Г.П. Пелюх (Ин-т математики НАН Украины, Киев, Украина)

Линеаризация систем нелинейных функционально-разностных уравнений в окрестности положения равновесия

Одним из наиболее эффективных методов исследования систем нелинейных разностных уравнений вида

$$x(t+1) = \Lambda x(t) + F(t, x(t)), \tag{1}$$

где Λ -постоянная вещественная $(n \times n)$ -матрица, $F: R^+ \times R^n \to R^n$, является метод нормальных форм Пуанкаре, позволяющий свести исследование таких систем уравнений в окрестности положения равновесия x=0 $(F(t,0)\equiv 0)$ к исследованию систем наиболее простого вида. При этом такие наиболее простые формы указываются и зависят от условий, которым удовлетворяют матрица Λ и вектор-функция F(t,x). Несмотря на это в настоящее время существуют уравнения, исследование которых с помощью метода нормальных форм не дает желаемых результатов. К таким уравнениям относятся, в частности, функционально-разностные уравнения вида

$$x(t+1) = \Lambda x(t) + F(t, x(t), x(f(t))), \tag{2}$$

где Λ -постоянная вещественная $(n \times n)$ -матрица, $F: R^+ \times R^n \times R^n \to R^n$, $f: R^+ \to R^+$, которые исследуются в настоящей работе. Среди полученных здесь результатов отметим следующую теорему.

Теорема. Пусть выполняются условия:

- 1) $det \Lambda \neq 0$, $|\Lambda| < 1$;
- 2) все элементы вектора F(t,x,y) и функция f(t) являются непрерывными относительно всех своих аргументов в области $D: t \in R^+, |x| < a, |y| < a, F(t,0,0) \equiv 0;$
 - 3) вектор-функция F(t,x,y) удовлетворяет соотношению:

$$|F(t, x', y') - F(t, x'', y'')| \le \varphi(t)(|x' - x''| + |y' - y''|),$$

 $rde \ arphi(t)$ – некоторая неперерывная неотрицательная функция такая, что ряд

$$\Phi(t) = \sum_{i=0}^{\infty} |\Lambda^{-1}|^i \varphi(t+i)$$

равномерно сходится при всех $t \in R^+$ и $2|\Lambda^{-1}|\Phi(t) \le \theta < 1$.

Тогда существует непрерывная в области $D\subseteq D$ взаимно-однозначная замена переменных

$$x(t) = \Gamma(t, y(t)),$$

приводящая систему уравнений (2) к линейному виду

$$y(t+1) = \Lambda y(t)$$
.