Equational maps of subdirectly-closed abstract classes of algebras

Let \(i = 1, 2 \), \(\mathcal{L}_i \) an infinitary algebraic signature, \(K_i \) a class of \(\mathcal{L}_i \)-algebras and \(C_i (S_i) \) the category constituted by members of \(K_i \) as objects and by (respectively, surjective) homomorphisms between them as morphisms.

An \textit{equational map} from \(K_1 \) to \(K_2 \) \cite{1} is any \(e : K_1 \to K_2 \) preserving carriers such that:

- for each \(f \in \mathcal{L}_2 \) of rank \(r \) such that \(r > 0 \) whenever \(\mathcal{L}_1 \) has no constant, there is an \(\mathcal{L}_1 \)-term \(t(\bar{x}) \), where \(\bar{x} \) is a sequence of pairwise-distinct variables of length \(r \), such that, for every \(A \in K_1 \), \(t^A = f^{e(A)} \);

- in case \(\mathcal{L}_1 \) has no constant, it holds that, for each constant \(c \in \mathcal{L}_2 \), there is an \(\mathcal{L}_1 \)-term \(s(x) \) with a single variable \(x \) such that, for every \(A \in K_1 \) and all \(a \in A \), \(s^A(a) = c^{e(A)} \).

Next, \(K_1 \) and \(K_2 \) are said to be \textit{rationally equivalent} \cite{2} provided there are mutually-inverse equational maps from \(K_1 \) to \(K_2 \) and from \(K_2 \) to \(K_1 \).

Theorem 1 Suppose \(K_1 \) is an abstract class closed under formation of subdirect products of non-empty systems. Then, equational maps from \(K_1 \) to \(K_2 \) are exactly object components of those functors from \(C_1 (S_1) \) to \(C_2 \) (respectively, \(S_2 \)) which commute with forgetful set functor.

Corollary 1 Assume both \(K_1 \) and \(K_2 \) are abstract classes closed under formation of subdirect products of non-empty systems. Then, \(K_1 \) and \(K_2 \) are rationally equivalent iff there is an isofunctor between \(C_1 (S_1) \) and \(C_2 \) (respectively, \(S_2 \)) commuting with forgetful set functor.

The particular cases of Theorem 1 and Corollary 1 not involving the categories \(S_1 \) and \(S_2 \) are proved in \cite{1} and \cite{2}, respectively, for hereditary multiplicative abstract classes.

Neither Theorem 1 nor Corollary 1 can be extended to multiplicative abstract classes. For instance, when \(K_1 \) is the class of all bounded distributive lattices having complement and \(K_2 \) is the variety of all Boolean algebras, the equational map from \(K_2 \) to \(K_1 \) that assigns complement-less reducts to Boolean algebras is the object component of an isofunctor between \(C_2 \) and \(C_1 \) commuting with forgetful set functor whereas there is no equational map from \(K_1 \) to \(K_2 \) because the only unary polynomial operations of any bounded distributive lattice are the diagonal and the constants zero and unit while the complement operation of any non-trivial Boolean algebra is neither diagonal nor constant.
