До розв'язання систем лінійних алгебраїчних рівнянь з \(m \) − мірними \(\lambda \) − матрицями

Розглянемо систему лінійних алгебраїчних рівнянь, яка виникає при розв'язуванні динамічної моделі В. Леонтьєва

\[
Y(\lambda_1, \lambda_2, \ldots, \lambda_m) = E - B(\lambda_1, \lambda_2, \ldots, \lambda_m) = C(\lambda_1, \lambda_2, \ldots, \lambda_m),
\]

(1)

в якій \(B(\lambda_1, \lambda_2, \ldots, \lambda_m) \) – регулярна матриця розміру \(n \times n \), елементами якої є многочлени степені \(i \). Права частина рівняння визначається як вектор

\[
C(\lambda_1, \lambda_2, \ldots, \lambda_m) = (c_{1,n+1}(\lambda_1, \lambda_2, \ldots, \lambda_m), c_{2,n+1}(\lambda_1, \lambda_2, \ldots, \lambda_m), \ldots, c_{n,n+1}(\lambda_1, \lambda_2, \ldots, \lambda_m))^T
\]

многочленів степені \(i \).

Елементи системи (1) задаються формулами

\[
a_{i,j}(\lambda_1, \lambda_2, \ldots, \lambda_m) = \sum_{k_1+k_2+\ldots+k_m=0}^{l} a_{i,j}(k_1, k_2, \ldots, k_m) \lambda_1^{k_1} \lambda_2^{k_2} \ldots \lambda_m^{k_m} \quad (i = 1, n; \ j = 1, n + 1)
\]

З огляду на це розглядається метод, що дозволяє звести розв'язання системи (1) до обчислення невідомих систем лінійних алгебраїчних рівнянь з числами коефіцієнтами специального вигляду [2]. Оскільки \(B(\lambda_1, \lambda_2, \ldots, \lambda_m) \) та \(C(\lambda_1, \lambda_2, \ldots, \lambda_m) \) – поліноміальні матриці, то їх можна подати у вигляді матричних поліномів

\[
B(\lambda_1, \lambda_2, \ldots, \lambda_m) = \sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} B_{k_1,k_2,\ldots,k_m} \quad \text{та} \quad C(\lambda_1, \lambda_2, \ldots, \lambda_m) = \sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} C_{k_1,k_2,\ldots,k_m}.
\]

Розв'язок системи будемо шукати у вигляді відношення двох поліномів

\[
Y(\lambda_1, \lambda_2, \ldots, \lambda_m) = k_1+k_2+\ldots+k_m=0^{l} \sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} X_{k_1,k_2,\ldots,k_m} Z_{k_1,k_2,\ldots,k_m} \quad \text{де} \quad X_{k_1,k_2,\ldots,k_m} \quad \text{та} \quad Z_{k_1,k_2,\ldots,k_m}
\]

– вектори розмірності \(n \), скаларні величини.

Невідомі \(X_{k_1,k_2,\ldots,k_m} \) та \(Z_{k_1,k_2,\ldots,k_m} \) обчислюємо методом невизначенних коефіцієнтів. Враховуючи (2) систему (1) запишемо у вигляді

\[
\sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} X_{k_1,k_2,\ldots,k_m} \left(E - \sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} B_{k_1,k_2,\ldots,k_m} \right) = \sum_{k_1+k_2+\ldots+k_m=0}^{l} A_{k_1,k_2,\ldots,k_m} Z_{k_1,k_2,\ldots,k_m} C_{k_1,k_2,\ldots,k_m}
\]

(3)
Згрупувавши члени у лівій і правій частинах отриманого рівняння та прирівнявши після цього коефіцієнти при однакових степенях λ, то для визначення невідомих матричних коефіцієнтів $X_{k_1,k_2,...,k_m}$ та $Z_{k_1,k_2,...,k_m}$ одержимо систему з числовими елементами.

\[
\begin{align*}
X_{00,...,0}(E - B_{00,...,0}) - Z_{00,...,0}C_{00,...,0} &= 0; \\
X_{10,...,0}(E - B_{10,...,0}) + X_{00,...,0}(E - B_{10,...,0}) - [Z_{10,...,0}C_{00,...,0} + Z_{00,...,0}C_{10,...,0}] &= 0; \\
\sum_{k_1=0}^{l} X_{1-k_1,0,...,0} (E - B_{k_1,0,...,0}) - \sum_{k_1=0}^{l} Z_{1-k_1,0,...,0} C_{k_1,0,...,0} &= 0; \\
\sum_{k_1=0}^{l} \sum_{k_2=0}^{q} \sum_{k_1+...+k_q=q, t<m} X_{q-k_1,q-k_2,...,q-k_t,0,...,0} C_{k_1,k_2,...,k_t,0,...,0} &= 0;
\end{align*}
\]

Для розв'язання отриманої системи використано, алгоритм схеми розрізання [3].

Література