K.D. Protasova (Kyiv National University, Kyiv, Ukraine)

Independent sets and partitions of infinite graphs

Let $\Gamma(V, E)$ be a connected graph with the set of vertices V and the set of edges E, d be the path metric on V, $B(v, r) = \{x \in V : d(v, x) \leq r\}$ be the ball of radius r with the center v. A subset $A \subseteq V$ is of finite index if there exists m such that B(A, m) = V. In this case, we define the index of A by ind $A = min\{m : B(A, m) = V\}$.

Let $\Gamma(V, E)$ be a graph, r be a natural number such that $|V| \ge r$. By [1, Theorem 1], there exists a partition $V = V_1 \cup V_2 \cup \ldots \cup V_r$ such that ind $V_i \le r-1$ for each $i \in \{1, ..., r\}$.

Theorem 1. For every infinite graph $\Gamma(V, E)$, there exists a partition $V = V_1 \cup V_2 \cup ...$ such that each subset V_i is of finite index.

Theorem 2. Let $\Gamma(V, E)$ be a graph, m be a natural number, κ be a cardinal. If $|B(v,m)| \geq \kappa$ for every $v \in V$, then V can be partitioned in κ subsets of index $\leq 3m$.

Theorem 3. Let $\Gamma(V, E)$ be an infinite graph, κ be a limit cardinal, $|V| = \kappa$. Suppose that, for each $\kappa' < \kappa$, there exists a natural number m such that $|B(v, m)| \ge \kappa'$ for every $v \in V$. Then V can be partitioned in κ subsets of finite index.

Theorem 4. Let $\Gamma(V, E)$ be an infinite graph, κ be an infinite cardinal such that $|B(v, 1)| \geq \kappa$ for each $v \in V$. Then V can be partitioned in k subsets of index 1.

For proofs of above theorems, we used the independent subsets of graphs and some its generalizations.

[1] K.D. Protasova, Balanced partition of graphs, Matem. Zamet., 79 (2006), 127-132.