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On local deformations of quadratic forms

By a quadratic form we mean here a quadratic form over the field R

f(z) = f(z1, . . . , zn) =
n∑

i=1

fiz
2
i +

∑
i<j

fijzizj.

The set of all such form with f1, . . . , fn = 1 is denoted by R0.
Let f(z) ∈ R0 and s ∈ {1, . . . , n}. We introduce the notion of the s-deformation of

f(z) as follows:

f (s)(z, a) = f (s)(z1, . . . , zn, a) = az2
s +

∑

i6=s

z2
i +

∑
i<j

fijzizj,

where a is a parameter. Denote by F
(s)
+ the set of all b ∈ R such that the form f (s)(z, b)

is positive definite, and put F
(s)
− = R \ F

(s)
+ . In other words, b ∈ F

(s)
− iff there exists a

nonzero vector r = (r1, . . . , rn) ∈ Rn such that f (s)(r1, . . . , rn, b) ≤ 0. Further, put

m
(s)
f = sup F

(s)
− ∈ R ∪∞

(since x ∈ F
(s)
− implies y ∈ F

(s)
− for any y < x, this supremum is a limit point). We call

m
(s)
f the s-th P -number of f(z). It is easy to see that if f(z1, . . . , zn) ∈ R0, then m

(s)
f ≥ 0.

Theorem Let f(z1, . . . , zn) ∈ R0 and let m
(s)
f 6= ∞. Then

1) m
(s)
f ∈ F

(s)
− , and consequently m

(s)
f (is the greatest number of F

(s)
− ).

2) the form f (s)(z, m
(s)
f ) is non-negative definite.


