Marat Tleubergenov (Laboratory of Dynamical Systems of Institute of Mathematics of Ministry of Education and Science of RK, Almaty, Kazakhstan)

To the Inverse Problem of Stochastic Differential Systems

Let us give the system of stochastic differential equations of Ito's type

$$\begin{cases} \dot{x} = f(x, y, t), & x \in \mathbb{R}^n, \\ \dot{y} = R(x, y, t) + D(x, y, t)U + \sigma(x, y, t)\dot{\xi}, & y \in \mathbb{R}^p, U \in \mathbb{R}^r, \xi \in \mathbb{R}^k. \end{cases}$$
(1)

It is required to determine the control U and the diffusion matrix σ so that the set

$$\Lambda(t): \begin{cases} \lambda_1(x,t) = 0, \\ \lambda_2(x,y,t) = 0, \end{cases} \lambda_1 \in C_{xt}^{22}, \lambda_2 \in C_{xyt}^{121}, \lambda_1 \in R^{m_1}, \lambda_2 \in R^{m_2}, m_1 + m_2 = m \end{cases}$$
(2)

were an integral manifold of equations' system (1).

Here $\{\xi_1(t,\omega),\ldots,\ldots,\xi_k(t,\omega)\}$ is the system of independent Wiener processes.

The posed problem under $\sigma \equiv 0$ is adequately investigated in [1,2] and stochastic case of reconstruction's problem with initial stochastic differential Ito equation of second order $\ddot{x} = f(x, \dot{x}, t) + D(x, \dot{x}, t)u + \sigma(x, \dot{x}, t)\dot{\xi}$ and given set $\Lambda(t) : \lambda(x, \dot{x}, t) = 0, \ \lambda \in \mathbb{R}^m$ is considered in [3].

Under proposition $f \in C_{xyt}^{121}$ it is proved the follow theorem by quasi-inversion method [2] with use the designations from [2,3] in combination with the Ito rule of stochastic differentiation of complicated function.

Theorem 1. In order that the system of equations (1) has given integral manifold (2) it is necessary and sufficient that the set of controls $\{U\}$ and the set of coefficients' diffusion $\{\sigma\}$ have the form $\{U\} = \{U_1\} \cap \{U_2\}, \{\sigma\} = \{\sigma_1\} \cap \{\sigma_2\}$, where $U_1, U_2, \sigma_1, \sigma_2$ define in the form

$$\begin{cases} U_1 = s_1[H_1C_1] + (H_1)^+ (A_1 - G_1), \\ U_2 = s_2[H_2C_2] + (H_2)^+ (A_2 - G_2), \end{cases} \begin{cases} \sigma_{1i} = s_3[H_3C_1] + (H_3)^+ B_{1i}, \\ \sigma_{2i} = s_4[H_4C_4] + (H_4)^+ B_{2i}, \end{cases}$$
here

$$G_{1} = \frac{\partial^{2}\lambda_{1}}{\partial t^{2}} + 2\frac{\partial^{2}\lambda_{1}}{\partial t\partial x} + \frac{\partial^{2}\lambda_{1}}{\partial x\partial x}f + f^{T}\frac{\partial^{2}\lambda_{1}}{\partial x\partial x}f + \frac{\partial\lambda_{1}}{\partial x}\frac{\partial f}{\partial y}R + \frac{\partial\lambda_{1}}{\partial x}S_{1}, \quad S_{1} = \frac{1}{2}\left[\frac{\partial^{2}f}{\partial y\partial y}:\sigma\sigma^{T}\right],$$

$$G_{2} = \frac{\partial\lambda_{2}}{\partial t} + \frac{\partial\lambda_{2}}{\partial x}f + \frac{\partial\lambda_{2}}{\partial y}R + S_{2}, \quad S_{2} = \frac{1}{2}\left[\frac{\partial^{2}\lambda_{2}}{\partial y\partial y}:\sigma\sigma^{T}\right], \quad H_{1} = \lambda_{1x}f_{y}D, \quad H_{2} = \lambda_{2y}D,$$

$$H_{3} = \lambda_{1x}f_{y}, \quad H_{4} = \lambda_{2y}; \quad \sigma_{1i}, \quad \sigma_{2i}, \quad B_{1i}, \quad B_{1i} - i \text{- columns of matrices } \sigma_{1}, \quad \sigma_{2}, \quad B_{1}, \quad B_{2}.$$

References

1. Galiullin A.S. Methods of Solutions of Dynamics' Inverse Problems. Moscow: Nauka, 1986.

2. Mukhamedzyanov I.A., Mukharlyamov R.G., Equations of Programme Movements. Moscow: UFP by P.Lumumba, 1986.

3. Tleubergenov M.I. //Differentsial'nye uravnenya. — Moscow, 5(2001), 714-716.