To the Inverse Problem of Stochastic Differential Systems

Let us give the system of stochastic differential equations of Ito’s type

\[
\begin{align*}
\dot{x} &= f(x, y, t), \quad x \in \mathbb{R}^n, \\
\dot{y} &= R(x, y, t) + D(x, y, t)U + \sigma(x, y, t)\xi, \quad y \in \mathbb{R}^p, \ U \in \mathbb{R}^r, \ \xi \in \mathbb{R}^k.
\end{align*}
\]

(1)

It is required to determine the control \(U\) and the diffusion matrix \(\sigma\) so that the set

\[
\Lambda(t) : \begin{cases}
\lambda_1(x, t) = 0, \\
\lambda_2(x, y, t) = 0,
\end{cases}
\]

\[
\lambda_1 \in C_{xt}^{22}, \lambda_2 \in C_{xyt}^{121}, \lambda_1 \in \mathbb{R}^{m_1}, \lambda_2 \in \mathbb{R}^{m_2}, m_1 + m_2 = m
\]

(2)

were an integral manifold of equations’ system (1).

Here \(\{\xi_1(t, \omega), \ldots, \xi_s(t, \omega)\}\) is the system of independent Wiener processes.

The posed problem under \(\sigma \equiv 0\) is adequately investigated in [1,2] and stochastic case of reconstruction’s problem with initial stochastic differential Ito equation of second order \(\dot{x} = f(x, \dot{x}, t) + D(x, \dot{x}, t)u + \sigma(x, \dot{x}, t)\xi\) and given set \(\Lambda(t) : \lambda(x, \dot{x}, t) = 0, \ \lambda \in \mathbb{R}^m\) is considered in [3].

Under proposition \(f \in C_{xyt}^{121}\) it is proved the follow theorem by quasi-inversion method [2] with use the designations from [2,3] in combination with the Ito rule of stochastic differentiation of complicated function.

Theorem 1. In order that the system of equations (1) has given integral manifold (2) it is necessary and sufficient that the set of controls \(\{U\}\) and the set of coefficients’ diffusion \(\{\sigma\}\) have the form \(\{U\} = \{U_1\} \cap \{U_2\}, \{\sigma\} = \{\sigma_1\} \cap \{\sigma_2\}\), where \(U_1, U_2, \sigma_1, \sigma_2\) define in the form

\[
\begin{align*}
U_1 &= s_1[H_1C_1] + (H_1)^+(A_1 - G_1), \\
U_2 &= s_2[H_2C_2] + (H_2)^+(A_2 - G_2), \\
\sigma_1 &= s_3[H_3C_1] + (H_3)^+B_{1i}, \\
\sigma_2 &= s_4[H_4C_4] + (H_4)^+B_{2i},
\end{align*}
\]

here

\[
G_1 = \frac{\partial^2 \lambda_1}{\partial t^2} + 2 \frac{\partial^2 \lambda_1}{\partial t \partial x} f + f^T \frac{\partial^2 \lambda_1}{\partial x \partial x} f + \frac{\partial \lambda_1}{\partial x} \frac{\partial f}{\partial y} R + \frac{\partial \lambda_1}{\partial x} S_1, \quad S_1 = \frac{1}{2} \left[\frac{\partial^2 f}{\partial y \partial y} : \sigma \sigma^T \right],
\]

\[
G_2 = \frac{\partial \lambda_2}{\partial t} + \frac{\partial \lambda_2}{\partial x} f + \frac{\partial \lambda_2}{\partial y} R + S_2, \quad S_2 = \frac{1}{2} \left[\frac{\partial^2 \lambda_2}{\partial y \partial y} : \sigma \sigma^T \right], \quad H_1 = \lambda_{1x} f_y D, \quad H_2 = \lambda_{2y} D, \quad H_3 = \lambda_{1x} f_y, \quad H_4 = \lambda_{2y}, \quad \sigma_{1i}, \sigma_{2i}, B_{1i}, B_{1i} - i\text{-columns of matrices } \sigma_1, \sigma_2, B_1, B_2.
\]

References