \Phi^2$ — ее подгруппа, порожденная квадратами и — 1.

Пусть $a=p_1^{k_1}\dots p_s^k s\cdot 2^k$ $(p_1,\ \dots,\ p_s$ — различные четные простые числа). Тогда легко показать, что $(\Phi: \pm \Phi^2) = g \ (a) = 2^{s+\alpha}, \ \text{где } \alpha = -1, \ \text{если } k \leqslant 1 \ \text{и}$ хотя бы одно p_i — вида $4l+3, \alpha=0, \ {
m ec}$ ли k=2 пли $k \leqslant 1$ и все p_i — вида $4l+1, \alpha=1,$ если $k\geqslant 3.$ Аналогично можно показать, что $N\geqslant g(a_1),$

 $a_1 = (a, c, d)$. Итак, доказано

Предложение 1. Число N модулей в главном роде для кольиа Λ с базисом

$$[E, ae_{11}, be_{21}, ce_{11} + de_{21} + e_{12}]$$

можно оценить следующим образом:

$$g(a_1) \leqslant N \leqslant g(a)$$
.

B частности, если c=0, $a\mid d$, то N=g (a).

2°. Найдем теперь число модулей в каждом неразложимом роде для кольца Ω с базисом $[E, pe_{11}, pe_{21}, pe_{12}],$ $\Omega \supset I = pM_2(Z)$, поэтому каждый Ω -модуль представления A есть расширение Ω/I -модуля A/IA с ядром IA $M_{2}\left(Z\right)$ -модулем. $\Omega/I=k$ есть поле из p элементов, и $A/IA = k^t$ (прямая сумма $k \ t$ раз). $IA = B^s$, где B - tединственный неприводимый $M_{2}(Z)$ -модуль представления. Поэтому A соответствует элемент $\alpha \in \operatorname{Ext}^1_{\Omega}(k^t, B^s)$. α естественно рассматривать как матрицу размера $s \times t$ с элементами из $\operatorname{Ext}^1_\Omega$ $(k,B)=Z/pZ\oplus Z/pZ$. Если ϕ — автоморфизм A, то φ (IA) = IA, $\widetilde{\mathsf{u}}$ потому соответствующее преобразование матрицы а индуцируется автоморфизмами B^s и k^t . Нот $_{\Omega}(B, B) = Z$, Нот $_{\Omega}(B_p, B_p) = Z_p$, Нот $_{\Omega}(k, k) = k$, следовательно, автоморфизмам $A(A_p)$ соответствует приведение а элементарными преобразованиями строк над Z (Z_{p}) и стелбцов над k. Таким образом, описание p-адических представлений Ω сводится к одновременному приведению пары матриц над k элементарными преобразованиями. Как известно [9], в этом случае неразложимым модулям соответствуют пары матриц вида (E,F), (J,E), (T_1,T_2) , (T_1,T_2) , где E — единичная матрица, F — неразложимая клетка Фробениуса, J — вырожденная клетка Жордана, T_1 и T_2 — матрицы размера $s \times (s+1)$ вида

 $T_{i}^{'}$ — транспонированная матрица T_{i} .

Аналогично, описание целочисленных представлений Ω сводится к одновременному приведению пары матриц над k элементарными преобразованиями, причем матрица, осуществляющая элементарные преобразования строк, должна иметь определитель \pm 1. Всякий род однозначно определяется p-адическим представлением Ω .

Рассмотрим род, соответствующий паре матриц (E, F), где F — клетка Фробениуса с характеристическим полиномом $f^m(x)$, причем f(x) неприводим над k. Если A модуль из этого рода, то он определяется парой матриц (E,S), где $S=QFQ^{-1}$ (Q— невырожденная матрица над k). Две матрицы, Q и Q', определяют изоморфные модули тогда и только тогда, когда они лежат в одном классе смежности группы GL(s, k) всех невырожденных матриц по подгруппе, порожденной матрицами с определителем ± 1 и матрицами, перестановочными с F. Фактор-группа GL(s, k) по подгруппе унимодулярных матриц изоморфна мультипликативной группе k^* поля k (каждой матрице соответствует ее определитель). Если матрица P перестановочна с F, то P лежит в алгебре, порожденной матрицей F и $\det P$ есть норма P, рассматриваемой как элемент этой алгебры. Но если $K = k(\xi)$, где ξ — корень f(x), то группа норм K^* совпадает с k^* . Поэтому det $P \equiv k^{*m}$ и число модулей в роде, определенном парой (E, F), равно индексу $(k^*: \pm k^{*m})$.

Проведя аналогичные вычисления в оставшихся случаях, мы получим следующий результат:

Предложение 2. Число модулей представлений в роде A для кольца Ω с базисом $[E, pe_{11}, pe_{21}, pe_{12}]$ равно

индексу $(k^*: \pm k^{*m})$, где т есть число строк в матрице J, T_i или T_i , если A определяется парой (J, E), (T_1, T_2) $u_{A}u$ $(T_{1}^{'}, T_{2}^{'})$, $u_{1}^{'}m$ есть показатель степени, с которым неприводимый полином входит в характеристический полином матрицы F, если A определяется парой (E, F).

Замечание 1. Из предложения 2 следует, что наибольшее число модулей в роде для кольца Ω равно $\frac{p-1}{2}$ при $p \neq 2$ (надо положить $m = \frac{p-1}{2}$) и 1 при p = 2, что в точности совпадает с оценкой, данной в [2] (замечание 3).

Замечание 2. Число модулей в главном роде для кольца Ω равно 1 при p=2 или p=4l+3 и равно 2 при p = 4l + 1. Таким образом, полученный результат опровергает гипотезу, высказанную А. В. Ройтером (см. [2], замечание 4) о том, что число модулей в любом роде не превосходит числа модулей в главном роде.

Замечание 3. Результаты этой работы можно перенести на случай матричных колец второго порядка над произвольной областью главных идеалов R такой, что для любого простого $p \subset R$ поле вычетов k = R/pR удовлетворяет следующему условию: для любого натурального m индекс $(k^*: k^{*m})$ конечен. В частности, при R== C[X], где C — алгебраически замкнутое поле, число модулей представлений в каждом роде для кольца Ω равно 1 (отметим, что теорема Жордана—Цассенхауза здесь места не имеет).

Авторы выражают благодарность всем участникам семинара по теории представлений Института математики АН УССР за помощь и внимание при выполнении этой работы.

Институт математики АН УССР

Поступило 1.IV.19**6**7

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- [1] Curtis C. W., I. Reiner, Representation theory of finite groups and associative algebras, New York London, 1962.
- [2] Ройтер А. В., О целочисленных представлениях, принадлежащих одному роду, Изв. АН СССР. Сер. матем., 30 (1966), 1315—1324.
- [3] Serre J.-P., Modules projectifs et espaces fibrés à fibre vecto-rielle, Sém. P. Dubreil, 1957—1958, exp. 23.

- [4] Eichler M., Bestimmung der Idealklassenzahl in gewissen normalen Algebren, J. reine und angew. Math., 176 (1937), 192 - 202.
- [5] Eichler M., Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebrajschen Zahlkörpern und ihre L-Reihen, J. reine und angew. Math., 179 (1938), 227—
- [6] Eichler M., Über die Idealklassenzahl hyperkomplexer Sy-
- steme, Math. Z., 43 (1938), 481—494. [7] Кругляк С.А., Точные идеалы пелочисленных матричных колец второго порядка. Укр. матсм. ж., 18, № 3 (1966), 58—64.
- [8] Фаддеев Д. К., Введение в мультипликативную теорию модулей целочисленных представлений. Тр. Матем. ин-та АН СССР. 80 (1965), 145—182.
- [9] Гантмахер Ф. Р., Теория матриц, М., 1953.