Elizbar Nadaraya, Petre Babilua, Grigol Sokhadze (Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia)

Some Goodness-of-Fit Tests Based on Estimates of Kernel Type Distribution

Let X_1, X_2, \ldots, X_n be a sequence of independent equally distributed random values having a distribution density f(x). Using the sampling X_1, X_2, \ldots, X_n , it is required to check the hypothesis H_0 : $f(x) = f_0(x)$. Here we consider the test of the hypothesis H_0 based on the statistic $U_n = na_n^{-1} \int (f_n(x) - f_0(x))^2 r(x) dx$, where $f_n(x)$ is the recurrent Wolverton–Wagner kernel estimate of the probability density defined by $f_n(x) = n^{-1} \sum_{i=1}^n a_i K(a_i(x - X_i))$, where $\{a_i\}$ is an increasing sequence of positive integers tending to infinity, $r(x) \in R$ (R is the set of non-negative, bounded and piecewisecontinuous functions at $(-\infty, +\infty)$), $K(x) \in H = \{h : h(x) \ge 0, \sup_{x \in (-\infty, +\infty)} h(x) < \infty, \int h(x) dx = 1, x^2 h(x) \in L_1(-\infty, +\infty), h_0(ux) \ge h_0(x)$ for all $u \in [0, 1]$ and for all $x \in (-\infty, +\infty)$, $h_0 = h * h$; * is the convolution operator}.

Let us introduce into consideration the sequence of alternatives of the form ([1], [2]):

$$H_1: f_1(x) = f_0(x) + \alpha_n \varphi \left(\frac{x-\ell}{\gamma_n}\right) + o(\alpha_n \gamma_n),$$

where $\alpha \downarrow 0, \gamma_n \downarrow 0, \ell$ is the fixed point of continuity r(x) and $r(l) \neq 0$.

Theorem. Let $K(x) \in H$ and $K_0(x) \in F$ (F is the set of densities having bounded derivatives up to second order), $f_0(x) \in F$, $\varphi(x) \in F$. If $a_n = n^{\delta}$, $\alpha_n = n^{-\alpha}$, $\gamma_n = n^{-\beta}$ and also $\delta/2 = 1 - 2\alpha - \beta$, $\alpha + \beta > 1/2$, $2/9 < \delta \le 1/2$, $\beta < 0, 9\delta$, $\alpha < 2\delta$, then

$$P_{H_1}\{U_n \ge \lambda_n(\alpha)\} \longrightarrow 1 - \Phi\left(\varepsilon_\alpha - \frac{r(\ell)}{\sigma(f_0)} \int \varphi^2(u) \, du\right),$$

where

$$\sigma(f_0) = 2 \int f_0^2(x) r^2(x) \, dx \int \left(\int_0^1 u^\delta K_0(u^\delta z) \, du \right)^2 dz, \quad K_0 = K * K,$$

$$\lambda_n(\alpha) = \Delta(f_0) + \varepsilon_\alpha a_n^{-1/2} \sigma(f_0), \quad \Delta(f_0) = \gamma \int f_0(x) r(x) \, dx \int K^2(u) \, du, \quad \gamma = \frac{1}{1+\delta} \cdot \frac{1}{1+\delta} \cdot$$

- [1] Rosenblatt M. // Ann. Statist. 1975. **3**, 1–14.
- [2] Nadaraya E. A. Nonparametric estimation of probability densities and regression curves. Dordrecht: Kluwer Academic Publishers Group, 1989.