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Harmonic transfinite diameter, Chebyshev constants and
capacities for compact sets in RP*?

The coincidence of the transfinite diameter d (K), Chebyshev constant 7 (K) and capac-
ity ¢ (K) is one of fundamental results in the classical geometric function theory (Fekete,
Szegd, Erdosz et al). Some analogues of this result in C" were considered by Leja, Za-
kharyuta, Rumely. Here we discuss the problem on comparing similar characteristics
connected with harmonic functions of several real variables. This talk is based on joint
results with N. Skiba [3, 4].

Let ¥ := {(¢;) e RP : 1 >0, > ... > 0,1 > |0,] > 0}; M, the set of all m =
(mj) € ZP such that n = mg > m; > ... > |m,| > 0 and r; be defined by the formula

TR = \/tiJrl +th, g+ -+ 12, where K =0,1,...,p. Then the functions
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where ¢ = (t;) € RP™2 m € M,, n=0,1,..., form the complete system of orthogonal
harmonic polynomials in the harmonic Lo-Hardy space; here C¥(z) is the Gegenbauer
(ultraspheric) polynomial of degree n and order v (see, e.g., [1]).

The standard system of harmonic polynomials e; = ¢;(t), i € N, is obtained from
the system (1) by normalizing and enumerating in the lexicographic order with respect to
the indices n (¢) ,my (4),...,mg (i),...,m, (4); in particular, this provides that the degree
sequence n (i) is non-decreasing.

In what follows K is a compact set in RP™2. The harmonic transfinite diameter of K
is determined by the formula

(1) = timsup (sup { | det (e, (€))L, | (&) € K"@}) "™ @)
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where [ (n) = >  v-s(v), r(n) = > s(v) and s(v) is the number of all harmonic polyno-
v=1 v=0
mials (1) of degree n.
Let 0 (i) = (0 (1)) =: (”;’Zf;))z € X. The directional harmonic Chebyshev constant
—1
of K in the direction 6 € X is the number

7"(K,0) = limsup (M) | 0 = (6;) € %, (3)
0(i)—0
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where M, := inf{maxick |p (t)| : p(t) = e;(t) + > c;e;(t)}, i € N.
=1



The principal harmonic Chebyshev constant can be defined as the integral geometric
mean of the directional Chebyshev constants (3):

T"(K) = exp ﬁ/lrwh([(,&)d)\(e) :

here A is the probability equidistributed measure on X..

The equality d"(K) = 7"(K) and existence of a usual limit in (2) is proved under some
quite wide assumptions about K.

We introduce also Lh-capacities based on the notions of the Lh-Green functions defined
in [2, 5, 6] and compare them with the above characteristics.

Some explicit formulas for all these characteristics are given for both prolate and oblate
spheroids.
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