И. Н. Панкратова (Институт математики МОН РК, Алматы, Казахстан)

Зависимость от параметров динамики семейства n- мерных систем

Рассматривается динамическая система F^m [1],

$$F: L^n \to L^n, \quad Fx = \Phi(x)Ax,$$

на компакте

$$K_a^n = \{ x \in L^n \mid x \ge 0, \ ||x|| \le a, \ a > 0 \}.$$

Здесь L^n-n -мерное линейное нормированное пространство, $A-n\times n$ - матрица, $\Phi(x)$ – скалярная функция ($x\geq 0$ означает $x_1\geq 0,\ldots,x_n\geq 0$ и $\|x\|$ – норма (длина) вектора x). Множество K_a^n инвариантно относительно отображения F, т.е. $FK_a^n\subseteq K_a^n$, если $\Phi(x)\geq 0$ непрерывна в K_a^n , A – неотрицательная матрица с элементами $a_{ij}\geq 0 \ \forall i,j=\overline{1,n}$ и $\|A\|\leq a/\tilde{C}$, где $\tilde{C}=\max_{x\in K_a^n}\Phi(x)\|x\|$ и $\|A\|$ – норма матрицы A, согласованная с векторной нормой пространства L^n .

Описание динамики системы F^m в K^n_a сводится к изучению поведения ее траекторий на так называемых *циклических* инвариантных множествах M_p отображения F конечного периода $p \ge 1$, содержащих все ω - предельные множества системы F^m . Расположение множеств M_p в K_a^n и их периоды определяются линейной частью отображения F (матрицей $A \ge 0$) и не зависят от вида функции $\Phi(x)$. Множество M_p состоит из одного инвариантного относительно F отрезка луча длины a вдоль неотрицательного собственного вектора матрицы A > 0, соответствующего собственному значению $\lambda \geq 0$ матрицы A, и континуума инвариантных относительно F множеств J_p . Множество J_p состоит из p циклически переходящих друг в друга под действием отображения F отрезков лучей длины a вдоль собственных векторов матрицы A^p , соответствующих числу λ^p , и называется *циклом отрезков лучей конечного периода* $(p \ge 1)$. При p > 1 точка $x \in M_p$, траектория $F^m x$ и ее ω - предельное множество $\omega_F x$ принадлежат одному и тому же циклу отрезков лучей $J_p \subset M_p$ периода p или одному отрезку луча (множеству $M_1\subset M_p$ периода 1). Период p множества M_p совпадает с количеством параметров $\lambda_1, \ldots, \lambda_p$, которыми описывается динамика системы F^m на множестве M_p . В пространстве K_a^n возможно существование нескольких (и даже континуума) множеств M_p отображения F разных периодов в разных частях фазового пространства. Поэтому динамика системы F^m в K_a^n определяется, в общем случае, наборами параметров $(\lambda_1, \ldots, \lambda_p), p \in N$.

Обозначим через $p^* = \max\{p\} > 1$ наибольший период множеств M_p в семействе n- мерных отображений $F,\ n>1$. Период $p^*,$ как функция от размерности системы n, является неубывающей и $p^*>n$ при $n\geq 5,\ p^*>n^2$ при $n\geq 19$.

Типичность некоторого свойства системы F^m будем понимать с метрической точки зрения (в смысле меры Лебега, введенной в пространстве параметров – коэффициентов матрицы A). Пусть отображение \widehat{F} имеет множество M_{p^*} периода $p^* > 1$.

Теорема 1. Динамика системы \hat{F}^m не является типичной.

Теорема 2. Однопараметрическая динамика системы F^m является типичной.

Для доказательства утверждений достаточно показать, что в пространстве параметров (коэффициентов матрицы A) элементы матрицы системы \widehat{F}^m образуют множество нулевой меры, а элементы матрицы системы F^m с однопараметрической динамикой образуют множество полной меры.

Из теорем 1,2 следуют некоторые рекомендации по численному определению динамики системы F^m . Во-первых, согласно проведенным исследованиям параметрической зависимости динамики системы F^m рост числа $napamempos\ cucmemu$ (увеличение числа ненулевых элементов матрицы A > 0 системы F^m) не обязательно приводит к росту числа параметров, которыми описывается динамика системы F^m $(параметры \ duнамики)$. При максимальной зависимости системы F^m от параметров $(n^2$ параметров системы) ее динамика становится одномерной однопараметрической. При этом изменение значений параметров системы $F^m\ (A>0)$ приводит лишь к изменению положения инвариантного отрезка луча – множества $M_1 \subset K_a^n$ при n > 1, притягивающего все траектории системы F^m . Таким образом, если одномерная однопараметрическая динамика системы F^m известна, то нет необходимости проводить численный эксперимент для описания динамики системы F^m , зависящей от n^2 параметров. Отметим, что, как правило, при зависимости системы F^m от большого числа (сравнимого с n^2) параметров ее динамика описывается одним или несколькими параметрами, точнее, наборы $(\lambda_1, \ldots, \lambda_p)$ состоят из одного или нескольких параметров. Во-вторых, зависимость от небольшого числа параметров системы не гарантирует успех компьютерной диагностики ее динамики, например, динамики системы \tilde{F}^m . Все определяется наличием в фазовом пространстве системы циклических инвариантных множеств M_p периода $p > n^2$, имеющих в K_a^n области притяжения ненулевой меры. Если такие множества существуют, то необходим дальнейший теоретический анализ системы F^m : определение наборов параметров $(\lambda_1, \ldots, \lambda_p)$, которыми описывается динамика системы F^m , числа входящих в наборы параметров и области их значений. В противном случае, численно отличить даже регулярную динамику системы F^m от хаотической, в частности, на множествах M_p , $p > n^2$, становится проблематично.

[1] Панкратова И.Н. // Дифференц. уравнения. — 2009. — 45, N 1.