Vadim Mogilevskii (Lugansk National Taras Shevchenko University, Lugansk, Ukraine)

On Generalized Resolvents and Characteristic Matrices of Differential Operators

The main object of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order on the interval $[0, b\rangle$ ($b \leq \infty$) with operator valued coefficients. We complement and develop the known Shtraus' results on generalized resolvents and characteristic matrices of the minimal operator L_0 . Our approach is based on the concept of a decomposing boundary triplet [1] which enables to establish a connection between the Straus' method and boundary value problems (for singular differential operators) with a spectral parameter in a boundary condition. In particular we provide a parametrization of all characteristic matrices $\Omega(\lambda)$ of the operator L_0 immediately in terms of the Nevanlinna boundary parameter $\tau(\lambda)$. Such a parametrization is given in the form of the block-matrix representation of $\Omega(\lambda)$ as well as by means of the formula for $\Omega(\lambda)$ similar to the well known Krein-Naimark formula for generalized resolvents.

[1] Mogilevskii V.I.// Meth. Func. Anal. Topol.-2009.- 15, N 3.