В.С. Романюк (Институт математики НАН Украины, Киев, Украина)

Адаптивное приближение функций многих переменных

Доклад касается вопросов адаптивного приближения функций многих переменных при помощи конечномерных агрегатов, построенных на базе разложений этих функций в ряд Фурье по тригонометрической системе.

Пусть $L_s(T^d)$, $1 \le s \le \infty$, — пространства Лебега 2π -периодических по каждой переменной функций f(x), $x = (x_1, \dots, x_d)$, наделенные стандартной нормой $\|\cdot\|_s$.

Предметом исследований являются величины:

$$e_M^{\perp}(F)_s := \sup_{f \in F} \inf_{\Omega: \#\Omega = M} \|f(x) - \sum_{k \in \Omega} \widehat{f}(k)e^{i(k,x)}\|_s, \ F \subset L_s(T^d),$$

где $\widehat{f}(k)$ — коэффициенты Фурье функции f(x) по системе $\{e^{i(k,x)}\}_{k\in \mathbb{Z}^d}$ и Ω конечное множество d-мерных векторов в Z^d , $\#\Omega = M$;

$$G_M(F)_s := \sup_{f \in F} \|f(x) - \sum_{l=1}^M \widehat{f}(k(l))e^{i(k(l),x)}\|_s,$$

где $\{|\widehat{f}(k(l))|\}_{l=1}^{\infty}$ — невозрастающая перестановка $\{|\widehat{f}(k)|\}_{k\in Z^d};$

$$e_M(F)_s := \sup_{f \in F} \inf_{\substack{\Omega: \#\Omega = M \\ c_k \in C}} \|f(x) - \sum_{k \in \Omega} c_k e^{i(k,x)}\|_s.$$

Из определений очевидно соотношение $e_M(F)_s \leq e_M^{\perp}(F)_s \leq G_M(F)_s$.

В [1] были установлены порядковые (относительно параметра M) оценки величин $e_M(\mathcal{F}_q^r)_s$, а в [2] — величин $G_M(\mathcal{F}_q^r)_s$ при всех $0 < q < \infty$, $1 \le s \le \infty$ и $r > d(1 - \frac{1}{q})_+$ для классов

$$\mathcal{F}_q^r := \Big\{ f \in L_1(T^d) : \|f\|_{\mathcal{F}_q^r} := \Big(\sum_{m=1}^{\infty} m^{rq} \sum_{k \in I_m, l} |\widehat{f}(k)|^q \Big)^{1/q} \le 1, \, |\widehat{f}(0)| \le 1 \Big\},$$

где $I_{m,d}=\{k\in Z^d:\ |k|_\infty:=\max\{|k_1|,\cdots,|k_d|\}=m\}.$ Оказалось, что при $1\le s\le 2$ оценки для $e_M(\mathcal{F}_q^r)_s$ и $G_M(\mathcal{F}_q^r)_s$ совпадают (по порядку), а при $2 < s \le \infty$ — отличаются.

Нами установлено, что подобным образом соотносятся между собой и значения величин $e_M(A_q^R)_s$ и $e_M^\perp(A_q^R)_s$ для классов

$$A_q^R := \Big\{ f \in L_1(T^d) : \|f\|_{A_q^R} := \Big(\sum_{m=0}^{\infty} R^{mq} \sum_{k \in \Theta(m,d)} |\widehat{f}(k)|^q \Big)^{1/q} \le 1 \Big\},$$

R>1 — фиксировано, $0< q<\infty$ и $\Theta(m,d):=\{k\in Z^d:\ |k|_1:=\sum_{j=1}^d |k_j|=m,\ m\in Z_+\}$

Теорема 1. Пусть $0 < q < \infty$, $2 \le s \le \infty$. Тогда

$$e_M^{\perp}(A_q^R)_s \simeq R^{-\frac{1}{2}(d!M)^{1/d}} M^{(1-\frac{1}{d})(1-\frac{1}{s}-\frac{1}{q})}.$$

Теорема 2. Пусть $0 < q < \infty$, $1 \le s \le \infty$. Тогда

$$e_M(A_q^R)_s \ll R^{-\frac{1}{2}(d!M)^{1/d}} M^{(1-\frac{1}{d})(\frac{1}{2}-\frac{1}{q})}.$$

- [1] R.A.De Vore, V.N.Temlyakov. Nonlinear Approximation by Trigonometric Sums // J.Fourier Anal.Appl., 2: 1 (1995), 29–48.
- [2] V.N.Temlyakov. Greedy Algorithm and m-Term Trigonometric Approximation // Constr.Appr., 14 (1998), 569–587.