Anatolii Zhuchok (Department of Mathematical Analysis and Algebra, Luhansk Taras Shevchenko National University, Luhansk, Ukraine)

An analogue of Cayley's Theorem for dimonoids

Jean-Louis Loday [1] introduced the notion of a dimonoid. This notion is a standard tool in the theory of Leibniz algebras. Recall that a set D equipped with two associative operations \prec and \succ satisfying the following axioms:

$$(x \prec y) \prec z = x \prec (y \succ z),$$

 $(x \succ y) \prec z = x \succ (y \prec z),$
 $(x \prec y) \succ z = x \succ (y \succ z)$

for all $x, y, z \in D$ is called a dimonoid. If the operations of a dimonoid coincide, then the dimonoid becomes a semigroup.

Let X be a nonempty set. We denote by $\Im(X)$ the symmetric semigroup on X. Let (D, \prec, \succ) be an arbitrary dimonoid and let ε be an arbitrary symbol, $\varepsilon \notin D$. For every $a \in D$ we define transformations ρ^a and ρ_a of the set $D \cup \{\varepsilon\}$, assuming

for all $x \in D \cup \{\varepsilon\}$.

Let $T_r^{\succ}(D) = \{\rho^a | a \in D\}, T_r^{\prec}(D) = \{\rho_a | a \in D\}.$ It is clear that the sets $T_r^{\succ}(D)$ and $T_r^{\prec}(D)$ are the subsemigroups of the symmetric semigroup $\Im(D \cup \{\varepsilon\})$. Define the operations \prec' and \succ' on $T_r^{\succ}(D) \times T_r^{\prec}(D)$ by

$$(\rho^{a}, \rho_{b}) \prec' (\rho^{c}, \rho_{d}) = (\rho^{a}\rho_{c}, \rho_{b}\rho_{d}),$$

$$(\rho^{a}, \rho_{b}) \succ' (\rho^{c}, \rho_{d}) = (\rho^{a}\rho^{c}, \rho_{b}\rho_{d})$$

for all (ρ^a, ρ_b) , $(\rho^c, \rho_d) \in T_r^{\succ}(D) \times T_r^{\prec}(D)$. **Lemma 1**. $(T_r^{\succ}(D) \times T_r^{\prec}(D), \prec', \succ')$ is a dimonoid.

We denote by $T_r(D)$ this dimonoid.

Lemma 2. A set $\bar{T}_r(D) = \{(\rho^a, \rho_b) \in T_r(D) | a = b\}$ is a subdimonoid of the dimonoid $T_r(D)$.

The following theorem gives an analogue of Cayley's Theorem.

Theorem 3. Every dimonoid (D, \prec, \succ) is isomorphic to the dimonoid $T_r(D)$.

If the operations of a dimonoid (D, \prec, \succ) coincide, then from Theorem 3 we obtain Cayley's Theorem [2] for semigroups.

- [1] J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer, Berlin, 2001, pp.7-66.
- [2] A.H.Clifford, G.B.Preston, The algebraic theory of semigroups, vol.1, 2, American Mathematical Society, 1964, 1967.