Andrii Goriunov (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)

Formally self-adjoint quasi-differential operators

Let [a, b] be a closed interval, $m \in \mathbf{N}$. We denote by $W_2^{[m]}$ the space of functions $y(x) \in L_2([a, b], \mathbf{C}) =: L_2$ such that following Shin-Zettl quasi-differential expressions exist a. e. on [a, b]: $D_0 y := y$, $D_k y := D(D_{k-1}y) + \sum_{s=0}^{k-1} p_{k,s}(x)D_s y$, $D := -i\frac{d}{dx}$, $k = \overline{1, m}$, where $\overline{p_{k,s}(x)} = p_{m-s,m-k}(x) \in L_1([a, b], \mathbf{C})$, $s = \overline{0, k-1}$. They contain classical differential expressions and many others [3]. We consider in Hilbert space L_2 the minimal operator $L_{min}y := D_m y$, $Dom(L_{min}) := \{y \in W_2^{[m]} : D_k y(a) = D_k y(b) = 0, k = \overline{0, m-1}\}$. It is a closed densely defined symmetric operator in L_2 with deficiency index (m, m).

Theorem 1 ([1]). Triplet $(\mathbf{C}^m, \Gamma_1, \Gamma_2)$, where Γ_1, Γ_2 are mappings from $W_2^{[m]}$ into \mathbf{C}^m such that: $\Gamma : u := i(D - u(a) - D - u(b) - D - u(b))$

$$\begin{split} &\Gamma_1 y := i \left(D_{2n-1} y(a), ..., D_n y(a), -D_{2n-1} y(b), ..., -D_n y(b) \right), \\ &\Gamma_2 y := \left(D_0 y(a), ..., D_{n-1} y(a), D_0 y(b), ..., D_{n-1} y(b) \right), \quad for \ m = 2n, \ and \\ &\Gamma_1 y := i \left(D_{2n} y(a), ..., -D_{n+1} y(b), i D_n y(b) + D_n y(a) \right), \\ &\Gamma_2 y := \left(D_0 y(a), ..., D_{n-1} y(b), \left(-\frac{1}{2} + i \right) D_n y(b) + \left(1 - \frac{1}{2} i \right) D_n y(a) \right), \quad for \ m = 2n + 1, \\ &is \ a \ space \ of \ boundary \ values \ for \ symmetric \ operator \ L_{min}. \end{split}$$

Theorem together with results of [2, Ch.3, §1] imply

Theorem 2 ([1]). Restriction of L_{max} on the set of functions $y(x) \in W_2^{[m]}$ satisfying homogeneous boundary condition

$$(K - I) \Gamma_1 y + i (K + I) \Gamma_2 y = 0, \tag{1}$$

where K is a unitary operator in \mathbb{C}^m , is a self-adjoint extension L_K of L_{min} . Inversely, for every self-adjoint extension \tilde{L} such unitary operator K in \mathbb{C}^m that $\tilde{L} = L_K$ exists. This relation between unitary operators K and self-adjoint extensions is bijetive.

Different characterization of self-adjoint extensions of quasi-differential operators, based on classical GKN theory, may be found in [3]. However, our approach has advantage of bijectivity of parametrization. Its another important advantage is that formula (1) describes all maximal dissipative extensions, if K is contraction in \mathbb{C}^m . Also in [1] we use this approach to describe all generalized resolvents of L_{min} .

These results were obtained together with V. A. Mikhailets [1].

- [1] Goriunov A. S., Mikhailets V. A. // Reports of NAS of Ukraine 2009. N 4 and N 9.
- [2] Gorbachuk M. L., Gorbachuk V. I. Boundary value problems for operator differential equations. — Mathematics and its Applications (Soviet Series), 48. Kluwer Academic Publishers Group, Dordrecht, 1991.
- [3] W. N. Everitt, L. Markus. Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators. — AMS Bookstore, 1998.