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Let the following difference  boundary problem 
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the functions ),,( 1 nttyy …= , ),,( 1 nttff …= are continuous vector functions  whose values lie in 
some complex Banach space X; ),,( 111 nqqqq ttAA

nn
……… = denotes families of bounded periodic linear 

operators which act  in  X . 
The first term in (1)-(2) is the highest order term: ii qp ≥ ; ∑∑ ≥ jj

qp . 
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We select a subspace from αE  denoted by αB , +∞<<∞− α , which consists of function satis-
fying the condition 
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For any  αBf ∈  the solution  y  belongs to some βE  for β  sufficiently large.   Let )(αχ  de-

note the greatest lower bound of such β . 
We have the following 
Theorem. There exists an 0α  such that 0)( ααχ = for 0αα ≤  and  ααχ =)( for  0αα > .          
The boundary problem (1)-(2) is investigated by use of the methods developed in [1]. 

 
Consider the boundary problem 
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(3) 

(4) 

in the region 0 ≤ t1, …, tn < ∞.  

Here 1 2( , ,..., )ny t t t , 1 2( , ,..., )nf t t t  are continuous vector functions whose values lie in some 
complex Banach space X; 1( ,..., )j j nA A t t= , 1( ,..., )ij ij nA A t t= , …, 12... 12... 1( ,..., )n n nA A t t=  are families of 
bounded linear compact operators which act in X. 
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The totality of solutions y is covered by Eβ  for β  sufficiently large if f  ranger over 
B Eα α⊂ ; Bα  is a Banach space with respect to the norm 

[ ]( )∞<−=
∞<≤

),,(exp),,(sup 11
,,0 1

nxn
tt

B
ttttff

n

……
…

α
α

. 

Denote by inf ( )β χ α=  and is colled exponential characteristic of problem (3) – (4). [2] 

We have the following 

Theorem. There exists an 0 0 0( ) ( )α β γ−∞ < ≤ ≤ < +∞  such that 0( )χ α β=  for 0α α≤ ; 
( )χ α α=  for 0α γ≥ ; ( )χ α  is increasing function on 0 0( , )α γ . 

For problem (3) - (4) with periodic coefficients we get 0 0 0α β γ= =  and 0( ) max( , )χ α α α= . 
Here 0β  is highest order and 0γ  is general order of associated uniform problem [3]. 
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