Ukraine)

Vitalij M. Bondarenko (Institute of Mathematics of Ukrainian National Academy of Sciences, Kyiv, Ukraine) Julija Pereguda (Korolyov military Institute of national aviation University, Zhytomyr,

On local deformations of quadratic forms

By a quadratic form we mean here a quadratic form over the field \mathbb{R}

$$f(z) = f(z_1, \dots, z_n) = \sum_{i=1}^n f_i z_i^2 + \sum_{i < j} f_{ij} z_i z_j.$$

The set of all such form with $f_1, \ldots, f_n = 1$ is denoted by \mathcal{R}_0 .

Let $f(z) \in \mathcal{R}_0$ and $s \in \{1, \ldots, n\}$. We introduce the notion of the s-deformation of f(z) as follows:

$$f^{(s)}(z,a) = f^{(s)}(z_1, \dots, z_n, a) = az_s^2 + \sum_{i \neq s} z_i^2 + \sum_{i < j} f_{ij} z_i z_j,$$

where a is a parameter. Denote by $F_{+}^{(s)}$ the set of all $b \in \mathbb{R}$ such that the form $f^{(s)}(z,b)$ is positive definite, and put $F_{-}^{(s)} = \mathbb{R} \setminus F_{+}^{(s)}$. In other words, $b \in F_{-}^{(s)}$ iff there exists a nonzero vector $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$ such that $f^{(s)}(r_1, \ldots, r_n, b) \leq 0$. Further, put

$$m_f^{(s)} = \sup \mathcal{F}_-^{(s)} \in \mathbb{R} \cup \infty$$

(since $x \in F_{-}^{(s)}$ implies $y \in F_{-}^{(s)}$ for any y < x, this supremum is a limit point). We call $m_f^{(s)}$ the s-th P-number of f(z). It is easy to see that if $f(z_1, \ldots, z_n) \in \mathcal{R}_0$, then $m_f^{(s)} \ge 0$.

Theorem Let $f(z_1, \ldots, z_n) \in \mathcal{R}_0$ and let $m_f^{(s)} \neq \infty$. Then

- 1) $m_f^{(s)} \in F_-^{(s)}$, and consequently $m_f^{(s)}$ (is the greatest number of $F_-^{(s)}$).
- 2) the form $f^{(s)}(z, m_f^{(s)})$ is non-negative definite.